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Aldehydes play a crucial role in the formation of atmospheric particles, attracting significant attention due to

their environmental impact. However, the microscopic mechanisms underlying the formation of aldehyde-

involved particles remain uncertain. In this study, through quantum chemical calculations and molecular

dynamics (MD) simulations, we investigate the microscopic formation mechanisms of binary and ternary

systems composed of three representative aldehydes, two sulfur-based acids, water, and two bases. Our

research findings reveal that the most stable structures of acid-aldehyde clusters involve the connection

of acids and aldehyde compounds through hydrogen bonds without involving proton transfer reactions,

indicating relatively poor cluster stability. However, with the introduction of a third component, the

stability of 18 clusters significantly increase. Among these, in ten systems, acids act as catalysts,

facilitating reactions between aldehyde compounds and water or alkaline substances to generate glycols

and amino alcohols. However, according to MD simulations conducted at 300 K, these acids readily

dissociate from the resulting products. In the remaining eight systems, the most stable structural feature

involves ion pairs formed by proton transfer reactions between acids and aldehyde compounds. These

clusters exhibit remarkable thermodynamic stability. Furthermore, the acidity of the acid, the nature of

nucleophilic agents, and the type of aldehyde all play significant roles in cluster stability and reactivity,

and they have synergistic effects on the nucleation process. This study offers microscopic insights into

the processes of new particle formation involving aldehydes, contributing to a deeper understanding of

atmospheric chemistry at the molecular level.
1. Introduction

New particle formation (NPF) is a key process in the generation
of atmospheric secondary organic aerosols (SOA) within the
troposphere.1–4 It has garnered attention for its signicant
implications on climate and human health.5–7 NPF involves the
initial formation of stabilized clusters from small molecules,
which then grow into larger particles.8 Despite its importance,
the chemical identity and signicance of vapors, especially in
the formation of small nucleated particles (<1 nm), remain
uncertain due to technological constraints.

Early experiments at the CLOUD chamber demonstrated
NPF from sulfuric acid (H2SO4, SA) and bases like ammonia
(NH3, A), methylamine (CH3NH2, MA), and dimethylamine
((CH3)2NH, DMA).9–15 However, their concentrations proved
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insufficient to fully elucidate particle nucleation rates and
growth rates under atmospheric conditions.8,16,17 Further
research indicates that volatile organic compounds (VOCs) are
crucial in both particle formation and growth phases.18–23

Among VOCs, aldehydes such as formaldehyde (FA) and a-
dicarbonyls like glyoxal (GL) and methylglyoxal (MG) are
signicant contributors to atmospheric chemistry, with
concentrations in the ppb range and an annual production
exceeding 185 Tg yr-1. These compounds, primarily generated
through oxidative combustion of organic substances, have
diverse sources that include urban emissions and biogenic
processes.24–28 In the atmosphere, aldehydes contribute to the
formation of free radicals (e.g., HOx), ozone (O3), and perox-
ycarboxylic nitric anhydride (PAN),29–31 and play a pivotal role in
particles formation.32–39 For example, laboratory studies have
shown that gaseous GL can lead to signicant particle growth
rates,40 contributing notably to SOA formation in various global
locations.41,42Model results from the GEOS-chemmodel suggest
that GL and MG are expected to contribute approximately 11 Tg
yr-1 to global particles production through irreversible uptake.43

Additionally, GL and FA have been identied in cloud and fog
water, indicating their role in aqueous-phase reactions that
contribute to particles formation.44
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SA and methanesulfonic acid (CH3SO3OH, MSA) are signi-
cant products of Earth's sulfur cycle with high gas-phase
concentrations and active atmospheric participation, and have
been identied as important drivers of atmospheric particle
nucleation.45–65 Aldehydes and sulfur-containing compounds
play a signicant role in NPF at the atmosphere–biosphere and
atmosphere–hydrosphere interfaces. These compounds signif-
icantly inuence cloud formation processes and further have
implications for global climate patterns.66 Recent experimental
studies indicate that sulfur-based acids can enhance the yield of
aldehydes to form particles.67–71 Yet, there are studies indicating
that the combined product of aldehydes and acids alone does
not adequately account for the observed particle yields, and
kinetic simulations propose that the cluster formation
involving aldehyde and acid is almost negligible in terms of
growth and formation.72 Water and basic molecules, like
ammonia and small alkyl organic amines, which are prevalent
in both gaseous and particulate phases, have been demon-
strated to facilitate new particle formation (NPF) through acid–
base reactions or oxidation reactions with hydroxyl, ozone, and
nitrate.51,52,54–56,73–79 It is noteworthy that the carbonyl group in
aldehydes, characterized by a sp2 hybridized carbon–oxygen
double bond, is particularly susceptible to nucleophilic attack.
This interaction can result in the displacement of electrons in
the p bond to the more electronegative oxygen atom,80,81 inu-
encing the mechanism of new particle formation. Given this,
nucleophilic agents like water and basic molecules emerge as
potential intrinsic drivers in the reaction dynamics of aldehydes
and acids. However, the understanding of atmospheric nucle-
ation processes involving aldehydes and acids, particularly in
the presence of water or basic molecules, remains limited.
Therefore, a comprehensive investigation into NPF driven by
aldehydes, acids, water, or basic precursors is imperative to fully
elucidate the underlying molecular mechanisms of such
nucleation.

