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Abstract: An efficient and convenient method to synthesize highly functionalized 3,71-bisindole
derivatives has been developed via a Michael addition and cyclic condensation reaction of
heterocyclic ketene aminals (HKAs) with 2-(1H-indol-3-yl)cyclohexa-2,5-diene-1,4-dione derivatives
in ethanol-based solvents at room temperature. This strategy provides an efficient, environmentally
friendly approach for easy access to various novel 3,71-bisindole derivatives in moderate to
good yields.
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1. Introduction

Bisindole-containing systems are prevalent molecular architectures that are widely found in
natural products [1–4]. Furthermore, bisindole derivatives are especially important [5–8] due to their
potent biological activities, including methicillin-resistant S. aureus (MRSA) pyruvate kinase inhibitors
(cis-3,4-dihydrohamacanthin and spongotine A, Figure 1) [9–11], antitumor agents (Hydroxy CB1,
Figure 1) [12–14], antihistamines and antimicrobials [15], anti-inflammatories [16], antibacterials and so
on [17,18]. Because of their unique biological activities, more and more synthetic strategies to generate
bisindole skeletons have been developed.
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Figure 1. Biologically active bisindole derivatives. 

Generally, Lewis acids as well as Brønsted acids are employed as catalysts to form bisindole 
derivatives starting from indoles reacted with carbonyl compounds and their synthetic equivalents 
[19–29]. However, the synthetic pathways of highly functionalized bisindole derivatives usually 
suffer from common limitations, including harsh reaction conditions, multistep reactions, use of toxic 
solvents, and costly catalysts or enzymes [30]. Consequently, the development of more straightforward, 
eco-friendly and efficient strategies is highly desirable for the synthesis of bisindoles. 

Heterocyclic ketene aminals (HKAs) are versatile building blocks used to construct a variety of 
fused heterocyclic compounds [31–33], such as quinolones [34,35], pyridines [36–42], pyrroles [43–47], 
spirooxindoles [48,49], etc. In recent years, we have developed some protocols to synthesize different 
substituted indole derivatives based on HKA building blocks [50–52] (Figure 2). Herein, we report 
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Generally, Lewis acids as well as Brønsted acids are employed as catalysts to form
bisindole derivatives starting from indoles reacted with carbonyl compounds and their synthetic
equivalents [19–29]. However, the synthetic pathways of highly functionalized bisindole derivatives
usually suffer from common limitations, including harsh reaction conditions, multistep reactions,
use of toxic solvents, and costly catalysts or enzymes [30]. Consequently, the development of more
straightforward, eco-friendly and efficient strategies is highly desirable for the synthesis of bisindoles.

Heterocyclic ketene aminals (HKAs) are versatile building blocks used to construct a variety of
fused heterocyclic compounds [31–33], such as quinolones [34,35], pyridines [36–42], pyrroles [43–47],
spirooxindoles [48,49], etc. In recent years, we have developed some protocols to synthesize different
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substituted indole derivatives based on HKA building blocks [50–52] (Figure 2). Herein, we report
an efficient and concise process to construct highly functionalized 3,71-bisindole derivatives via an
environmentally friendly and highly selective one-pot protocol.
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and K2CO3, also gave product 3a with moderate yield (Table 1, entries 4–5). However, NaOEt provided 
product 3a with poor yield, which may be due to its strong basicity (Table 1, entry 6). Notably, trace 
product was detected when 1,8-diazabicyclo[5,4,0]undec-7ene (DBU) was employed as the catalyst 
(Table 1, entry 7). Next, solvent effects were examined. Most solvents had little influence and could 
facilitate good yield of the products, except H2O (Table 1, entries 8–13). Ultimately, EtOH was proved 
to be the best solvent (Table 1, entry 3). To gain further insight into the effects of reaction temperature, 
we examined 40 °C and reflux temperature. The results revealed that high temperature was adverse 
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for the synthesis of 3a were EtOH as the solvent and triethylamine as the catalyst at room temperature 
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15 EtOH Et3N reflux 24 45 

a The reaction was performed with 1a (0.1 mmol), 2a (0.11 mmol). b Isolated yields based on HKA 1a. 
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2. Results and Discussion

Initially, the model reaction of 1a and 2a with different catalysts, solvents and temperatures was
studied, and the results are summarized in Table 1. Results showed that alkaline catalysts are better
than acid catalysts. Furthermore, different bases have remarkable effects on the reactions. The use of
triethylamine as the catalyst in ethanol at room temperature made the reaction proceed smoothly and
afforded the target product 3a in good yield (Table 1, entry 3). Carbonate catalysts, such as Na2CO3

and K2CO3, also gave product 3a with moderate yield (Table 1, entries 4–5). However, NaOEt provided
product 3a with poor yield, which may be due to its strong basicity (Table 1, entry 6). Notably, trace
product was detected when 1,8-diazabicyclo[5,4,0]undec-7ene (DBU) was employed as the catalyst
(Table 1, entry 7). Next, solvent effects were examined. Most solvents had little influence and could
facilitate good yield of the products, except H2O (Table 1, entries 8–13). Ultimately, EtOH was proved
to be the best solvent (Table 1, entry 3). To gain further insight into the effects of reaction temperature,
we examined 40 ˝C and reflux temperature. The results revealed that high temperature was adverse to
the reaction (Table 1, entries 14–15). Therefore, it could be concluded that the optimum conditions for
the synthesis of 3a were EtOH as the solvent and triethylamine as the catalyst at room temperature for
12 h (Table 1, entry 3).

Table 1. Optimization of reaction conditions a.

Molecules 2016, 21, 638 2 of 11 

an efficient and concise process to construct highly functionalized 3,7′-bisindole derivatives via an 
environmentally friendly and highly selective one-pot protocol. 

 
Figure 2. Synthesis of 3,7′-bisindole derivatives based on the HKAs. 

