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Statistical Analysis of Zebrafish 
Locomotor Behaviour by 
Generalized Linear Mixed Models
Yiwen Liu1, Ping Ma1, Paige A. Cassidy2, Robert Carmer2,3, Gaonan Zhang2, Prahatha 
Venkatraman2, Skye A. Brown2, Chi Pui Pang4, Wenxuan Zhong1, Mingzhi Zhang5 & Yuk Fai 
Leung2,6,7,8

Upon a drastic change in environmental illumination, zebrafish larvae display a rapid locomotor 
response. This response can be simultaneously tracked from larvae arranged in multi-well plates. The 
resulting data have provided new insights into neuro-behaviour. The features of these data, however, 
present a challenge to traditional statistical tests. For example, many larvae display little or no 
movement. Thus, the larval responses have many zero values and are imbalanced. These responses are 
also measured repeatedly from the same well, which results in correlated observations. These analytical 
issues were addressed in this study by the generalized linear mixed model (GLMM). This approach 
deals with binary responses and characterizes the correlation of observations in the same group. It was 
used to analyze a previously reported dataset. Before applying the GLMM, the activity values were 
transformed to binary responses (movement vs. no movement) to reduce data imbalance. Moreover, 
the GLMM estimated the variations among the effects of different well locations, which would eliminate 
the location effects when two biological groups or conditions were compared. By addressing the data-
imbalance and location-correlation issues, the GLMM effectively quantified true biological effects on 
zebrafish locomotor response.

Zebrafish are widely used in neurobehavioural research because this model confers several unique advantages. 
For example, zebrafish have high fecundity and routinely lay hundreds of embryos when mated in pairs. These 
embryos are also small and develop quickly into freely-swimming larvae in three to four days, which makes 
simultaneous tracking of their locomotor behavior under different experimental conditions straightforward. This 
approach has indeed generated data that provide new insights into neurobiology1–15, pharmacology3, 5–7, 9–12, 16–18 
and toxicology19–27. Nonetheless, the resulting data are high-dimensional and complex, and require new methods 
of statistical analysis to unveil critical information about the underlying neurobehaviour.

To illustrate the analytical challenges, we will focus on one popular approach for high-throughput behavioural 
analysis: the visual motor response (VMR). This is an instantaneous locomotor response displayed by zebrafish 
larvae upon drastic light onset or offset4, 28–30. In a typical VMR experiment, zebrafish are arranged in a 96-well 
plate, isolated from environmental light in a lightproof chamber, and stimulated by controlled white light. Their 
activities are recorded and summarized as the number of pixels moved in successive frames or as absolute dis-
placement31. The resulting VMR data have two major features. First, the distribution of the larval activity would 
likely deviate from a Gaussian distribution because many larvae display little or no movement. This deviation 
creates data imbalance, and may pose challenges to statistical analysis since most traditional methods rely on 
the assumption of a Gaussian distribution. Second, the larval activities are observed repeatedly over time and in 
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groups, such as larvae from the same location of the plate. Different locations in a well plate may have different 
effects on larval activity. Treating all location equally ignores not only the variations among those location effects, 
but also the correlations of larvae in the same location of the plate. This variation accounts for the unobserved 
heterogeneity of the data, while the correlation between larvae in the same wells would result in correlated sam-
ples. These repeated observations must be properly handled during data analysis.

These data features pose challenges to analyzing VMR or similar locomotor data by traditional approaches. 
For example, the t-test and analysis of variance (ANOVA) are often used to compare data between two groups, 
and three or more groups respectively. These tests have been implemented in analyzing similar locomotor data32 
despite several limitations: the t-test has a higher Type I error rate when more comparisons are performed, 
whereas both t-test and ANOVA do not handle the time-dependency issue as commonly observed in time-series 
data. This time-dependency issue is often tackled by repeated-measures ANOVA13, 21, 33, 34, a variant of ANOVA 
that can handle dynamical changes in behavior and repeatedly measured samples that are correlated in time. 
This analysis, however, assumes that the variances of the differences between group combinations are equal, an 
assumption that is hardly satisfied in behavioural data. To address these analytical issues, we recently introduced 
the Hotelling’s T-squared test and multivariate analysis of variance (MANOVA; a multivariate analog of ANOVA) 
for analyzing locomotor data31. Hotelling’s T-squared test not only reduces the Type I error rate compared to the 
t-test, but it also takes into account the time dependency between repeated measures; whereas MANOVA consid-
ers the time dependency and quantifies the effect sizes of variables that contribute to locomotor behaviour. These 
two methods, however, still treat samples collected in the same location of the plate as independent measurements 
and do not consider the correlations between them. They also do not address the data-imbalance issue, where the 
larval activity does not satisfy normality assumption. Several zebrafish behavioural studies used nonparametric 
tests such as Kruskal-Wallis test and Wilcoxon signed-rank test when the normality test indicated the data were 
not normally distributed35–40. However, simple non-parametric tests have their disadvantages. For example, they 
cannot make quantitative statements about the difference between two groups. Moreover, non-parametric tests 
such as Wilcoxon signed-rank also suffer from loss of information, since they only utilize the ranks of the data. 
They are also less sensitive to differences between groups and require a larger sample size to achieve the same 
power as parametric tests.