In this study, the role of aldehydes in sulfur-based NPF are
investigated at a microscopic level. We focus on two types of
acids (SA and MSA), three aldehydes (FA, GL, and MG), two
bases (A and MA), and water (W). The structures, energies,
thermodynamic and dynamic stabilities, and interactions of the
most stable structures formed by these components were
examined. Furthermore, the mechanism of proton transfer
process and the impact of each component on NPF were
analyzed. This work contributes to a deeper understanding of
the nucleation mechanism of NPF at the molecular level.

2. Theoretical methods
2.1 Clusters structural calculations

In this study, the target systems consist of six binary systems
and eighteen ternary systems, incorporating two kinds of acids,
three kinds of aldehydes, two kinds of bases, and water. To
comprehensively obtain potential initial structures, we
employed the ABCluster soware82,83 with the articial bee
colony algorithm84 to explore local minima on the potential
energy surface of each cluster. ABCluster, in combination with
quantum chemical calculations, has been successfully used to
13322 | RSC Adv., 2024, 14, 13321–13335
obtain the local minima in atmospheric studies.87–89 Here, each
reactant gas was randomly placed in a 4 × 4 × 4 box to generate
1000 initial structures for each system. Due to the huge amount
of computation (24 × 1000), we implemented an economic
calculation strategy: initially, 1000 initial structures generated
by ABCluster for each system underwent optimization using the
PM7 semi-empirical method.85,86 Subsequently, from the ob-
tained 1000 initial congurations, we selected up to 100
minimal structures within DE < 10 kcal mol−1 (at PM7 level) for
further optimization at the B3LYP/3-21G level.90–92 Following
this, up to 20 lowest-energy isomers were reselected for opti-
mization and vibrational frequency calculations, utilizing the
B3LYP functional with Grimme's dispersion correction93 and
a 6-31G(d) basis set. Finally, up to 10 local-minimum structures
were chosen for accurate single-point energy and frequency
calculations at the MP2/6-311+G(d, p) level,94–96 and the isomers
with the lowest Gibbs free energy (298.15 K) obtained at this
level were conrmed as the most stable structures. The nal
Gibbs free energy (G) was determined using the following
approach:

G = EMP2
+ DGthermal (1)

Here, EMP2 represents the single-point energy obtained at the
MP2/6-311+G(d, p) level, and DGthermal accounts for thermal
corrections to Gibbs free energy, incorporating both entropic
and enthalpic contributions at the specied temperature
(298.15 K).

To validate the reliability of the relative Gibbs free energies
(DG) at the MP2/6-311+G(d, p)//B3LYP-D3/6-31G(d) level, we
used B3LYP-D3/aug-cc-pVTZ, MP2/aug-cc-pVTZ//B3LYP-D3/6-
31G(d) and MP2/6-311+G(d, p) as references for our test calcu-
lations on the FA–SA–A system. The test results demonstrated
that the isomers predicted to have the lowest Gibbs free ener-
gies are consistent across all four methods (see Table S1†).
Therefore, considering the balance between computational
cost-effectiveness and complexity, the MP2/6-311+G(d, p)//
B3LYP-D3/6-31G(d) level is sufficient for qualitatively predict-
ing the lowest-energy ground state structure of each system in
this study. Frequency calculations conrmed positive vibra-
tional frequencies for all stable minima. Natural bond orbital
(NBO) analysis97,98 was employed to obtain partial charges (d).
All density functional theory (DFT) geometry optimizations and
vibrational frequency calculations were performed using the
Gaussian 16 program.99