2. Results and Discussion 

Initially, the model reaction of 1a and 2a with different catalysts, solvents and temperatures was 
studied, and the results are summarized in Table 1. Results showed that alkaline catalysts are better 
than acid catalysts. Furthermore, different bases have remarkable effects on the reactions. The use of 
triethylamine as the catalyst in ethanol at room temperature made the reaction proceed smoothly and 
afforded the target product 3a in good yield (Table 1, entry 3). Carbonate catalysts, such as Na2CO3 
and K2CO3, also gave product 3a with moderate yield (Table 1, entries 4–5). However, NaOEt provided 
product 3a with poor yield, which may be due to its strong basicity (Table 1, entry 6). Notably, trace 
product was detected when 1,8-diazabicyclo[5,4,0]undec-7ene (DBU) was employed as the catalyst 
(Table 1, entry 7). Next, solvent effects were examined. Most solvents had little influence and could 
facilitate good yield of the products, except H2O (Table 1, entries 8–13). Ultimately, EtOH was proved 
to be the best solvent (Table 1, entry 3). To gain further insight into the effects of reaction temperature, 
we examined 40 °C and reflux temperature. The results revealed that high temperature was adverse 
to the reaction (Table 1, entries 14–15). Therefore, it could be concluded that the optimum conditions 
for the synthesis of 3a were EtOH as the solvent and triethylamine as the catalyst at room temperature 
for 12 h (Table 1, entry 3). 

Table 1. Optimization of reaction conditions a. 

 
Entry Solvent Catalyst t (°C) Time (h) Yield (%) b 

1 EtOH − rt 12 trace 
2 EtOH HOAc rt 12 45 
3 EtOH Et3N rt 12 91 
4 EtOH Na2CO3 rt 12 67 
5 EtOH K2CO3 rt 12 66 
6 EtOH EtONa rt 12 25 
7 EtOH DBU rt 12 trace 
8 CH2Cl2 Et3N rt 12 78 
9 MeCN Et3N rt 12 81 

10 tetrahydrofuran Et3N rt 12 75 
11 toluene Et3N rt 12 68 
12 MeOH Et3N rt 12 72 
13 H2O Et3N rt 12 30 
14 EtOH Et3N 40 18 67 
15 EtOH Et3N reflux 24 45 

a The reaction was performed with 1a (0.1 mmol), 2a (0.11 mmol). b Isolated yields based on HKA 1a. 

Entry Solvent Catalyst t (˝C) Time (h) Yield (%) b

1 EtOH ´ rt 12 trace
2 EtOH HOAc rt 12 45
3 EtOH Et3N rt 12 91
4 EtOH Na2CO3 rt 12 67
5 EtOH K2CO3 rt 12 66
6 EtOH EtONa rt 12 25
7 EtOH DBU rt 12 trace
8 CH2Cl2 Et3N rt 12 78
9 MeCN Et3N rt 12 81
10 tetrahydrofuran Et3N rt 12 75
11 toluene Et3N rt 12 68
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15 EtOH Et3N reflux 24 45

a The reaction was performed with 1a (0.1 mmol), 2a (0.11 mmol). b Isolated yields based on HKA 1a.
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With the optimized conditions in hand, the substrate scope was investigated (Table 2). The results
showed that the reaction was tolerant to a variety of HKAs bearing an electron-donating or an
electron-withdrawing group. Furthermore, the ring size of HKA 1 has a slight effect on the reaction
yield. Six- and seven-membered HKAs as substrates usually afforded superior yields to that of the
five-membered HKAs. Additionally, aryl-substituted substrate 2 (R4 = Ph) was also tolerant to the
reaction. Notably, substrate 2, with or without a substituent group at N1 (R3 = Me, H), reacted smoothly
with HKA 1 to provide the corresponding products 3 in moderate to good yields. Substrate 2 with
a methoxy at C5 and no substituent at C2 reacted cleanly with HKA 1 to provide the corresponding
product 3 in good yield. All new compounds were fully characterized using IR, HR-MS, 1H-NMR,
13C-NMR (Please see the Supplementary Materials).

Table 2. Preparation of the of 3,71-bisindole derivatives a.
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A proposed mechanism of the base-catalyzed cyclocondensation of 1a with 2a is depicted in
Scheme 1. Initially, HKA 1a reacted with 2a in the presence of Et3N to form intermediate 4a by a Michael
addition reaction. Intermediate 4a was subsequently protonated to form compound 5a. Imine-enamine
tautomerization of compound 5a then generates 6a, which cyclizes to 7a by intramolecular attack of the
NH on the 2,4-cyclohexadienone. Loss of H2O from intermediate 7a then provides the final product 3a.
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3. Experimental Section

3.1. General Information and Materials

All compounds were fully characterized by spectroscopic data. The NMR spectra were recorded
on a Bruker DRX400 and DRX500 (Fällanden, Zürich, Switzerland). Chemical shifts (δ) are expressed
in ppm, J values are given in Hz, and deuterated DMSO-d6 and CDCl3 were used as solvent.
IR spectra were recorded on a FT-IR Thermo Nicolet Avatar 360 (Boston, MA, USA) using a KBr pellet.
The reactions were monitored by thin layer chromatography (TLC) using silica gel GF254. The melting
points were determined on a XT-4A melting point apparatus and are uncorrected. HRMs were
performed on an Agilent LC/Msd TOF instrument (Palo Alto, CA, USA). All chemicals and solvents
were used as received without further purification unless otherwise stated. Raw materials 1 and 2 were
prepared according to the literature [53–56].

3.2. General Procedure for for the Preparation of the 3,71-Bisindole Derivatives 3a–3w

Et3N (0.1 equiv) was added to a mixture of HKAs 1 (0.1 mmol) and compound 2 (0.11 mmol)
in ethanol, and the mixture was stirred at room temperature until the HKAs 1 were completely
consumed. Then, the solution was concentrated under reduced pressure and purified by flash column
chromatography (petroleum ether/EtOAc = 6/1) to afford the corresponding products 3a–3w with
65%–91% yield. The products were further identified by FT-IR, NMR, and HRMS, and were in good
agreement with the assigned structures.

