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    Chemerin, like many other plasma pro-
teins, is secreted as a 143-aa precursor 
protein (pro-chemerin [or TIG-2] [ 1, 2 ]) 
and is activated when a 6-aa peptide is 
cleaved at its C terminus by serine pro-
teases of the coagulation, fi brinolytic, 
and infl ammatory cascades ( Fig. 1 ) ( 3 ).  
Active chemerin (137-aa protein) binds 
to the G protein – coupled receptor 
(GPCR) ChemR23(CMKLR1), which 
is expressed on macrophages and pDCs, 
and induces cell migration ( 1, 4 ). A 
nonapeptide (chemerin-9) correspond-
ing to the C terminus of the processed 
form of human chemerin was identi-
fi ed as a potent agonist for ChemR23, 
indicating the importance of the pro-
tein ’ s C terminus for receptor binding 
and chemotactic activity ( 5 ). 

 Proteolysis of precursor proteins gen-
erates a wide variety of ligands that play 
important roles during the infl amma-
tory responses. The classical leukocyte 
chemoattractants C5a and C3a, for ex-
ample, which are enzymatically released 
from circulating C5 and C3 during ac-
tivation of the complement pathway, 
regulate the recruitment and activation 
of leukocytes ( 6 – 8 ). Protease activation 
of precursor proteins is not limited to 
plasma proteins. CXCL7 is a chemoat-
tractant generated from precursor pro-
tein stored in the  � -granules of platelets, 
which induces chemotaxis of neutro-

phils via the GPCR CXCR2 ( 9 ). Hu-
man cathelicidin (hCAP18) is also stored 
in secondary granules of neutrophils. 
Cleavage of hCAP18 liberates its C ter-
minus, yielding an antimicrobial peptide 
called LL-37. In addition to its antimi-
crobial eff ects, LL-37 induces chemo-
taxis and Ca 2+  fl ux in monocytes via the 
GPCR FPRL1 ( 10 ). 

 Although chemerin was fi rst de-
scribed as a chemoattractant, a recent 
study by Cash et al. shows that chemerin 
cleavage generates a potent antiinfl am-
matory peptide that also signals through 
ChemR23 and suppresses infl ammation 
in the picomolar range ( 11 ). On page 
2207 of this issue, Zabel et al. identify 
a GPCR, CCRL2 (also known as HCR, 
CRAM, or CKRX) ( 12, 13 ), as an ad-
ditional receptor for chemerin that 
functions unlike any other known che-
mokine receptor ( 14 ). 

 Chemerin ’ s suppressive side 

 In a recent study, Cash et al. made the 
surprising observation that pretreatment 
of mouse peritoneal macrophages with 
chemerin inhibited the production of 
infl ammatory mediators in response to 
LPS and IFN- �  ( 11 ). This inhibitory ef-
fect required processing of chemerin by 
cysteine proteases and was in marked 
contrast to the proinfl ammatory proper-
ties of active chemerin produced by ser-
ine protease cleavage ( 3 ). Because the 
biological activity of chemerin depends 
on C-terminal processing, the authors 

hypothesized that peptides released upon 
C-terminal processing might be respon-
sible for the inhibition. 

 To test this hypothesis, Cash et al. 
synthesized several peptides from the 
C-terminal end of mouse chemerin and 
tested them for inhibitory eff ects. One 
peptide, chemerin 15, possessed potent 
antiinfl ammatory eff ects at surprisingly 
low picomolar concentrations. Intraper-
itoneal administration of chemerin 15 
to mice before zymosan challenge sup-
pressed the recruitment of neutrophils 
and monocytes with a concomitant re-
duction in the expression of proinfl am-
matory mediators. Chemerin 15 also 
appeared to signal through ChemR23, 
as it had no inhibitory eff ect in ChemR23-
defi cient mice. 

