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Background and Objective: Previous studies have identified the role of irisin and
vitamin D in energy homeostasis. However, the effect of irisin and vitamin D on energy
regulation has not been thoroughly investigated. Therefore, in this study, the effects of
a vitamin D-deficient diet and irisin on total energy expenditure (TEE), food intake, and
blood metabolites were investigated in rats.

Methods: Sixteen healthy weaned male albino rats were randomly divided into two
groups: a group fed a normal balanced growth diet (group A: n = 8) and a group fed a
normocalcemic diet that is vitamin D deficient with limited ultraviolet (UV) light exposure
(group B, n = 8). After 6 weeks, the volumes of respiratory gases were measured by
open-circuit indirect calorimetry. Serum irisin, 25-OHVD3, calcium, insulin, and glucose
levels were measured using ELISA. The respiratory quotient (RQ), energy expenditure,
and Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) were calculated.

Results: Rats with hypovitaminosis D were hypoirisinemic. Food intake, RQ (to the
range of using endogenous fat), and glucose levels reduced significantly, while insulin
levels increased. Body weight and TEE were non-significant changed. Additionally,
irisin was strongly and positively correlated with body weight under normal conditions
(r = 0.905, p < 0.01), and a moderate negative correlation in group B (r = −0.429,
p < 0.05). TEE and irisin showed no significant correlation.

Conclusion: This study demonstrated that the early changes in energy homeostasis
and irisin levels during states of hypovitaminosis D are affected by long-term
consumption of a vitamin D-deficient diet with limited UV exposure.

Keywords: vitamin D deficiency, vitamin D, irisin, energy homeostasis, indirect calorimetry

INTRODUCTION

Vitamin D insufficiency is highly prevalent (Dong et al., 2010; Wei and Giovannucci, 2010). Many
reports documented the impact of vitamin D insufficiency in body weight regulation (Mithal
et al., 2009; Farrell and Willis, 2012; Goshayeshi et al., 2012; Mai et al., 2012). However, it is
unclear whether vitamin D insufficiency enhances weight gain or whether obesity modulates serum
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vitamin D levels. Studies aiming to regulate body weight by
correcting vitamin D levels have yielded inconsistent findings
(Zittermann et al., 2009; Salehpour et al., 2012), although other
favorable effects, including reduced body fat weight (Salehpour
et al., 2012), reduced inflammatory profile (Zittermann et al.,
2009), and improved insulin resistance (Kamycheva et al.,
2013) were observed.

In contrast to human trials, animal experiments have shown
that vitamin D may play a role in weight gain. Vitamin D
receptor knock-out mice were resistant to weight gain (Narvaez
et al., 2009; Weber and Erben, 2013). Additionally, mice fed a
vitamin D-deficient/insufficient diet were resistant to “western
diets” (Bastie et al., 2012) and “high-fat diets” (Liu et al., 2013).
Seldeen et al. (2017) reported that supplementing lean and obese
mice with low cholecalciferol significantly reduced serum 25-
OH vitamin D concentrations. Vitamin D insufficiency was not
correlated to BMI or body fat (Seldeen et al., 2017). Findings on
the effects of a vitamin D-deficient diet on weight gain and other
parameters such as insulin, glucose levels, food intake have been
inconsistent so far.

Irisin has been recently considered a potential candidate
responsible for changes in weight and other related parameters
in vitamin D deficiency. Irisin is a myokine – a peptide that
causes browning of white fat, enhances burning of fat and, as
a result, inhibits weight gain (Moreno-Navarrete et al., 2013).
Irisin has been linked to the glucose/lipid metabolism (Huh
et al., 2012; Choi et al., 2013; Moreno-Navarrete et al., 2013;
Park et al., 2013; Stengel et al., 2013; Kurdiova et al., 2014; Sesti
et al., 2014; Yan et al., 2014) and may have a preventive role
in the adiposity development and the onset of diabetes (Lee
et al., 2011; Moon, 2014). Irisin showed a stronger correlation
to insulin resistance than other myokines; however, there is
no consensus yet regarding the effectiveness of irisin secretion
(Elsen et al., 2014).