To address these analytical issues, we present an alternative approach for the analysis of locomotor behaviour: 
the generalized linear mixed model (GLMM). This approach handles binary response variables and can be used 
to estimate the probability of the binary response based on multiple predictors41. It also assumes that the condi-
tional distribution of the response variable is a Bernoulli distribution rather than a Gaussian distribution. When 
this approach is used to analyze locomotor data, the activity values are transformed into binary responses and 
encoded as 0 (no movement) and 1 (otherwise). This transformation renders the data less imbalanced. Moreover, 
different from displacement, the GLMM characterizes the larval activity by the proportion of larvae moved at 
each second, which represents how active the whole group is. Furthermore, it also treats group-level terms, such 
as location, as random effects. By controlling for these unobserved covariates, the approach can efficiently esti-
mate the coefficients of other variables. It also adjusted for the lack of independence among the multiple obser-
vations for each location. The GLMM was used in this study to analyze a standard VMR dataset that was used 
previously to develop the Hotelling’s T-squared test31. Our results indicate that the GLMM efficiently handled 
the complex structure of high-throughput behavioral data. This GLMM approach complements the Hotelling’s 
T-squared test for analyzing VMR data, and these approaches together establish a framework that can be used to 
analyze behavioural data with a similar structure.

Materials and Methods
Experimental data.  All experimental data were previously collected, reported31 and are accessible from the 
Harvard Dataverse (http://dx.doi.org/10.7910/DVN/HTXXKW). A summary of the data will be provided here. 
These data were collected from VMR experiments on three wild-type (WT) zebrafish strains: AB, TL and TLAB. 
Their VMR were analyzed daily from 3 days post-fertilization (dpf) to 9 dpf, using a standard VMR experimental 
scheme4, 14, 15, 18, 28, 31. In this scheme, the larvae were arrayed in a 96-well plate and dark adapted for 3.5 hrs. They 
were then subjected to three consecutive trials of light onset (Light-On) and light offset (Light-Off). Each trial 
session lasted for 30 mins. We also controlled other experimental variables that might affect the results31. For 
example, only healthy larvae were included in the final analysis, and the same type of 96-well plate was used for 
all experiments. We also ran all strains separately. The reasons of this experimental design are as follows. Firstly, 
to quantify the variations among wells (locations), the biological groups (i.e. strains) should not be confounded 
with the technical groups (i.e. locations). In other words, there was no interaction between strain and location 
under such circumstance. We could then assume larvae at the same location would have the same location effect, 
regardless of their biological groups. Secondly, we also conducted biological replicates of each experiment. The 
estimated strain effect is the “mean effect” of all replicates, which alleviated the variation due to running all strains 
separately and ensured a valid biological interpretation of the results.

Statistical Analysis.  Activity summarization.  The VMR dataset used in this study summarized the larval 
activity as Burst Duration, the fraction of frames in each second that a larva moved31. Each frame was compared 
with the previous one. A larva would be declared moving in a frame if it moved more than a preset threshold. 
However, these summarized Burst-Duration values were imbalanced since a large number of zebrafish larvae 
displayed little or no movement at all. This data-imbalance issue was handled by transforming the Burst-Duration 
values into binary responses: all non-zero values were transformed to 1 or 0 otherwise.

Data modeling and statistical inference.  In the VMR experiment, zebrafish larvae would display very drastic 
movement after sudden light change. We previously used their activity data from the 30-second period after each 
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light change to develop analytical tools for VMR data31. In this study, we used the same period of time for analy-
sis. All explanatory variables in our models are introduced in section Explanatory variables. The effects of these 
variables are analyzed by GLMM and introduced in section GLMM. All statistical analyses were performed using 
R software version 3.2.3 (https://www.r-project.org). The analysis scripts are available in the Supplementary file.