2.2 Molecular dynamic simulations and intermolecular
interactions analysis

To assess the thermodynamic stabilities of the obtained clus-
ters, molecular dynamics (MD) simulations were conducted
with semi-empirical quantum chemical potentials (PM6)100–102

using the CP2K package.103 MD simulations can enrich our
understanding by depicting the behavior of clusters in dynamic
environments, offering insights beyond static calculations. This
method illuminates the role of temperature and molecular
interactions in determining stability, providing a more nuanced
view of the thermodynamic properties. The simulations were
© 2024 The Author(s). Published by the Royal Society of Chemistry
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performed in the gas-phase NVT canonical ensemble with
Nose–Hover thermostats.104,105 For validation, we optimized all
the lowest-energy structures at the PM6 level, conrming close
agreement with geometries obtained by density functional
theory. Each simulation comprised ve trajectories, each
propagated for 100 picoseconds (ps) with a time step of 1
femtosecond (fs), and the temperature was maintained at T =

300 K.
To explore molecular interactions in the clusters, we con-

ducted noncovalent interaction (NCI) analysis.106 NCI analysis
describes the relationship between electron density r(r) and
reduced density gradient (RDG). RDG(s) is calculated by eqn (2)
to demonstrate the deviation from the homogeneous distribu-
tion of electrons.

s ¼ 1

2ð3p2Þ1=3
jVrj
r4=3

(2)

where r is the electron density based on MP2/6-311+G(d, p)//
B3LYP-D3/6-31G(d), V is the gradient operator, and jVrj is the
electronic density gradient mode. Multiwfn107 and VMD108,109

programs were utilized for RDG-sign(l2)r scatter plots and
bonding isosurface plots, respectively, visualizing the location,
strength, and type of weak interactions in the structure. The
strength of the interaction was judged by the value of sign(l2)r,
with values close to zero indicating weak interactions, such as
van der Waals forces. Negative sign(l2)r values corresponded to
hydrogen bonds (HB), while positive values indicated steric
hindrance.
3. Results and discussions

In this study, two types of acids (SA and MSA), three aldehydes
(FA, GL, and MG), two bases (A and MA), and water (W) are
involved, with investigations focusing on acid-aldehyde
systems, both with and without the presence of a base or
Fig. 1 The most stable structures of X–Y (X = FA/GL/MG; Y = SA/MSA
Yellow, red, green and white spheres represent sulfur, oxygen, carbon a

© 2024 The Author(s). Published by the Royal Society of Chemistry
water. To facilitate comparison across these systems, a simpli-
ed naming convention was adopted: X–Y denotes binary
systems, and X–Y–Z indicates ternary systems. Here, X repre-
sents an aldehyde, Y signies an acid, and Z corresponds to
water or a base. Note that the naming convention used merely
reects the reactants involved and is not indicative of the
composition of the resulting products. For instance, the binary
system FA–SA is composed of FA and SA as reactants. Similarly,
the ternary system FA–SA–W includes FA, SA, and water mole-
cules as reactants. It is worth mentioning that for three-
component reactions, all three gas molecules are introduced
as reactants simultaneously.

3.1 Acid-aldehyde

To microscopically reveal the role of aldehydes in sulfur-based
NPF, three representative aldehydes—mono-carbonyl aldehyde
FA, and di-carbonyl aldehydes GL and MG—as well as two
representative sulfur-based acids, namely SA and MSA, were
considered in this work. The most stable structures identied
for different aldehydes and sulfur-based acids in a 1 : 1 ratio at
the MP2/6-311+G(d, p)//B3LYP-D3/6-31G(d) level are presented
in Fig. 1, with additional high-energy isomers shown in Fig. S1
and S2.† For these most stable acid-aldehyde clusters, the
oxygen atoms on the carbonyl groups of all aldehydes form
OH/O hydrogen bonds with the hydroxyl hydrogen atoms on
the SA or MSA molecules, and no proton transfer was observed
in any of the systems. The bond length of hydrogen bonds
ranges from 1.70 to 1.78 Å. Notably, SA systems exhibit slightly
shorter hydrogen bond lengths thanMSA systems. NBO analysis
reveals that acidic molecules in all acid-aldehyde clusters have
a small negative partial charge (d), while aldehydes have
a positive partial charge, indicating a very weak donor–acceptor
interaction.

To explore the intermolecular interactions of these acid-
aldehyde clusters, NCI analysis was performed on the global
) systems at the level of MP2/6-311+G (2d, 2p)//B3LYP-D3/6-31G(d).
nd hydrogen atoms, respectively.