Both irisin and vitamin D are important regulators of the
musculoskeletal system and energy homeostasis. However, the
effect of the irisin-vitamin D relationship on total energy
expenditure (TEE), food intake, and substrate metabolism is
well understood. We hypothesized that a vitamin D-deficient
diet may lower serum irisin concentration and affect weight and
TEE via changes in irisin. In the present study, we investigated
(1) the effects of a vitamin D-deficient diet on the serum
irisin concentration, and (2) whether a vitamin D-deficient diet
associated with changes in body weight and TEE could be
explained by variations in irisin levels using rat model.

MATERIALS AND METHODS

Animals
This study was carried out using male Albino Wistar rats (n = 16).
All experimental protocols were approved by the Animal Care
and Ethics Committee in the College of Applied medical sciences,
King Saud University (reference no: CAMS 52-35/36).

Rats were housed in a temperature-controlled room
(21 ± 2◦C) with 12-h light-dark cycles. All rats were fed a
standard laboratory diet and had ad libitum access to tap

water. After a 1-week acclimatization period, the male rats were
randomly divided into two groups: group A, the normal control
rats [vitamin D sufficient] (n = 8) and group B, the vitamin
D-deficient rats (n = 8).

Feeding Protocol
Immediately after weaning, the rats in group A were fed a normal
balanced growth diet, the AIN-93G diet (Bio-Serv, United States)
with 18% protein, 7% lipid, 60% carbohydrates, 5% fiber, 2.2%
crude ash, in addition to 5.1 g calcium/kg, 2.8 g phosphorus/kg,
and 1000 IU vitamin D/kg, and exposed freely to fluorescent
lighting (60 cm away from the lamps). The rats in group B
were fed a normocalcemic-vitamin D-deficient diet (Bio-Serv,
United States). The rats also received limited ultraviolet exposure
from fluorescent lights for 6 weeks by covering the upper surface
of cages with opaque sheets and putting the cage in the lower
level of the carrying track about 2 m away from the lamps. The
nutrient composition of the vitamin D-deficient diet included
18% protein, 60% carbohydrates, 7% fat, 2.2% ash, and fibers. The
micronutrients included 5.1 g/kg calcium, 2.8 g/kg phosphorus,
and <50 IU/kg Vitamin D3. The animals in both groups had free
access to tap water.

Blood Sampling and Analysis
Blood samples (≈1 ml) from the lateral tail vein were
used to assess the basal 25-hydroxyvitamin D3 (25OHVD),
irisin, calcium, insulin, and glucose levels in both groups.
Finally, all rats were euthanized and blood was sampled via
cardiac puncture. Serum irisin, 25OHVD, calcium, glucose,
and insulin were measured using ELISA kits according to the
manufacturer protocol (MyBiosource, United States, Catalog
numbers; MBS9356609, MBS261766, MBS283776, MBS7233226,
and MBS724709, respectively).

Additionally, insulin resistance was assessed using the
homeostatic model assessment (HOMA-IR) of β-cell function
based on the method developed by Matthews et al. (1985)
using the following formula [fasting insulin (U/l) × fasting
glucose (mg/dl)/405]. A low HOMA-IR level indicates
increased insulin sensitivity, and a high HOMA-IR level
refers to low insulin sensitivity, i.e., insulin resistance
(Matthews et al., 1985).

Total Energy Expenditure Determination
After overnight fasting, rats from both groups were housed
individually in Calo-cages with the TSE PhenoMaster system
for 36 h (TSE, Germany), where volumes of respiratory gases
were measured based on open-circuit indirect calorimetry.
The respiratory quotient (RQ), an indicator of metabolic fuel,
and total energy expenditure were calculated. Automatic food
intake was also recorded with a precision of 0.01 g through
a calibrated sensor. Measurements were taken every 15 min,
and those of the first 6 h corresponding to the acclimatization
period were deleted.

The parameters used for analysis were volume of respiratory
oxygen and carbon dioxide (VO2 and VCO2) per hour per kg
of body weight, per hour per kg lean body mass, and per hour
only. Accordingly, respiratory quotient (RQ) and total energy
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expenditure (TEE) were calculated. The TEE was presented as
calories per hour per kg of body weight or lean body mass and
as calories per hour. The lean body mass was estimated to be 75%
of the body weight (Ali Abulmeaty et al., 2019).