(8-Hydroxy-6-(2-methyl-1H-indol-3-yl)-1,2,3,4-tetrahydro-pyrimido[1,2-a]indol-10-yl)(4-methoxyphenyl)
methanone (3a). Yellow solid, yield 91%; Mp 221.5–222.5 ˝C; 1H-NMR (DMSO-d6, 500 MHz) δ 10.92
(br, 1H, NH), 8.51 (br, 1H, NH), 8.23 (s, 1H, ArH), 7.58 (d, J = 8.0 Hz, 2H, ArH), 7.28–7.30 (m, 2H,
ArH), 7.06 (d, J = 8.0 Hz, 2H, ArH), 6.97–7.03 (m, 1H, ArH), 6.91–6.94 (m, 2H, ArH), 6.50 (br, 1H, OH),
3.91–3.95 (m, 2H, NCH2), 3.85 (s, 3H, OCH3), 3.46–3.50 (m, 2H, CH2N), 2.30 (s, 3H, CH3), 2.07–2.11
(m, 2H, CH2); 13C-NMR (DMSO-d6, 125 MHz) δ 186.8, 160.7, 153.1, 150.3, 135.6, 135.5, 133.1, 129.4,
129.4, 128.9, 128.8, 125.3, 120.2, 118.9, 118.7, 114.7, 113.9, 113.9, 113.9, 110.6, 110.5, 105.4, 94.9, 55.6,
39.3, 38.1, 20.6, 13.0; IR (KBr) 3439, 3230, 2904, 2586, 1722, 1599, 1514, 1333, 1223, 752 cm´1; HRMS
(ESI-TOF): m/z calcd for C28H26N3O3 [M + H]+, 452.1969; found, 452.1947.
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(8-Hydroxy-6-(2-methyl-1H-indol-3-yl)-1,2,3,4-tetrahydro-pyrimido[1,2-a]indol-10-yl)(p-tolyl)methanone (3b).
Yellow solid, yield 88%; Mp 228–230 ˝C; 1H-NMR (DMSO-d6, 500 MHz) δ 10.82 (br, 1H, NH), 8.44
(br, 1H, NH), 8.19 (s, 1H, ArH), 7.41 (d, J = 7.5 Hz, 2H, ArH), 7.23–7.32 (m, 3H, ArH), 7.21 (d, J = 7.5 Hz,
1H, ArH), 6.98 (t, J = 7.5 Hz, 1H, ArH), 6.85–6.92 (m, 2H, ArH), 6.32 (br, 1H, OH), 3.82–3.89 (m, 2H,
NCH2), 3.42–3.46 (m, 2H, CH2N), 2.37 (s, 3H, CH3), 2.24 (s, 3H, ArCH3), 2.04–2.08 (m, 2H, CH2);
13C-NMR (DMSO-d6, 125 MHz) δ 187.6, 153.3, 150.1, 139.8, 139.7, 135.5, 133.3, 129.3, 129.3, 129.0, 128.7,
127.3, 127.3, 125.1, 120.4, 118.9, 118.7, 115.1, 110.8, 110.5, 110.2, 105.4, 95.2, 39.5, 38.0, 21.4, 20.3, 12.7;
IR (KBr) 3394, 3053, 2928, 2316, 1728, 1591, 1443, 1335, 1171, 750 cm´1; HRMS (ESI-TOF): m/z calcd for
C28H26N3O2 [M + H]+, 436.2020; found, 436.2005.

(8-Hydroxy-6-(2-methyl-1H-indol-3-yl)-1,2,3,4-tetrahydro-pyrimido[1,2-a]indol-10-yl)(phenyl)methanone (3c).
Yellow solid, yield 82%; Mp 317–318.5 ˝C; 1H-NMR (DMSO-d6, 500 MHz) δ 10.95 (br, 1H, NH), 8.60
(br, 1H, NH), 8.19 (s, 1H, ArH), 7.54–7.58 (m, 5H, ArH), 7.30 (t, J = 7.5 Hz, 2H, ArH), 6.98–7.04 (m, 1H,
ArH), 6.90–6.98 (m, 2H, ArH), 6.34 (br, 1H, OH), 3.92–3.96 (m, 2H, NCH2), 3.47–3.51 (m, 2H, CH2N),
2.30 (s, 3H, CH3), 2.08–2.12 (m, 2H, CH2); 13C-NMR (DMSO-d6, 125 MHz) δ 187.2, 153.2, 150.3, 143.2,
135.7, 133.2, 129.8, 128.9, 128.7, 128.7, 128.7, 127.3, 127.3, 125.2, 120.2, 118.9, 118.7, 114.9, 110.7, 110.6,
110.5, 105.4, 95.0, 39.3, 38.1, 20.6, 13.0; IR (KBr) 3323, 3055, 2972, 2866, 2314, 1726, 1614, 1529, 1319, 1174,
746 cm´1; HRMS (ESI-TOF): m/z calcd for C27H24N3O2 [M + H]+, 422.1863; found, 422.1871.

(4-Chlorophenyl)(8-hydroxy-6-(2-methyl-1H-indol-3-yl)-1,2,3,4-tetrahydropyrimido[1,2-a]indol-10-yl)methanone
(3d). Yellow solid, yield 89%; Mp 199.0–201.5 ˝C; 1H-NMR (DMSO-d6, 500 MHz) δ 10.91 (br, 1H, NH),
8.55 (br, 1H, NH), 8.27–8.32 (m, 1H, ArH), 7.55–7.59 (m, 4H, ArH), 7.23–7.31 (m, 2H, ArH), 6.96–7.02
(m, 1H, ArH), 6.87–6.96 (m, 2H, ArH), 6.32 (br, 1H, OH), 3.91–3.95 (m, 2H, NCH2), 3.42–3.46 (m, 2H,
CH2N), 2.27 (s, 3H, CH3), 2.08–2.12 (m, 2H, CH2); 13C-NMR (DMSO-d6, 125 MHz) δ 185.6, 153.2, 150.5,
141.8, 135.6, 134.3, 133.1, 129.3, 129.3, 129.3, 128.9, 128.9, 128.9, 128.9, 124.9, 120.2, 118.9, 118.7, 115.0,
110.7, 110.5, 105.1, 95.0, 39.4, 38.1, 20.5, 13.0; IR (KBr) 3400, 3063, 2951, 2866, 2349, 1680, 1616, 1527,
1331, 750 cm´1; HRMS (ESI-TOF): m/z calcd for C27H23ClN3O2 [M + H]+, 456.1473; found, 456.1459.