RSC Adv., 2024, 14, 13321–13335 | 13323



Fig. 2 The plots of RDG versus sign(l2)r function and the visualized bonding isosurfaces for the most stable acid-aldehyde clusters.
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minima of these clusters. Fig. 2 illustrates the scatter plot of
RDG(s) vs. sign(l2)r, along with corresponding bonding iso-
surfaces. The results indicate that all hydrogen-bonded acid-
aldehyde clusters exhibit negative sign(l2)r values, signifying
the presence of hydrogen bonds (HBs). The OH/O hydrogen
bond positions of all clusters can be identied from the
bonding isosurfaces in the blue region. Additionally, van der
Waals forces (sign(l2)r ∼ 0) and steric hindrance (sign(l2)r > 0)
are observed in each cluster. As the molecular weight of the
system increases, the van der Waals effect and steric hindrance
effect within the composite structure are enhanced. Impor-
tantly, the value of sign(l2)r corresponding to the spike in the
SA-based cluster is smaller than that in the MSA-based cluster,
indicating a stronger hydrogen bonding attraction formed by
aldehyde and SA. These results are further supported by the
visual bonding isosurfaces, with all hydrogen bonds corre-
sponding to the structures in Fig. 1 through the disc-like iso-
surface. MG-involved systems exhibit more pronounced van der
Waals and steric hindrance effects. It is noteworthy that SA
systems display shorter hydrogen bond lengths, more
pronounced negative partial charges, and sign(l2)r values in
comparison to MSA systems. These ndings collectively imply
a stronger interaction in binding aldehydes within SA systems
than in MSA systems.

The stability of acid-aldehyde clusters was further assessed
through thermodynamic analysis and MD simulations. First,
dissociation energies of these clusters were calculated at the
MP2/6-311+G(d, p)//B3LYP-D3/6-31G(d) level. The binding
energies (DE), electron energies with zero-point correction (DE +
ZPE), and corresponding free energies (DG) at 298.15 K were
13324 | RSC Adv., 2024, 14, 13321–13335
listed in Table 1, and dissociation energies were calculated
using eqn (3).

DG =
P

G(product) − P
G(reactant) =

P
nBG(B) − G(global minima) (3)

As shown in Table 1, the calculated results indicate that FA–
SA exhibits a small positive DDG value (0.39 kcal mol−1), while
the remaining systems have negative values ranging from−0.21
to −1.63 kcal mol−1. These negative DDG values mean that these
clusters tend to dissociate and are thermodynamically unstable.
The order of thermodynamic stability is FA > MG > GL for the SA
system, while FA > GL > MG for the MSA system. Additionally,
most SA systems exhibit smaller dissociation energies than the
corresponding values for MSA, aligning with the observed
shorter hydrogen bonds and stronger interactions in SA. Next,
MD simulations for the six clusters were conducted at 300 K.
The MD results reveal that the OH/O hydrogen bond breaks in
a very short time, approximately 10 ps for SA and 3 ps for MSA,
leading to complete separation of the aldehyde and acid
components (see Fig. S3†). The change in energy following
hydrogen bond dissociation is predominantly attributed to the
contribution of the hydrogen bonds. This indicates that clusters
are prone to dissociation to monomers, demonstrating insta-
bility at room temperature.

Based on the obtained results, the acid-aldehyde clusters are
characterized by a single hydrogen bond between the hydroxyl
group on the acid and the oxygen atom in the aldehyde carbonyl
group, with no proton transfer process observed. These clusters
© 2024 The Author(s). Published by the Royal Society of Chemistry



Table 1 Dissociation energies (in kcal mol−1) of the acid-aldehyde clusters calculated from the binding energies (DDE), electron energies with
zero-point corrected (DDE+ZPE), and corresponding free energies (DDG) at the MP2/6-311+G(d, p)//B3LYP-D3/6-31G(d) level of theory. Positive
values mean endothermic and negative values mean exothermic

Dissociation paths DDE DDE+ZEP DDG Proton transfer
Types of proton
transfer

FA–SA / 1*FA +1*SA 10.12 9.64 0.39 No — —
MG–SA / 1*MG +1*SA 10.72 10.03 −0.21 No — —
GL–SA / 1*GL +1*SA 9.20 8.36 −0.63 No — —
FA–MSA / 1*FA +1*MSA 9.02 8.57 −0.72 No — —
GL–MSA / 1*GL +1*MSA 8.40 7.60 −1.55 No — —
MG–MSA / 1*MG +1*MSA 10.01 9.37 −1.63 No — —

Paper RSC Advances
exhibit poor thermodynamic stability, consistent with previous
studies. Aldehydes exhibit stronger interactions with SA than
with MSA, resulting in shorter hydrogen bonds, smaller disso-
ciation free energies, and shorter separation times. This
behavior may be attributed to the stronger acidic nature of SA.
3.2 Acid-aldehyde with water or base

Continuing from the analysis of unstable acid-aldehyde clus-
ters, we further investigated ternary X–Y–Z systems, and
revealed the role of each component within them. In this
context, the third component Z included water (W) and two
different alkaline bases NH3 (A) and MA.