Statistical Analysis
SPSS software (ver.24.0, SPSS, Chicago, IL, United States) was
used for all statistical analyses. All study variables were tested for
normality by using the Kolmogorov–Smirnov and Shapiro–Wilk
tests. All variables followed normal distribution, as the p-values
were >0.05, and the data were expressed as means ± standard
deviation (SD). An independent sample t-test was performed
to observe differences between the groups. The paired sample
t-test was also used to compare basal and final measurements.
The Spearman correlation coefficient test was used for testing
correlation among all parameters. P-values < 0.05 indicated
statistical significance.

RESULTS

General Characteristics
The baseline characteristics of the study animals in comparison
to their final conditions are shown in Table 1. All rats (n = 16)
were similar with respect to age, body weight, and other
basal parameters.

Effects of a Normocalcemic-Vitamin
D-Deficient Diet on Irisin Levels
Figure 1 shows a comparison of the irisin concentration in
rats in group A (vitamin D sufficient) and group B (vitamin
D deficient). Irisin levels were significantly higher in group A
compared to group B.

Table 2 presents the study parameters of groups A and
B. The body weight did not differ between the two groups
(p = 0.54). Similarly, the mean TEE in group A was not
statistically different to that in group B (5.18 ± 0.80 vs.
5.94 ± 1.05 Kcal/h/Kg, p = 0.13). There was a significant
reduction in RQ in group B in favor of more lipid utilization,
combined with a significant increase in insulin level, and decrease
in food intake, and HOMA-IR indicator compared to the
corresponding values in group A.

FIGURE 1 | Serum 25OHVD (A) and irisin levels (B) in the study groups.

Correlations of Irisin and 25-OHVD3
Figure 2 shows that irisin was positively correlated with
25OHVD in both groups (n = 8, r = 0.571 and 0.619,
respectively, p < 0.05). Additionally, irisin was significantly
correlated with body weight in group A (r = 0.905, p < 0.05),
and negatively in group B (r = −0.429, p < 0.05). Irisin was
also correlated with RQ in the normal control group rather
than in the vitamin D-deficient group. The 25OHVD3 showed a
significant correlation with insulin level, HOMA-IR, and calcium
concentration in group A (Table 3).

DISCUSSION

In this experiment, we demonstrated that vitamin D
deficiency may affect weight and TEE via irisin. The vitamin
D-deficient rats in group B had lower irisin levels than
rats in group A (p = 0.02; Figure 1), consistent with our
hypothesis. Interestingly, there was a significant reduction
in RQ in group B, along with a significant decrease in
food intake, glucose levels, and HOMA-IR, in addition to
a significant increase in insulin level compared to those
in group A. Furthermore, irisin was positively correlated
with HOMA-IR and body weight in the group A, while
the correlation was inversed in the vitamin D-deficient
group. Additionally, irisin was significantly and positively
correlated with RQ in the vitamin D-sufficient but not
in the vitamin D-deficient group, whereas 25OHVD3 was

TABLE 1 | Baseline characteristics of the study groups vs. final measurements.

Parameters Group A (Vitamin D sufficient) (n = 8) P-value Group B (Vitamin D deficient) (n = 8) P-value

Basal Final Basal Final

Age (weeks) 4.57 ± 0.43 11.57 ± 0.43 0.000 4.43 ± 0.43 11.43 ± 0.43 0.000

Weight (g) 70.31 ± 5.54 261.28 ± 31.25 0.000 68.09 ± 6.65 270.45 ± 26.81 0.000

Irisin (ng/ml) 296.68 ± 58.78 424.42 ± 4.90 0.000 282.96 ± 22.10 383.55 ± 30.42 0.000

25OHVD (ng/ml) 29.75 ± 3.03 36.84 ± 7.74 0.054 30.07 ± 2.82 15.88 ± 4.88 0.000

Ca (mg/dl) 9.78 ± 1.06 10.23 ± 0.79 0.338 10.16 ± 0.98 7.11 ± 0.98 0.001

Insulin (mIU/l) 7.54 ± 0.75 8.41 ± 0.38 0.034 7.99 ± 1.01 11.48 ± 1.55 0.000

Glucose (mg/dl) 83.26 ± 10.81 87.61 ± 3.41 0.288 79.96 ± 9.77 58.64 ± 3.58 0.000

HOMA-IR 1.55 ± 0.28 1.82 ± 0.10 0.026 1.57 ± 0.26 1.65 ± 0.13 0.452
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TABLE 2 | Comparison of the measured parameters between vitamin D-sufficient
and -deficient rats.