(2-Chlorophenyl)(8-hydroxy-6-(2-methyl-1H-indol-3-yl)-1,2,3,4-tetrahydropyrimido[1,2-a]indol-10-yl)methanone
(3e). Yellow solid, yield 86%; Mp 301–303 ˝C; 1H-NMR (DMSO-d6, 500 MHz) δ 10.94 (br, 1H, NH),
8.52 (br, 1H, NH), 8.07 (s, 1H, ArH), 7.61 (d, J = 1.0 Hz, 1H, ArH), 7.47–7.61 (m, 2H, ArH), 7.34–7.39
(m, 1H, ArH), 7.30 (d, J = 8.0 Hz, 1H, ArH), 7.26 (d, J = 7.5 Hz, 1H, ArH), 6.96–7.03 (m, 1H, ArH),
6.88–6.95 (m, 2H, ArH), 5.71 (br, 1H, OH), 3.90–3.94 (m, 2H, NCH2), 3.48–3.52 (m, 2H, CH2N), 2.26
(s, 3H, CH3), 2.08–2.12 (m, 2H, CH2); 13C-NMR (DMSO-d6, 125 MHz) δ 183.7, 152.8, 150.5, 142.3, 135.7,
133.2, 130.4, 130.1, 129.6, 129.0, 128.9, 128.2, 128.1, 125.0, 120.3, 118.8, 118.7, 115.1, 110.7, 110.7, 110.4,
104.7, 95.7, 39.3, 38.1, 20.4, 13.0; IR KBr) 3342, 3061, 2966, 2868, 1726, 1618, 1531, 1429, 1329, 1176,
748 cm´1; HRMS (ESI-TOF): m/z calcd for C27H23ClN3O2 [M + H]+, 456.1473; found, 456.1462.

(4-Fluorophenyl)(8-hydroxy-6-(2-methyl-1H-indol-3-yl)-1,2,3,4-tetrahydropyrimido[1,2-a]indol-10-yl)methanone
(3f). Yellow solid, yield 89%; Mp 247–248.5 ˝C; 1H-NMR (DMSO-d6, 500 MHz) δ 10.93 (br, 1H,
NH), 8.54 (br, 1H, NH), 8.27 (s, 1H, ArH), 7.58–7.65 (m, 2H, ArH), 7.34 (t, J = 9.0 Hz, 2H, ArH),
7.28 (t, J = 9.0 Hz, 2H, ArH), 7.00 (t, J = 7.5 Hz, 1H, ArH), 6.87–6.97 (m, 2H, ArH), 6.31 (br, 1H,
OH), 3.90–3.97 (m, 2H, NCH2), 3.47–3.51 (m, 2H, CH2N), 2.28 (s, 3H, CH3), 2.08–2.12 (m, 2H, CH2);
13C-NMR (DMSO-d6, 125 MHz) δ 185.9, 164.0, 162.1, 153.1, 150.4, 139.6, 135.6, 133.1, 129.7, 129.7, 128.9,
125.1, 120.2, 118.9, 118.7, 115.7, 115.5, 114.9, 110.7, 110.7, 110.5, 105.1, 95.0, 39.4, 38.1, 20.5, 13.0; IR (KBr)
3394, 3053, 2928, 2860, 2316, 1720, 1591, 1441, 1335, 1170, 750 cm´1; HRMS (ESI-TOF): m/z calcd for
C27H23FN3O2 [M + H]+, 440.1769; found, 440.1775.

(9-Hydroxy-7-(2-methyl-1H-indol-3-yl)-2,3,4,5-tetrahydro-1H-[1,3]diazepino[1,2-a]indol-11-yl)(4-methoxyphenyl)
methan-one (3g). Yellow solid, yield 87%; Mp 179.5–182 ˝C; 1H-NMR (DMSO-d6, 500 MHz) δ 10.93
(br, 1H, NH), 8.96 (br, 1H, NH), 8.32 (s, 1H, ArH), 7.59 (d, J = 7.6 Hz, 2H, ArH), 7.29 (d, J = 7.5 Hz,
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1H, ArH), 7.26 (d, J = 7.4 Hz, 1H, ArH), 7.12 (s, 1H, ArH), 7.07 (d, J = 7.7 Hz, 2H, ArH), 7.00 (m, 1H,
ArH), 6.91 (m, 1H, ArH), 6.45 (br, 1H, OH), 4.03–4.07 (m, 2H, NCH2), 3.86 (s, 3H, OCH3), 3.41–3.45
(m, 2H, CH2N), 2.29 (s, 3H, CH3), 1.87–1.97 (m, 4H, CH2CH2); 13C-NMR (DMSO-d6, 125 MHz) δ 188.3,
161.0, 160.0, 150.5, 135.6, 135.0, 133.2, 129.7, 129.7, 129.5, 128.9, 125.7, 120.2, 118.9, 118.7, 115.7, 113.9,
113.9, 112.2, 110.6, 105.3, 97.7, 55.6, 45.5, 45.1, 29.3, 27.0, 13.0; IR (KBr) 3396, 3063, 2928, 2850, 2351, 1726,
1593, 1444, 1313, 1250, 1167, 1022, 744 cm´1; HRMS (ESI-TOF): m/z calcd for C29H28N3O3 [M + H]+,
466.2125; found, 466.2145.

(9-Hydroxy-7-(2-methyl-1H-indol-3-yl)-2,3,4,5-tetrahydro-1H-[1,3]diazepino[1,2-a]indol-11-yl)(p-tolyl)methanone
(3h). Yellow solid, yield 84%; Mp 242–244 ˝C; 1H-NMR (DMSO-d6, 500 MHz) δ 10.92 (br, 1H, NH),
9.05 (br, 1H, NH), 8.23 (s, 1H, ArH), 7.49 (d, J = 7.7 Hz, 2H, ArH), 7.33 (d, J = 7.6 Hz, 2H, ArH), 7.29
(d, J = 7.9 Hz, 1H, ArH), 7.25 (d, J = 7.8 Hz, 1H, ArH), 7.11 (s, 1H, ArH), 6.96–7.03 (m, 1H, ArH), 6.91
(t, J = 7.3 Hz, 1H, ArH), 6.34 (br, 1H, OH), 4.04–4.11 (m, 2H, NCH2), 3.39–3.43 (m, 2H, CH2N), 2.43
(s, 3H, ArCH3), 2.28 (s, 3H, CH3), 1.88–1.97 (m, 4H, CH2CH2); 13C-NMR (DMSO-d6, 125 MHz) δ 188.8,
160.0, 150.5, 139.9, 139.8, 135.6, 133.2, 129.7, 129.2, 129.2, 128.9, 127.7, 127.7, 125.6, 120.2, 118.9, 118.7,
115.8, 112.2, 110.6, 110.5, 105.4, 97.6, 45.5, 45.0, 29.2, 26.9, 21.5, 13.0; IR (KBr) 3394, 3053, 2926, 2858,
2314, 1726, 1593, 1446, 1335, 1169, 748 cm´1; HRMS (ESI-TOF): m/z calcd for C29H28N3O2 [M + H]+,
450.2176; found, 450.2184.