3.2.1 Structure. First, when Z is water, the most stable
structures of FA/GL/MG–SA/MSA–W systems are depicted in
Fig. 3, with additional structures of higher energy shown in
Fig. S4 and S5.† These most stable clusters exhibit an eight-
membered ring structure where two fragments are connected
by two hydrogen bonds. One fragment comprises the acid, while
the other consists of the geminal-diol. The two hydrogen bonds
connect the two hydroxyl groups in the geminal-diol with the
oxygen atom and the hydroxyl hydrogen atom on the acid, with
Fig. 3 The most stable structures of X–Y–Z (X = FA/GL/MG; Y = SA/MSA
Yellow, red, green and white spheres represent sulfur, oxygen, carbon a

© 2024 The Author(s). Published by the Royal Society of Chemistry
bond lengths ranging from 1.83 to 1.90 Å and 1.59 to 1.66 Å,
respectively. Similar to the acid-aldehyde systems, no proton
transfer occurs between the acid and aldehyde here, supported
by small d values (−0.02 ∼ −0.05) in SA or MSA. The geminal-
diol is formed by the reaction of aldehyde and water, where
water loses one proton to form an alcohol group. Because FA/
GL/MG have a carbon end of the carbonyl double bond that is
electrophilic due to bond polarity created by resonance, when
directly attacked by a nucleophile, the p bond is broken to form
an alkoxide intermediate, which is then protonated to yield the
alcohol derivative.80,81 However, water is a weak nucleophile,
and the carbonyl carbon usually needs to be activated. Previous
studies have shown that the carbonyl group is protonated under
acidic conditions, increasing the polarity of the carbonyl bond
and making the carbon more electrophilic.110 Hence, in the
presence of water, SA/MSA acts as a catalyst to activate the
carbonyl carbon, facilitating the formation of geminal-diol. The
mechanism of geminal-diol formation and the specic proton
transfer situations are detailed below.

Next, we discuss the systems when the third component Z is
either A or MA. Previous studies have demonstrated that basic
molecules such as ammonia or small alkylamines not only form
; Z = W) systems at the MP2/6-311+G(d, p)//B3LYP-D3/6-31G(d) level.
nd hydrogen atoms, respectively.

RSC Adv., 2024, 14, 13321–13335 | 13325
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atmospheric clusters with higher stability and nucleation rates
with SA or MSA but also act as nucleophiles attacking the
carbonyl functional groups in aldehydes. Fig. 4 illustrates the
geometry of the most stable clusters formed by the reaction of
three aldehydes with SA or MSA and basic nucleophilic compo-
nents, including A and MA molecules, with other high-energy
structures displayed in Fig. S6–S9.† These 12 clusters exhibit
global minimum structures with an eight-ring-like conguration
and two hydrogen bonds. When SA is the acid, a proton is
transferred from SA to the aldehyde carbonyl, resulting in an ion
pair. As a result, SA with a lost proton exhibits high partial charge
values, d = −0.87 to −0.88. For A or MA, nitrogen of base forms
a C–N bond with the aldehyde carbonyl, and the hydrogen on
nitrogen forms anO/H–N hydrogen bondwith the acid. Clearly,
when SA is present, the carbonyl group is protonated, increasing
the polarity of the carbon–oxygen double bond and making it
Fig. 4 The most stable structures of X–Y–Z (X = FA/GL/MG; Y = SA/MS
level. Yellow, red, blue, green and white spheres represent sulfur, oxyge

13326 | RSC Adv., 2024, 14, 13321–13335
more electrophilic. Notably, hydrogen bonds in basic systems are
shorter than those in water-based clusters, indicating stronger
interactions in base-based systems. When MSA is the acid, two
different scenarios exist. Only for FA–MSA–MA and MG–MSA–
MA, MSA systems exhibit the same bonding mode as SA systems,
with evident proton transfer occurring between the acid and
aldehyde. For the remaining four systems (GL–MSA–MA and FA/
GL/MG–MSA–A), the bonding mode is similar to that in the
presence of water, where MSA, acting as a catalyst, does not
undergo changes, while the base loses a proton and forms an
aminoalcohol with the aldehyde. Regardless of whether the
nucleophile is water or a base, for clusters in which no proton
transfer occurs between the acid and aldehyde, SA or MSA still
possesses small negative d values.