Explanatory variables.  The explanatory variables used in our models include: (1) Strain: AB, TL and TLAB; 
(2) Stage: 3–9 dpf; (3) Light stimulus: light-onset sessions (Light-On) and light-offset sessions (Light-Off); (4) 
Time: 1–30 seconds after the light change; (5) Location: The well position in a 96-well plate; and (6) Interactions 
between the variables (1–5).

GLMM.  Assume that yij is the observation of the j th zebrafish larva in group i for j = 1, …, ni, with yij = 1 repre-
senting an active zebrafish larva and yij = 0 otherwise, and xij as a column vector of values of explanatory variables 
for this larva. Then, the GLMM41 has the following form:
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, and β represents the fixed-effect model parameters. γi is the 

random effect of group i, and {γi} are independent N(0, σ2). In our studies, the larval location in the 96-well plate 
was modeled as the random effect. Zebrafish larvae at different locations (i.e. wells) were independent from each 
other, whereas zebrafish larvae at the same location had the same effect size. Other explanatory variables included 
the strain and stage of the zebrafish, time, and light stimulus.

Results
In this study, we used the GLMM to resolve the aforementioned data-analysis issues that were not handled by 
both traditional analyses and Hotelling’s T-squared test31. We focused on the 1st Light-On session (i.e. 1st technical 
repeat) in this study whenever possible. This selection simplified the analysis, as the 1st Light-On session (i.e. 1st 
technical repeat) was qualitatively different from the 2nd and 3rd (p < 0.05) due to a difference in the length of the 
prior dark adaptation31. By using one technical repeat, we could effectively compare the analyses of the Hotelling’s 
T-squared test and GLMM, and illustrate the potential of the GLMM in VMR data analysis. Three examples will 
be shown below.

Example 1: Difference in activities of different WT strains during the same time interval.  To 
determine this difference, a model (1) was built on the VMR data of larvae at 6 dpf from 1 to 30 s with the follow-
ing variables: strain (categorical; S), time and its squared term (continuous; t and t2), their interactions, and ran-
dom effect of location (γi). The time variable was centered to have a mean of zero to reduce the degree of 
multicollinearity. The squared term of time was included since the log odds of moving larvae proportion were not 
linear across time. For each strain m (AB, TL, TLAB), we denoted β β,s

m
I

m( ) ( )
1

, and β I
m( )

2
 as the coefficients of strain, 

and its interactions with t and t2 respectively. Each level of the categorical variables was compared with a reference 
level. For example, AB was the reference level for the variable strain, and its corresponding coefficient was set to 
zero (i.e. βs satisfied the constraint β = 0)s

AB( ) . The results of the model were interpreted as log odds of activeness 
(LOA), defined as
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The LOA describes the likelihood that the larva in a particular location would move. Its value might be dif-
ferent in different strains. The LOA difference between different strains (dLOA) was deduced by the following 
formula, using the comparison between TL and AB strains in the same location as an example:

β β β β β β− = − + − + − .( ) ( )LOA TL LOA AB t t( ) ( ) s
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AB
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I
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Since the other basic effects were the same between the two strains at time t, they canceled each other. The 
random effects (γi) also canceled each other for the same location. The first part of the formula, β β−s

TL
s

AB( ) ( ), 
describes the average shift in LOA between TL and AB independent of time; whereas the second and third parts 
indicate how dLOA changed over time.

The fitting results are shown in Table 1, and the corresponding data are plotted in the left panel of Fig. 1. The 
effect of strain on LOA was decomposed into two parts. The first part was in the main effect. The LOAs of TL and 
TLAB strains increased by 1.2551 (p < 0.0001) and 0.5601 (p < 0.0001) respectively when compared with that of 
AB. Thus, more TL and TLAB larvae tended to move when exposed to a Light-On stimulus. In terms of instant 
behaviour . . =t(i e at 1), there was no significant difference between TL and TLAB larvae. Their LOAs increased 
by 0.6076 and 0.8342 respectively when compared with that of AB. This can be due to the SNPs in the TL line were 
associated with dominant genes for higher locomotor activities. The hybrid TLAB line would therefore still dis-
play the dominant active phenotype. The second part of strain effect on LOA was in its interaction with time. The 
dLOA between TL and TLAB had a significant linear pattern over time (2.1698, p < 0.0001); whereas the dLOA 
between TLAB and AB strains had significant linear (−3.0496, p < 0.0001) and quadratic patterns (−7.9245, 
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p = 0.0330) over time. This trend was also shown by the predicted probability of WT strains that moved during 
the same time interval (Fig. 1, middle panel). When TL and TLAB strains were exposed to a Light-On stimulus, 
more of them tended to move compared to AB. TLAB larvae, however, returned to the baseline activity faster than 
AB and TL larvae, as the proportion of moving TLAB larvae decreased faster than that of AB and TL.