(9-Hydroxy-7-(2-methyl-1H-indol-3-yl)-2,3,4,5-tetrahydro-1H-[1,3]diazepino[1,2-a]indol-11-yl)(phenyl)methanone
(3i). Yellow solid, yield 83%; Mp 289–290 ˝C; 1H-NMR (DMSO-d6, 500 MHz) δ 10.92 (br, 1H, NH),
9.10 (br, 1H, NH), 8.21 (s, 1H, ArH), 7.53–7.57 (m, 5H, ArH), 7.29 (d, J = 8.0 Hz, 1H, ArH), 7.24
(d, J = 7.5 Hz, 1H, ArH), 7.11 (s, 1H, ArH), 6.96–7.03 (m, 1H, ArH), 6.87–6.94 (m, 1H, ArH), 6.23 (br, 1H,
OH), 4.04–4.08 (m, 2H, NCH2), 3.45–3.49 (m, 2H, CH2N), 2.27 (s, 3H, CH3), 1.95–1.99 (m, 2H, CH2),
1.89–1.93 (m, 2H, CH2); 13C-NMR (DMSO-d6, 125 MHz) δ 188.8, 160.1, 150.5, 142.8, 135.6, 133.2, 130.1,
129.7, 128.9, 128.8, 128.8, 127.4, 127.4, 125.6, 120.2, 118.9, 118.7, 115.9, 112.2, 110.7, 110.4, 105.4, 97.5, 45.5,
44.9, 29.1, 26.9, 12.9; IR (KBr) 3356, 3057, 2941, 2858, 2351, 1714, 1593, 1539, 1419, 1323, 1171, 748 cm´1;
HRMS (ESI-TOF): m/z calcd for C28H26N3O2 [M + H]+, 436.2020; found, 436.2034.

(4-Chlorophenyl)(9-hydroxy-7-(2-methyl-1H-indol-3-yl)-2,3,4,5-tetrahydro-1H-[1,3]diazepino[1,2-a]indol-11-
yl)methan-one (3j). Yellow solid, yield 87%; Mp 191–192.5 ˝C; 1H-NMR (DMSO-d6, 500 MHz) δ 10.92
(br, 1H, NH), 9.09 (br, 1H, NH), 8.37 (s, 1H, ArH), 7.56–7.60 (m, 4H, ArH), 7.28 (d, J = 8.0 Hz, 1H, ArH),
7.24 (d, J = 7.5 Hz, 1H, ArH), 7.11 (s, 1H, ArH), 6.99 (t, J = 7.5 Hz, 1H, ArH), 6.87–6.94 (m, 1H, ArH),
6.25 (br, 1H, OH), 4.05–4.09 (m, 2H, NCH2), 3.44–3.48 (m, 2H, CH2N), 2.27 (s, 3H, CH3), 1.95–1.99
(m, 2H, CH2), 1.88–1.92 (m, 2H, CH2); 13C-NMR (DMSO-d6, 125 MHz) δ 187.1, 160.1, 150.7, 141.4, 135.6,
134.7, 133.2, 129.7, 129.4, 129.4, 128.9, 128.9, 128.9, 125.3, 120.2, 118.9, 118.7, 115.9, 112.3, 110.6, 110.5,
105.1, 97.4, 45.5, 44.9, 29.0, 26.8, 13.0; IR (KBr) 3394, 3057, 2926, 2854, 2353, 1687, 1599, 1539, 1417, 1169,
1092, 746 cm´1; HRMS (ESI-TOF): m/z calcd for C28H25ClN3O2 [M + H]+, 470.1630; found, 470.1637.

(2-Chlorophenyl)(9-hydroxy-7-(2-methyl-1H-indol-3-yl)-2,3,4,5-tetrahydro-1H-[1,3]diazepino[1,2-a]indol-11-
yl)methan-one (3k). Yellow solid, yield 81%; Mp 240.5–241.5 ˝C; 1H-NMR (DMSO-d6, 500 MHz) δ 10.94
(br, 1H, NH), 9.21 (br, 1H, NH), 8.15 (s, 1H, ArH), 7.61 (d, J = 7.5 Hz, 1H, ArH), 7.46–7.56 (m, 2H, ArH),
7.35–7.41 (m, 1H, ArH), 7.30 (d, J = 8.0 Hz, 1H, ArH), 7.24 (d, J = 7.5 Hz, 1H, ArH), 7.09 (s, 1H, ArH),
7.00 (t, J = 7.5, 1H, ArH), 6.91 (t, J = 7.5 Hz, 1H, ArH), 5.69 (br, 1H, OH), 4.01–4.08 (m, 2H, NCH2),
3.51–3.55 (m, 2H, CH2N), 2.27 (s, 3H, CH3), 1.98–2.02 (m, 2H, CH2), 1.89–1.94 (m, 2H, CH2); 13C-NMR
(DMSO-d6, 125 MHz) δ 185.0, 159.8, 150.8, 142.0, 135.6, 133.3, 130.6, 130.1, 130.0, 129.5, 128.9, 128.1,
128.1, 125.4, 120.3, 118.9, 118.8, 116.0, 112.3, 110.7, 110.3, 104.6, 97.8, 45.5, 44.7, 28.8, 26.8, 13.0; IR
(KBr) 3398, 3063, 2937, 2347, 1726, 1597, 1439, 1336, 1176, 750 cm´1; HRMS (ESI-TOF): m/z calcd for
C28H25ClN3O2 [M + H]+, 470.1630; found, 470.1621.
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(4-Fluorophenyl)(9-hydroxy-7-(2-methyl-1H-indol-3-yl)-2,3,4,5-tetrahydro-1H-[1,3]diazepino[1,2-a]indol-11-yl)
methan-one (3l). Yellow solid, yield 83%; Mp 259–261 ˝C; 1H-NMR (DMSO-d6, 500 MHz) δ 10.91
(br, 1H, NH), 9.06 (br, 1H, NH), 8.32 (s, 1H, ArH), 7.59–7.65 (m, 2H, ArH), 7.35 (t, J = 8.5 Hz, 2H,
ArH), 7.29 (d, J = 7.5 Hz, 1H, ArH), 7.24 (d, J = 7.5 Hz, 1H, ArH), 7.11 (s, 1H, ArH), 6.96–7.03 (m, 1H,
ArH), 6.86–6.94 (m, 1H, ArH), 6.24 (br, 1H, OH), 4.04–4.08 (m, 2H, NCH2), 3.44–3.48 (m, 2H, CH2N),
2.28 (s, 3H, CH3), 1.95–1.99 (m, 2H, CH2), 1.89–1.93 (m, 2H, CH2); 13C-NMR (DMSO-d6, 125 MHz)
δ 187.4, 164.2, 162.3, 160.0, 150.7, 139.2, 135.6, 133.2, 129.9, 129.7, 129.7, 128.9, 125.5, 120.2, 118.9, 118.7,
115.8, 115.6, 112.3, 110.6, 110.5, 105.1, 97.5, 45.5, 44.9, 29.1, 26.9, 13.0; IR (KBr) 3390, 3064, 2929, 2343,
1720,1595, 1535, 1428, 1222, 1167, 749 cm´1; HRMS (ESI-TOF): m/z calcd for C28H25FN3O2 [M + H]+,
454.1925; found, 454.1936.