To gain a deeper understanding of the formation of
compounds in which no proton transfer occurs, further
A; Z = A/MA) systems at the MP2/6-311+G(d, p)//B3LYP-D3/6-31G(d)
n, nitrogen, carbon and hydrogen atoms, respectively.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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investigation into the mechanism of such reactions was con-
ducted. Using 1FA–1MSA–1A as a representative system, tran-
sition state calculations for trimolecular reactions were
performed, and a complete reaction pathway was constructed.
Fig. 5 presents the Gibbs free energy change diagram for the
transition among four isomers in the FA–MSA–A system. It also
includes the geometric parameters of the corresponding struc-
tures, featuring four isomers (iso-1, iso-2, iso-3, iso-4) and two
transition states (TS-1, TS-2). From this pathway diagram, it can
be seen that in the reactants of the trimolecular reaction,
a hydrogen bond interaction with a bond length of 1.53 Å is
involved between FA and MSA molecules, while the A molecule
is only weakly linked to MSA and FA through a van der Waals
interaction. With an activation energy barrier of 2.59 kcal mol−1

reaching transition state TS1, it can be observed that the
hydrogen atom Hc of MSA is transferred to the oxygen atom Ob

of FA, while ammonia is added to the carbon atom Ca in
formaldehyde. This results in the formation of an eight-
membered ring product (iso-2) containing a stable ion pair.
The bond distances are HcOd = 1.72 Å, CaNh = 1.54 Å, and HiOj

= 1.51 Å, respectively. Subsequently, this product easily
undergoes a barrier-free reaction, involving a second proton
transfer via iso-2, TS2, and iso-1 in the current eight-ring model.
In this process, the hydrogen atom Hi on the base A migrates to
MSA, ultimately forming the global minimum structure iso-1
with the lowest relative energy (DG). This product involves two
hydrogen bond interactions, with bond distances of HcOd =

1.86 Å and NhHi = 1.48 Å, respectively.
According to reaction potential energy surface, we conclude

the following reaction mechanism for X–Y–Z systems in which
Fig. 5 The Gibbs free energy change diagram for the transition among fo
D3/6-31G(d) level of theory (in kcal mol−1). The values in parentheses rep
states relative to the zero point.

© 2024 The Author(s). Published by the Royal Society of Chemistry
no proton transfer occurs, and the detailed process is shown in
Fig. 5: (1) SA/MSA protonates the carbonyl oxygen, making the
carbonyl carbon more electrophilic. Aer protonation, the
oxygen becomes positively charged, representing another reso-
nance form of carbocation. (2) Under acidic conditions, W/A/
MA acts as a nucleophile and forms a single bond with the
electrophilic carbon. This pushes the two electrons in the
carbonyl p bond onto the electronegative oxygen. The oxygen
from the carbonyl becomes neutral, while the oxygen/nitrogen
from W/A/MA nucleophile becomes positively charged. (3)
HSO4

− or CH3SO3
− acts as a base to extract a proton from the

neutrally charged W/A/MA, thereby regenerating SA/MSA.
Hence, SA/MSA ultimately acts as a catalyst throughout the
entire reaction. In fact, for systems in which proton transfer
between the acid and aldehyde does occur (FA/GL/MG–SA–A/
MA), the reaction is similar to that of TS-1, generating iso-2.
SA-based and MSA-based reactions differ in the subsequent
step, which may be attributed to the stronger basicity of
CH3SO3

− compared to HSO4
−. CH3SO3

− is more effective in
deprotonating the nitrogen atom in A or MA to form a positively
charged ammonolysis product.

3.2.2 Intermolecular interactions. The intermolecular
interactions within the most stable clusters of X–Y–Z systems
were further examined through NCI analysis. In all systems, the
positions of spikes on the scatter plot (RDG vs. sign(l2)r func-
tion) and the bonding isosurfaces visualized on the cluster
structures perfectly match in color. Taking six systems con-
taining FA as an example, we illustrate NCI analysis in Fig. 6. It
is evident that all systems exhibit two different types of
hydrogen bonds, corresponding to two negative sign(l2)r peaks
ur isomers in the FA–MSA–A system at theMP2/6-311+G(d, p)//B3LYP-
resent the relative Gibbs free energy values of the isomers or transition

RSC Adv., 2024, 14, 13321–13335 | 13327



Fig. 6 The plots of RDG versus sign(l2)r function and the visualized bonding isosurfaces for the most stable structures of X–Y–Z (X = FA)
clusters.
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on the scatter plot. Additionally, van der Waals forces (sign(l2)r
∼ 0) and steric hindrance (sign(l2)r > 0) are also present in these
eight-ring-like ternary systems. Similar patterns are observed
for the di-carbonyl aldehydes GL and MG (see Fig. S10 and
S11†). These results are also supported by visual bonding iso-
surfaces, with all hydrogen bonds corresponding to the struc-
tures in Fig. 3 and 4 through disk-shaped isosurfaces.
Comparing the interaction positions in the clusters containing
mono- and di-carbonyl aldehydes, we observed that only in the
GL and MG-based clusters, there are elliptical isosurfaces in
half-green and half-orange-red between the attacked carbonyl
carbon atom and the free carbonyl functional group. These
elliptical isosurfaces correspond to the dual impact of van der
Waals effects and mutual exclusion effects. This phenomenon
may be attributed to the presence of strong electron-
withdrawing groups such as –CHO and –COR in the complex
product of GL andMG. In summary, the NCI analysis reveals the
presence of various intermolecular interactions within the
clusters, including hydrogen bonds, van der Waals forces, and
steric hindrance. These interactions play a crucial role in
stabilizing the these clusters and inuencing their properties
and behavior.