 Administration of neutralizing anti-
body against chemerin to mice before 
zymosan challenge markedly enhanced 
intraperitoneal infi ltration by infl am-
matory cells. Because zymosan nor-
mally activates resident macrophages, 
chemerin-derived inhibitory peptides 
are presumably generated at the site of 
infl ammation and appear to play an 
important role in down-regulating in-
fl ammatory responses. Thus, depending 
on the class of protease that processes 
pro-chemerin or chemerin, ChemR23 
binding peptides with either pro- or anti-
infl ammatory eff ects are produced. 

 Because the chemerin-derived in-
hibitory peptide acts via the same recep-
tor as the proinfl ammatory chemerin, 
these structurally related agonistic and 
inhibitory peptides may compete at 
the level of receptor binding. In fact, 
picomolar levels of the inhibitory pep-
tides are active, whereas nanomolar 
concentrations are required for agonistic 
eff ects by chemerin. Other GPCR li-
gands demonstrate similar competition. 
For example, an N-terminal deletion 
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PCA reactions when a lower sensitizing 
dose was used (50 ng/ear), suggesting 
that mCCRL2 ligation normally am-
plifi es the infl ammatory response. The 
amplifi ed response was caused by mC-
CRL2 expression on mast cells, as mast 
cell – defi cient mice engrafted with mC-
CRL2-defi cient bone marrow progeni-
tor cells had less ear swelling than did 
those engrafted with WT cells. 

 In an attempt to identify the li-
gand of mCCRL2, the authors screened 
known chemokines, but none of them 
stimulated chemotaxis of mCCRL2-
transfected cells. To the authors ’  sur-
prise, however, chemerin blocked the 
binding of anti-mCCRL2 antibody to 
mouse peritoneal mast cells. Despite 
binding to mCCRL2 with high affi  nity, 
chemerin elicited no functional re-
sponse from mCCRL2-expressing cells. 
Binding failed to trigger intracellular 
calcium mobilization, chemotaxis, or 
mCCRL2 internalization. Instead, in-
cubating mCCRL2-transfected cells with 
chemerin resulted in a time-dependent 
increase in surface-bound chemerin. 
These chemerin-loaded cells then trig-
gered calcium fl ux in responder cells 
expressing ChemR23. Thus, CCRL2 
seems to concentrate bioactive chemerin 
and facilitate its presentation to ChemR23 
on adjacent cells. 

 A wide variety of soluble proinfl am-
matory mediators are produced and 
released at infl ammatory sites, and mech-
anisms have been developed to retain 
or concentrate those mediators by pre-
venting their diff usion. Chemokines, for 
example, bind to glycosaminoglycans, re-
sulting in the formation of leukocyte-
attracting chemokine gradients in tissues 
( 21 ). Bacterial LPS binds to LPS-bind-
ing protein, which enhances the sub-
sequent binding of LPS to MD-2 in 
the TLR4 – MD-2 receptor complex, 
thus initiating the TLR4 intracellular 
signaling cascade ( 22 ). Some ligands, such 
as TNF, are present in both soluble 
and cell membrane – bound form. In its 
membrane-bound form, the receptor 
binding domain of TNF is exposed, 
which may explain why DC activation 
by neutrophil-derived TNF requires 
cell – cell contact ( 23 ). Because neutro-
phils generally produce cytokines at much 

The fi rst identifi ed the orphan GPCR 
GPR1, which is closely related to 
ChemR23, as a second chemerin recep-
tor ( 19 ). In this issue, Zabel et al. ( 14 ) 
unexpectedly identify a third chemerin-
binding GPCR, CCRL2. The authors 
show that mouse CCRL2 (mCCRL2, 
the presumptive orthologue of human 
CCRL2 [ 20 ]) is constitutively expressed 
on mast cells. To examine whether 
CCRL2 plays a role in the infl amma-
tory response, they used mice lacking 
the receptor. The absence of mCCRL2 
did not aff ect basic mast cell functions 
in vitro or T cell – mediated contact hy-
persensitivity in vivo. The authors then 
examined the IgE-dependent passive 
cutaneous anaphylaxis (PCA) reaction, 
a mast cell – dependent model of atopic 
allergy. Although both wild-type and 
mCCRL2-defi cient mice developed 
marked local infl ammation when sensi-
tized with a high dose of DNP-specifi c 
IgE (150 ng/ear) and challenged with 
antigen intravenously, the mCCRL2-
defi cient mice had signifi cantly reduced 