(7-Hydroxy-5-(2-methyl-1H-indol-3-yl)-2,3-dihydro-1H-imidazo[1,2-a]indol-9-yl)(4-methoxyphenyl)methanone
(3m). Yellow solid, yield 82%; Mp 269–271 ˝C; 1H-NMR (DMSO-d6, 500 MHz) δ 10.93 (br, 1H, NH),
8.40 (br, 1H, NH), 7.63–7.67 (m, 2H, ArH), 7.28–7.32 (m, 2H, ArH), 7.04–7.08 (m, 5H, ArH), 6.90–6.94 (m,
2H, ArH), 3.98–4.10 (m, 4H, CH2CH2), 3.85 (s, 3H, OCH3), 2.32 (s, 3H, CH3); 13C-NMR (DMSO-d6, 125
MHz) δ 186.5, 161.2, 159.5, 150.4, 135.6, 134.8, 133.1, 130.7, 129.7, 129.7, 128.9, 126.0, 120.2, 118.9, 118.7,
115.0, 114.0, 114.0, 111.1, 110.7, 106.8, 93.4, 55.6, 49.5, 42.5, 13.0; IR (KBr) 3390, 3059, 2966, 2843, 2353,
1726, 1597, 1473, 1325, 1248, 1163, 744 cm´1; HRMS (ESI-TOF): m/z calcd for C27H24N3O3 [M + H]+,
438.1812; found, 438.1786.

(7-Hydroxy-5-(2-methyl-1H-indol-3-yl)-2,3-dihydro-1H-imidazo[1,2-a]indol-9-yl)(p-tolyl)methanone (3n).
Yellow solid, yield 75%; Mp 298.5–300 ˝C; 1H-NMR (DMSO-d6, 300 MHz) δ 10.91 (br, 1H, NH),
8.38 (br, 1H, NH), 7.53 (d, J = 6.5 Hz, 2H, ArH), 7.25–7.34 (m, 4H, ArH), 6.88–7.02 (m, 5H, ArH),
3.97–4.09 (m, 4H, CH2CH2), 2.40 (s, 3H, ArCH3), 2.29 (s, 3H, CH3); 13C-NMR (DMSO-d6, 125 MHz) δ
187.2, 159.7, 150.4, 140.1, 139.6, 135.6, 133.1, 130.5, 129.3, 129.3, 128.9, 127.6, 127.6, 126.0, 120.3, 118.9,
118.7, 115.2, 111.1, 110.7, 110.5, 106.9, 93.5, 49.5, 42.5, 21.5, 13.0; IR (KBr) 3408, 2899, 2584, 2345, 1726,
1597, 1475, 1327, 1167, 752 cm´1; HRMS (ESI-TOF): m/z calcd for C27H24N3O2 [M + H]+, 422.1863;
found, 422.1837.

(7-Hydroxy-5-(2-methyl-1H-indol-3-yl)-2,3-dihydro-1H-imidazo[1,2-a]indol-9-yl)(phenyl)methanone (3o).
Yellow solid, yield 73%; Mp 289.5–290.5 ˝C; 1H-NMR (DMSO-d6, 500 MHz) δ 10.92 (br, 1H, NH),
8.33 (br, 1H, NH), 7.61–7.65 (m, 2H, ArH), 7.52–7.56 (m, 3H, ArH), 7.28–7.32 (m, 2H, ArH), 6.91–7.02
(m, 5H, ArH), 3.99–4.11 (m, 4H, CH2CH2), 2.31 (s, 3H, CH3); 13C-NMR (DMSO-d6, 125 MHz) δ 187.1,
159.7, 150.4, 142.6, 135.6, 133.1, 130.8, 130.4, 130.3, 128.8, 128.8, 127.5, 127.5, 126.1, 120.2, 118.9, 118.7,
115.2, 111.1, 110.7, 110.5, 106.8, 93.5, 49.5, 42.5, 13.0; IR (KBr): 3419, 3059, 2970, 2316, 1730, 1603, 1510,
1335, 1227, 744 cm´1; HRMS (ESI-TOF): m/z calcd for C26H22N3O2 [M + H]+, 408.1707; found, 408.1713.

(4-Chlorophenyl)(7-hydroxy-5-(2-methyl-1H-indol-3-yl)-2,3-dihydro-1H-imidazo[1,2-a]indol-9-yl)methanone
(3p). Yellow solid, yield 75%; Mp 204–206 ˝C; 1H-NMR (DMSO-d6, 500 MHz) δ 10.95 (br, 1H, NH),
8.48 (br, 1H, NH), 7.60–7.66 (m, 2H, ArH), 7.54–7.60 (m, 2H, ArH), 7.25–7.32 (m, 3H, ArH), 7.00
(t, J = 7.0 Hz, 1H, ArH), 6.89–6.95 (m, 3H, ArH), 4.05–4.11 (m, 2H, NCH2), 3.98–4.03 (m, 2H, CH2N),
2.30 (s, 3H, CH3); 13C-NMR (DMSO-d6, 125 MHz) δ 185.6, 159.7, 150.5, 141.2, 135.6, 134.9, 133.1, 130.3,
129.5, 129.5, 128.9, 128.9, 128.9, 126.0, 120.2, 118.9, 118.7, 115.3, 111.2, 110.7, 110.5, 106.7, 93.3, 49.5, 42.5,
13.0; IR (KBr) 3435, 3072, 2902, 2347, 1724, 1600, 1510, 1402, 1330, 1223, 752 cm´1; HRMS (ESI-TOF):
m/z calcd for C26H21ClN3O2 [M + H]+, 442.1317; found, 442.1309.