3.2.3 Stability. The above results have indicated that acid-
aldehyde clusters have poor stability, however, in the presence
of nucleophilic molecules such as water or bases, aldehydes can
be protonated by the acid or nucleophilic molecules, forming
more stable eight-membered ring structures. To conrm the
stability of the most stable structures in the X–Y–Z systems, we
13328 | RSC Adv., 2024, 14, 13321–13335
investigated the dissociation process of the obtained 18 clusters
and calculated their dissociation energies and the correspond-
ing proton transfer reactions.

As shown in Table 2, it is observed that, except for FA–MSA–
W (−0.31 kcal mol−1), the DDG values of the dissociation path-
ways for all other systems are positive (ranging from 0.1 to
15.59 kcal mol−1), indicating that these clusters are not prone to
dissociation reactions thermodynamically. Clearly, the third
component can effectively improve the stability of acid-
aldehyde clusters. This enhanced stability can be attributed to
several factors: (1) protonation of aldehydes: in X–Y–Z systems,
the carbonyl functional group of aldehydes is protonated by SA
or MSA, making the carbon atoms more electrophilic and thus
more prone to addition reactions with nucleophilic molecules.
(2) Contribution of water or alkali molecules: the presence of
water or alkali molecules is crucial for stabilizing the X–Y–Z
system. They can form stable hydrolysis or ammonolysis prod-
ucts with aldehydes and provide an additional pair of hydrogen
bonds with SA or MSA, enhancing the intermolecular interac-
tions within the cluster.

Furthermore, the effects of different components on DDG

were analyzed systematically: (1) aldehydes: clusters composed
of di-carbonyl aldehydes (GL and MG) exhibited larger DDG

values than those of mono-carbonyl aldehyde (FA), indicating
that the complexes generated by hydrolysis or ammonolysis
were more stable. Di-carbonyl aldehydes have strong electron-
withdrawing groups, which increase the electrophilicity of the
carbonyl carbon atom and enhance their ability to accept
© 2024 The Author(s). Published by the Royal Society of Chemistry



Table 2 Dissociation energies (in kcal mol−1) of the most stable clusters in X–Y–Z systems calculated from the binding energies (DDE), electron
energies with zero-point corrected (DDE+ZPE), and corresponding free energies (DDG) at the MP2/6-311+G(d, p)//B3LYP-D3/6-31G(d) level of
theory, and the details of proton transfer in each cluster. Positive values mean endothermic and negative values mean exothermic