variant of the chemokine MCP-1 (called 
7ND) inhibits MCP-1 – mediated mono-
cyte chemotaxis ( 15 ). Extension of the 
human chemokine RANTES by a single 
residue at the N-terminus (Met-RAN-
TES) creates a potent and selective 
RANTES antagonist ( 16 ). Met-RAN-
TES also inhibits the eff ects of MIP-1 � , 
a chemokine that shares its receptors 
with RANTES, raising the possibil-
ity that chemerin 15 may also inhibit 
the eff ect of other ChemR23 ligands, 
such as the antiinfl ammatory lipid resol-
vin E1. Like chemerin 15, resolvin E1 
suppresses zymosan-induced peritoni-
tis and sulfonic acid – induced colitis in 
mice ( 17, 18 ). It remains a mystery how 
the diff erent Chem23R ligands can in-
duce opposing eff ects through the same 
receptor. Future studies may identify 
other receptors that participate and are 
trans-activated by this GPCR. 

 Chemerin fi nds a new partner 

 Chemerin ’ s complex functions have 
been amplifi ed by two more reports. 

  Figure 1.     The regulation of the infl ammatory responses by active, proinfl ammatory chemerin 

and inhibitory chemerin-derived peptides.  Mature, active chemerin is generated from pro-chemerin 

via C-terminal processing by serine proteases. (1) Active chemerin directly activates cells by binding to 

ChemR23/CMKLR1, resulting in cell migration and calcium fl ux. (2) Active chemerin also binds to CCRL2 

via its N-terminal domain and presents the C-terminal domain to ChemR23 expressed on neighboring 

cells. (3) Processing of chemerin by cystein proteases generates the inhibitory peptide chemerin 15, which 

binds to ChemR23 and inhibits the generation of proinfl ammatory mediators in response to LPS/IFN- � .   
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 There are now three known types 
of functionally distinct receptors in the 
chemokine GPCR family. The fi rst are 
functional, signal-transducing chemokine 
receptors. The second are so called de-
coy receptors that bind to and clear 
chemokines from the environment, but 
do not transduce signals or activate cells. 
Finally, the newly identifi ed type of re-
ceptor reported by Zabel et al. neither 
internalizes its ligands nor transduces 
signals. Instead, it plays a proinfl amma-
tory role by presenting bound ligands to 
functional signaling receptors expressed 
on neighboring cells. 

 The recent papers in JEM provide us 
with two novel insights. First, as reported 
by Cash et al., enzymatic proteolysis of 
precursor proteins, such as pro-chemerin, 
can result in the generation of both acti-
vating and inhibitory peptides. These 
opposing molecules with opposing ac-
tivities can be generated by diff erent 
classes of proteases, such as serine or cys-
teine proteases. Whereas serine proteases 
capable of producing activating peptides 
are released from neutrophils ( 29 ), cyste-
ine proteases that generate inhibitory 
peptides are released from activated elic-
ited macrophages ( 11 ). As neutrophils 
are typically the fi rst cells to arrive at sites 
of infl ammation, it is likely that the gen-
eration of proinfl ammatory peptides pre-
cedes the generation of antiinfl ammatory 
peptides, which may then help control 
the severity of infl ammatory responses. 
Second, the fi ndings of Zabel et al. reveal 
the existence of a new class of silent che-
mokine receptor – like GPCRs, which 
binds its ligand(s) and presents it to sig-
naling receptors expressed on neighbor-
ing cells. Thus, soluble chemerin is a 
truly multifunctional protein with both 
stimulatory and inhibitory signaling ca-
pabilities, whereas cell-bound chemerin 
sends stimulatory signals by bridging cells 
that express the silent receptor with those 
expressing the ChemR23 receptor. 
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