(2-Chlorophenyl)(7-hydroxy-5-(2-methyl-1H-indol-3-yl)-2,3-dihydro-1H-imidazo[1,2-a]indol-9-yl)methanone
(3q). Yellow solid, yield 72%; mp 339–341 ˝C; 1H-NMR (DMSO-d6, 500 MHz) δ 10.92 (br, 1H, NH),
7.87–8.07 (m, 1H, ArH), 7.10–7.60 (m, 8H, ArH), 6.87–7.02 (m, 3H, ArH), 4.08– 4.12(m, 4H, CH2CH2),
2.26 (s, 3H, CH3); 13C-NMR (DMSO-d6, 125 MHz) δ 184.0, 160.1, 150.1, 142.1, 135.6, 133.2, 130.6, 130.2,
129.5, 128.8, 128.1, 128.1, 128.1, 126.1, 120.3, 118.8, 118.8, 115.4, 111.2, 110.7, 110.3, 105.7, 94.1, 49.6,
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42.4, 12.9; IR (KBr) 3429, 3346, 3059, 2918, 2580, 2318, 1728, 1520, 1464, 1327, 1225, 748 cm´1; HRMS
(ESI-TOF): m/z calcd for C26H21ClN3O2 [M + H]+, 442.1317; found, 442.1302.

(4-Fluorophenyl)(7-hydroxy-5-(2-methyl-1H-indol-3-yl)-2,3-dihydro-1H-imidazo[1,2-a]indol-9-yl)methanone
(3r). Yellow solid, yield 77%; Mp 268–270 ˝C; 1H-NMR (DMSO-d6, 500 MHz) δ 10.92 (br, 1H, NH),
8.39 (br, 1H, NH), 7.65–7.72 (m, 2H, ArH), 7.27–7.37 (m, 4H, ArH), 6.89–7.04 (m, 5H, ArH), 4.06–4.13
(m, 2H, NCH2), 3.98–4.04 (m, 2H, CH2N), 2.31 (s, 3H, CH3); 13C-NMR (DMSO-d6, 125 MHz) δ 185.8,
164.4, 162.4, 159.7, 150.5, 139.0, 135.6, 133.1, 130.4, 130.0, 130.0, 128.9, 126.0, 120.2, 118.9, 118.7, 115.8,
115.6, 115.2, 111.2, 110.7, 106.7, 93.3, 49.5, 42.5, 13.0; IR (KBr) 3429, 3072, 2902, 2582, 2347, 1724, 1601,
1510, 1402, 1331, 1223, 1157, 752 cm´1; HRMS (ESI-TOF): m/z calcd for C26H21FN3O2 [M + H]+,
426.1612; found, 426.1622.

(6-(1,2-Dimethyl-1H-indol-3-yl)-8-hydroxy-1,2,3,4-tetrahydropyrimido[1,2-a]indol-10-yl)(4-methoxyphenyl)
methanone (3s). Yellow solid, yield 87%; Mp 261–263 ˝C; 1H-NMR (CDCl3, 400 MHz) δ 8.61 (br, 1H,
NH), 7.69 (d, J = 8.8 Hz, 2H, ArH), 7.39 (d, J = 8.0 Hz, 1H, ArH), 7.34 (d, J = 8.0 Hz, 1H, ArH), 7.20–7.22
(m, 1H, ArH), 7.07–7.11 (m, 1H, ArH), 6.98 (d, J = 8.4 Hz, 2H, ArH), 6.86 (s, 1H, ArH), 6.71 (s, 1H, ArH),
4.93 (br, 1H, OH), 3.90–3.93 (m, 2H, CH2N), 3.86 (s, 3H, NCH3), 3.75 (s, 3H, OCH3), 3.53–3.57 (m, 2H,
CH2), 2.34 (s, 3H, CH3), 2.21–2.24 (m, 2H, CH2N); 13C-NMR (CDCl3, 100 MHz) δ 188.8, 161.0, 153.5,
149.3, 137.0, 135.4, 134.9, 129.4, 129.4, 129.3, 127.5, 126.6, 121.5, 119.9, 118.9, 113.6, 113.6, 113.2, 109.5,
108.9, 107.7, 104.7, 95.8, 55.3, 39.3, 38.1, 29.9, 20.8, 11.1; IR (KBr) 3439, 2926, 2853, 2347, 1728, 1616, 1510,
1471, 1350, 1324, 1168, 740 cm´1; HRMS (ESI-TOF): m/z calcd for C29H28N3O3 [M + H]+, 466.2125;
found, 466.2120.

(6-(1,2-Dimethyl-1H-indol-3-yl)-8-hydroxy-1,2,3,4-tetrahydropyrimido[1,2-a]indol-10-yl)(4-methoxyphenyl)
methanone(6-(1,2-dimethyl-1H-indol-3-yl)-8-hydroxy-1,2,3,4-tetrahydropyrimido[1,2-a]indol-10-yl)(4-
fluorophenyl)methanone (3t). Yellow solid, yield 70%; Mp 173–175 ˝C; 1H-NMR (CDCl3, 400 MHz)
δ 8.62 (br, 1H, NH), 7.67–7.71 (m, 2H, ArH), 7.34–7.39 (m, 2H, ArH), 7.11–7.26 (m, 3H, ArH), 7.08–7.11
(m, 1H, ArH), 6.87 (s, 1H, ArH), 6.53 (s, 1H, ArH), 4.88 (br, 1H, OH), 3.94 (t, J = 6.0 Hz, 2H, CH2N), 3.77
(s, 3H, NCH3), 3.57–3.63 (m, 2H, CH2), 2.35 (s, 3H, CH3), 2.23–2.29 (m, 2H, CH2N); 13C-NMR (CDCl3,
100 MHz) δ 188.0, 162.5, 153.6, 149.4, 138.5, 137.0, 135.4, 129.6, 129.5, 129.4, 127.4, 126.4, 121.6, 120.0,
118.8, 115.5, 115.3, 113.4, 109.6, 108.9, 107.6, 104.5, 95.9, 39.3, 38.1, 29.9, 20.7, 11.1; IR (KBr) 3437, 2925,
2582, 1721, 1617, 1534, 1470, 1325, 1221, 1173, 775 cm´1; HRMS (ESI-TOF): m/z calcd for C28H25N3O2

[M + H]+, 454.1925; found, 454.1931.