Dissociation paths DDE DDE+ZEP DDG Proton transfer Types of proton transfer

MG–SA–MA / 1*MG + 1*SA + 1*MA 40.31 40.34 15.59 Yes SA / MG
GL–SA–MA / 1*GL + 1*SA + 1*MA 38.54 38.71 14.69 Yes SA / GL
FA–SA–MA / 1*FA + 1*SA + 1*MA 30.01 43.61 13.94 Yes SA / FA
MG–MSA–MA / 1*MG + 1*MSA + 1*MA 29.52 47.44 13.24 Yes MSA / MG
GL–MSA–MA / 1*GL + 1*MSA + 1*MA 29.71 45.58 12.61 Yes MSA / GL MA / MSA
FA–MSA–MA / 1*FA + 1*MSA + 1*MA 34.29 34.89 10.94 Yes MSA / FA
MG–SA–A / 1*MG + 1*SA + 1*A 30.55 31.16 7.96 Yes SA / MG
GL–SA–A / 1*GL + 1*SA + 1*A 29.25 29.94 7.48 Yes SA / GL
MG–MSA–A / 1*MG + 1*MSA + 1*A 23.06 39.56 7.12 Yes MSA / MG A / MSA
GL–MSA–A / 1*GL + 1*MSA + 1*A 21.92 36.99 6.63 Yes MSA / GL A / MSA
FA–SA–A / 1*FA + 1*SA + 1*A 27.35 28.38 6.33 Yes SA / FA
FA–MSA–A / 1*FA + 1*MSA + 1*A 20.11 33.42 5.74 Yes MSA / FA A / MSA
MG–SA–W / 1*MG + 1*SA + 1*W 15.01 31.15 0.57 Yes SA / MG W / SA
FA–SA–W / 1*FA + 1*SA + 1*W 15.45 27.79 0.44 Yes SA / FA W / SA
GL–SA–W / 1*GL + 1*SA + 1*W 14.88 29.27 0.30 Yes SA / GL W / SA
MG–MSA–W / 1*MG + 1*MSA + 1*W 14.01 30.99 0.14 Yes MSA / MG W / MSA
GL–MSA–W / 1*GL + 1*MSA + 1*W 21.49 22.16 0.10 Yes MSA / GL W / MSA
FA–MSA–W / 1*FA + 1*MSA + 1*W 20.39 21.41 −0.31 Yes MSA / FA W / MSA
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nucleophiles. (2) Nucleophiles: the DDG values of the clusters
formed by different nucleophiles attacking carbonyl carboca-
tions are consistent with their nucleophilicity, with the stability
in descending order: DDG (MA-based) > DDG (A-based) > DDG (W-
based). This suggests that the stability of the clusters formed by
aldehydes under the action of SA or MSA is closely related to the
nucleophilicity of the nucleophile. (3) Acid effect: the DG values
of all SA-based clusters (including X–Y and X–Y–Z systems) are
higher than those of the corresponding MSA-based clusters,
indicating that SA-based clusters are more thermodynamically
stable. This is mainly because SA has a higher acid strength and
can better stabilize the partial negative charge of the oxygen
atom on the C]O in the aldehyde.

Additionally, MD simulations were performed for all X–Y–Z
clusters to evaluate their stability at room temperature (300 K),
and the results are shown in Fig. S12–S14.† In systems where no
proton transfer occurs between acid and aldehyde in the most
stable structures, the acid tends to dissociate from the structure
rapidly. Conversely, systems that experienced proton transfer
from acid to aldehyde demonstrated enhanced stability, charac-
terized by minimal energy uctuations and intact components.

In summary, for the three-component reaction, both the acid
and nucleophilic reagents play synergistic roles in the reaction with
aldehydes, and the acidity of the acid, strength of the nucleophile,
and type of aldehyde all contribute to the stability and reactivity of
the clusters. Crucially, proton transfer between acid and aldehyde
emerges as a vital factor for evaluating cluster stability.
4. Conclusion

Utilizing quantum chemical calculations and MD simulations,
we systematically investigated NPF involving three types of
aldehydes, two acids, and two bases or water. Our study reveals
that acid-aldehyde (X–Y) clusters are merely linked by hydrogen
bonds between the acids and aldehydes, without any proton
© 2024 The Author(s). Published by the Royal Society of Chemistry
transfer. Calculations of dissociation energy andMD suggest that
these clusters are less thermodynamically stable. The order of
thermodynamic stability for SA system is formaldehyde (FA) >
methylglyoxal (MG) > glyoxal (GL), while for MSA system, it is FA
> GL > MG. When a third component Z (water and base) is
present, the most stable structure forms an eight-membered ring
via two hydrogen bonds, with X–Y–Z systems exhibiting
improved stability compared to X–Y systems. Among them, ten
systems (FA/GL/MG–SA/MSA–W, FA/GL/MG–MSA–A, GL–MSA–
MA) occur twice proton transfer, i.e., MSA/ aldehyde and water
or base/MSA, resulting inMSA as a catalyst in this process. For
the remaining eight clusters (FA/GL/MG–SA–A/MA, FA/MG–MSA–
MA), the most stable structures are ion pairs formed by proton
transfer from the acids to aldehydes, i.e., acid/ aldehyde. These
clusters maintain excellent thermodynamic stability. Addition-
ally, under acidic conditions, the electrophilicity of carbon atoms
in FA, GL, and MG is progressively enhanced, along with the
increasing stability of the formed cluster. With the increase of
the acidity of acid and the basicity of the nucleophile, stabilities
of products formed in the aldehyde-involved reactions also
increase. In summary, this study provides valuable insights into
NPF. Proton transfer between acids and aldehydes and the
involvement of water/base molecules are crucial for nucleophilic
reactions leading to stable nucleated clusters. Additionally, the
acidity of the acid, the nature of nucleophilic agents, and the type
of aldehyde all play signicant roles in cluster stability and
reactivity, and they have synergistic effects on the nucleation
process. This research not only advances our understanding of
aldehydes-based NPF processes but also offers useful guidance
for future related studies.
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V. Loukonen, V. Makhmutov, S. Mathot, M. J. McGrath,
T. Nieminen, T. Olenius, A. Onnela, T. Petäjä,
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