Parameters Group A Group B P-value

(Vitamin D (Vitamin D
sufficient) deficient)

(n=8) (n=8)

Mean ± SD Mean ± SD

Ca (mg/dl) 10.23 ± 0.79 7.11 ± 0.98 0.000

VO2 (ml/h/kg) 1203.30 ± 192.75 1076.93 ± 159.94 0.175

VO2 (ml/h/kg lean body
mass)

890.54 ± 142.68 797.01 ± 118.36 0.176

VO2 (ml/h) 360.99 ± 57.84 323.07 ± 48.00 0.176

VCO2 (ml/h/kg) 1078.41 ± 271.38 841.56 ± 161.71 0.052

VCO2 (ml/h/kg lean
body mass)

798.08 ± 200.85 622.82 ± 119.69 0.052

VCO2 (ml/h) 323.52 ± 81.43 252.45 ± 48.50 0.052

Respiratory Quotient 0.89 ± 0.10 0.78 ± 0.05 0.020

TEE (kcal/h/kg) 5.94 ± 1.05 5.18 ± 0.80 0.126

TEE (kcal/h/kg lean
body mass)

4.39 ± 0.78 3.83 ± 0.59 0.125

TEE (kcal/h) 1.78 ± 0.31 1.55 ± 0.24 0.126

Weight (g) 261.28 ± 31.25 270.45 ± 26.81 0.539

Food intake (g/day) 9.73 ± 3.35 6.49 ± 1.88 0.031

Insulin (mIU/l) 8.41 ± 0.38 11.48 ± 1.55 0.000

Glucose (mg/dl) 87.61 ± 3.41 58.64 ± 3.58 0.000

HOMA-IR 1.82 ± 0.10 1.65 ± 0.13 0.012

significantly correlated with insulin level, HOMA-IR, and
calcium concentration in group A.

In our experiment, serum irisin was directly correlated with
HOMA-IR, body weight, and RQ in the vitamin D-sufficient
group, whereas it was negatively correlated with HOMA-IR

and body weight in the vitamin D-deficient group. Park et al.
(2013); Ebert et al. (2014), and few others (Liu et al., 2013;
Chen et al., 2015) found similar results of significant positive
correlations between irisin and HOMA-IR. In contrast, Al-
Daghri et al. (2014) found that irisin was inversely correlated
with HOMA-IR in women, whereas Moreno-Navarrete et al.
(2013) reported inverse correlations in obese men. A recent,
large-scale exploratory study, including 1,115 obese Chinese
men and women, showed that those with high irisin levels had
lower blood glucose levels or metabolic syndrome compared
to controls (Yan et al., 2014). The inconsistent findings across
studies and between genders (Moreno-Navarrete et al., 2013;
Al-Daghri et al., 2014), suggest that the irisin level is affected
by fat distribution, insulin sensitivity, and the level of vitamin
D, which was not previously investigated. Animal studies may
explain this mechanism, as overexpression of the irisin precursor,
fibronectin-type III domain-containing 5 (FNDC5), in obese
mice increased TEE and insulin sensitivity, and decreased
hyperglycemia, hyperlipidemia, and hypertension (Xiong et al.,
2015). Since FNDC5 mRNA was also detected in adipose tissue
and skeletal muscle (Seldeen et al., 2017), higher levels of irisin
increased thermogenesis and TEE in high fat fed mice (Bostrom
et al., 2012). Muscle cells treated with irisin enhanced the uptake
of glucose and fatty acid (Perakakis et al., 2017). Irisin also
increased GLUT4 and PPARα gene expression, which modulate
glycogenolysis and gluconeogenesis, respectively (Perakakis et al.,
2017). However, in patients with diabetes or obesity, irisin
levels decreased due to a drop in FNDC5 expression triggered
by chronic hyperglycemia and hyperlipidemia (Kurdiova et al.,
2014). Furthermore, irisin injections stimulated browning of
subcutaneous fat, suggesting that irisin may have therapeutic
effects, however, these findings need to be confirmed. Thus,
it was hypothesized that a fat-derived feedback mechanism

FIGURE 2 | Correlation between irisin and 25OHVD, body weight, and RQ in both study groups.
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TABLE 3 | Spearman correlation coefficients of the measured parameters with
Irisin and 25-OHD3.