(8-Hydroxy-6-(2-phenyl-1H-indol-3-yl)-1,2,3,4-tetrahydropyrimido[1,2-a]indol-10-yl)(4-methoxyphenyl)
methanone (3u). Yellow solid, yield 85%; Mp 179–181 ˝C; 1H-NMR (CDCl3, 400 MHz) δ 8.92 (br, 1H,
NH), 8.59 (br, 1H, NH), 7.69 (d, J = 8.8 Hz, 2H, ArH), 7.45–7.40 (m, 4H, ArH), 7.28–7.22 (m, 4H, ArH),
7.13–7.10 (m, 1H, ArH), 6.96 (d, J = 8.8 Hz, 2H, ArH), 6.85 (s, 1H, ArH), 6.72 (s, 1H, ArH), 4.94 (br, 1H,
OH), 3.82–3.86 (m, 5H, CH2N, OCH3), 3.47–3.51 (m, 2H, NCH2), 2.19–2.16 (m, 2H, CH2); 13C-NMR
(CDCl3, 100 MHz) δ 188.9, 161.1, 153.6, 149.3, 136.2, 135.2, 134.8, 131.9, 129.7, 129.5, 129.4, 129.4, 128.9,
128.9, 127.9, 127.0, 127.0, 123.1, 120.6, 119.8, 113.6, 113.6, 113.1, 113.0, 111.1, 109.5, 108.8, 105.2, 95.9,
55.3, 39.2, 38.0, 20.7; IR (KBr) 3438, 2925, 2854, 1728, 1616, 1577, 1532, 1445, 1326, 1253, 1168, 747 cm´1;
HRMS (ESI-TOF): m/z calcd for C33H28N3O3 [M + H]+, 514.2125; found, 514.2121.

(4-Fluorophenyl)(8-hydroxy-6-(2-phenyl-1H-indol-3-yl)-1,2,3,4-tetrahydropyrimido[1,2-a]indol-10-yl)methanone
(3v). Yellow solid; yield 75%; Mp 264–266 ˝C; 1H-NMR (CDCl3, 400 MHz): δ 8.75 (br, 1H, NH), 8.61
(br, 1H, NH), 7.71–7.67 (m, 2H, ArH), 7.44–7.40 (m, 4H, ArH), 7.31–7.26 (m, 4H, ArH), 7.16–7.11 (m, 3H,
ArH), 6.85 (s, 1H, ArH), 6.54 (s, 1H, ArH), 4.92 (br, 1H, OH), 3.86–3.83 (m, 2H, CH2N), 3.52–3.56 (m, 2H,
NCH2), 2.22–2.19 (m, 2H, CH2); 13C-NMR (CDCl3, 100 MHz): δ 187.9, 165.0, 162.5, 153.7, 149.4, 138.4,
138.4, 136.1, 135.2, 131.9, 129.7, 129.6, 129.5, 128.9, 128.0, 126.9, 126.7, 123.2, 120.7, 119.8, 115.5, 115.3,
113.2, 111.1, 109.7, 108.7, 105.0, 104.9, 95.9, 39.2, 38.0, 20.4; IR (KBr) 3426, 2924, 1721, 1617, 1535, 1478,
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1325, 1221, 1176, 774 cm´1; HRMS (ESI-TOF): m/z calcd for C32H25FN3O2 [M + H]+, 502.1925; found,
502.1933.

(8-Hydroxy-6-(5-methoxy-1H-indol-3-yl)-1,2,3,4-tetrahydropyrimido[1,2-a]indol-10-yl)(4-methoxyphenyl)
methanone (3w). Yellow solid; yield 65%; Mp 184–186 ˝C; 1H-NMR (CDCl3, 400 MHz) δ 8.60 (br, 1H,
NH), 8.42 (br, 1H, NH), 7.70–7.68 (m, 1H, ArH), 7.64–7.61 (m, 2H, ArH), 7.35–7.33 (m, 1H, ArH),
7.01–6.94 (m, 5H, ArH), 6.70 (s, 1H, ArH), 5.08 (br, 1H, OH), 3.98–3.94 (m, 2H, CH2N), 3.88 (s, 3H,
OCH3), 3.80 (s, 3H, OCH3), 3.58–3.56 (m, 2H, NCH2), 2.27–2.23 (m, 2H, CH2); 13C-NMR (CDCl3,
100 MHz) δ 188.8, 161.0, 154.8, 153.6, 148.9, 137.8, 134.7, 131.5, 129.4, 129.4, 126.5, 123.9, 118.8, 116.3,
113.6, 113.5, 112.3, 108.7, 107.6, 105.3, 105.1, 101.1, 95.8, 55.9, 55.3, 39.2, 38.0, 20.7; IR (KBr) 3430,
2921, 2852, 1724, 1612, 1557, 1528, 1450, 1340, 1250, 1170, 750 cm´1; HRMS (ESI-TOF): m/z calcd for
C28H26N3O4 [M + H]+, 468.1918; found, 468.1922.

4. Conclusions

In summary, we have successfully developed a facile, economical, and environmentally friendly
method for the construction of highly functionalized 3,71-bisindole derivatives via a Michael
addition/cyclocondensation reaction. This allowed for the rapid construction of a novel library
of highly substituted 3,71-bisindole derivatives through the simple and easy raw material HKAs 1
and 2-(1H-indol-3-yl)cyclohexa-2,5-diene-1,4-dione derivatives 2. Our further investigations into the
in vitro biological activities of compounds 3 are currently ongoing.

Supplementary Materials: Supplementary materials can be accessed at: http://www.mdpi.com/1420-3049/21/
5/638/s1.
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