Parameters Group A Group B
(Vitamin D sufficient) (Vitamin D deficient)

Irisin 25OHVD3 Irisin 25OHVD3

Irisin 1 0.571* 1 0.619*

VO2 by body weight −0.143 0.071 −0.167 0.024

VO2 by lean body mass −0.143 0.071 −0.167 0.024

VO2 by cage −0.143 0.071 −0.167 0.024

VCO2 by body weight −0.048 0.000 −0.048 0.048

VCO2 by lean body mass −0.048 0.000 −0.048 0.048

VCO2 by cage −0.048 0.000 −0.048 0.048

Respiratory quotient 0.419* −0.036 0.244 0.000

TEE by body weight −0.143 0.071 −0.119 −0.024

TEE by lean body mass −0.143 0.071 −0.119 −0.024

TEE by cage −0.143 0.071 −0.119 −0.024

Weight 0.905** 0.238 −0.429* 0.000

Food intake 0.214 0.024 0.048 −0.190

Insulin 0.072 0.802* −0.180 −0.108

Glucose 0.071 −0.190 −0.024 −0.167

HOMA-IR 0.335* 0.563* −0.431* −0.216

Calcium 0.252 0.503* −0.048 0.238

*Correlation is significant at the 0.05 level (2-tailed), **Correlation is significant at
the 0.01 level (2-tailed).

in obese individuals lead to increased production of irisin;
the secreted irisin into blood ameliorates insulin resistance
by increasing the expression of uncoupling protein-1 gene,
resulting in the browning of white fat (Sanchis-Gomar and
Perez-Quilis, 2014). Future studies are needed to confirm this
proposed mechanism.

We also demonstrated that irisin and vitamin D were
directly correlated in both groups. This was in line with
findings of a one-year-long intervention study on male
and female human subjects fed a vitamin D-rich diet
and exposed to sunlight showed that levels of irisin only
significantly increased in males compared to those in the
controls (Al-Daghri et al., 2014). These results may be
attributed to pancreatic β-cells which play a role in the
pathogenesis of diabetes through variations in genes controlling
metabolism and expression of the receptors (Giri et al.,
2017). This expression may lead to an activation of PGC1α,
a transcriptional coactivator that increases FNDC5 mRNA
expression, resulting in high irisin secretion into the blood.
In vivo, the parathyroid hormone played a role in regulating
the expression of FNDC5/Irisin, which was directly related
to changes in serum vitamin D and calcium (Palermo et al.,
2019), however, these findings need to be further confirmed
in future studies.

The main strengths of the study include the use of the
animal model which allowed us to examine interrelationships
between serum vitamin D insufficiency and irisin, independent of
lifestyle or genetic factors presented in human studies. However,
since animal models use of receptor knockouts or dietary
removal and/or manipulation to simulate vitamin D-deficient
conditions, this may not accurately simulate the more prevalent

condition of insufficiency in humans. There are some limitations
to this study: First, we could not measure blood parameters
at different time points, thus we were unable to investigate
variations in irisin levels. Second, due to the small sample
size, we were unable to further divided the animals into
groups in order to assess the effects of different vitamin D
concentrations in the diet.

CONCLUSION

This study demonstrated that the early changes in energy
homeostasis and irisin levels during states of hypovitaminosis D
are affected by long-term consumption of a vitamin D-deficient
diet. Further research is needed to identify the molecular
basis of these findings. Our findings also suggest that both
the normal balanced growth diet and the normocalcemic-
vitamin D-deficient diet with limited ultraviolet light exposure
for 6 weeks failed to modulate body weight and TEE.
A 6-week vitamin D-deficient diet induced a vitamin D
insufficiency in rats (serum 25-OHVD3 levels: <20 ng/ml)
combined with significant changes in serum levels of irisin, Ca,
insulin, and glucose.
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