This comparison unveiled new information compared to that obtained from the Hotelling’s T-squared test 
performed on the same data (Table 2; also plotted accordingly in the right panel of Fig. 1)31. In our previous work, 
the Hotelling’s T-squared test showed that the average activity of every strain across time was different from the 
others (Table 2; p-values for all pairwise comparison were <0.0001). As a complementary analysis, the GLMM 
further improves on the explanation of this difference: (1) TL had a larger strain effect (Table 1, main effects); (2) 
the LOA of TLAB strain decreased faster than that of TL strain during the 30s period; and (3) the LOAs of all 
strains decreased in significant nonlinear patterns across time (Table 1, interactions with time).

Difference in activity of the same strain
Example 2: Difference in activity of the same strain during light onset and offset.  The larvae 
displayed substantially different activities by the Light-On and Light-Off stimuli. This difference was quantita-
tively evaluated by GLMM, using VMR data of AB at 6 dpf from 1 to 30s (i.e. after light change) with the following 
variables: light stimulus (categorical; L), time and its squared term (continuous; t and t2), their interactions, and 
random effect of location (γi). For light stimulus l (ON or OFF), we denoted β β,L

l
I

l( ) ( )
1

 and β I
l( )

2
 as the coefficients 

of light stimulus and its interactions with t and t2 respectively.
The fitting results are summarized in Table 3, and the corresponding data are plotted in the left panel of Fig. 2. 

In main effect, the LOA of larvae upon Light-On stimulus was significantly smaller than that upon Light-Off 
stimulus (−3.0963; p < 0.0001). In other words, fewer zebrafish larvae moved upon Light-On stimulus. The lar-
vae also displayed different decreasing LOA patterns during light onset and offset, as evidenced by the significant 
dLOAs in the interaction between light stimulus and time (linear term: −2.6759, p < 0.0001; quadratic term: 
8.4131, p < 0.0043).

The GLMM results were more informative compared to those obtained from the Hotelling’s T-squared test 
on the same data. Previously we showed that the larval activity differed upon light onset and offset by Hotelling’s 
T-squared test (p < 0.0001). We further explained this difference using the results of the GLMM (Fig. 2, middle 
panel; Table 3, main effects), which showed that the proportion of active larvae was larger during light onset 
than offset. The GLMM also revealed that larval activity decreased at a different rate upon light onset and off-
set (Table 3, interaction with time). The results from the two analyses therefore complemented each other and 
described different aspects of the larval activity.

Example 3: Difference in activities of larvae at different developmental stages.  The VMR data 
were collected from 3 to 9 dpf, when the larvae were developing. Their maturation would alter the locomotor 
behaviour14, 31. This developmental difference was modeled by the GLMM, using the VMR data of AB larvae. The 
model focused on the 1st technical repeat of the Light-On stimulus from 1 to 30 s. It comprised the following 
variables: stage (categorical; G), time and its squared term (continuous; t and t2), their interaction s, and random 
effect of location (γi). For stage k (3, …, 9), we denoted β β,G

k
I

k( ) ( )
1

 and β I
k( )

2
 as coefficients of stage and its interac-

tions with t and t2 respectively.
The fitting results of 3, 6 and 9 dpf are summarized in Table 4, and the corresponding data are plotted in the 

left panel of Fig. 3. The effect of stage on LOA was decomposed into two parts. The first part was the main effect. 
The LOA of AB larvae was significantly larger at 9 dpf than 3 and 6 dpf (0.9693, p < 0.0001; 1.1838, p < 0.0001). 
Thus, fewer zebrafish larvae tended to move upon light onset at 3 and 6 dpf than at 9 dpf (Fig. 3, middle panel). 
The second part of stage effect on LOA was in the interactions of stage effect with time. The LOAs of larvae at all 
stages decreased in nonlinear patterns, and were quite different from each other (Table 4, interactions with time). 
At 3 dpf, the LOA gradually increased upon light onset, and then gradually decreased (Table 4, βt = −5.6808; 
β t 2 = −23.7371). At 6 dpf, however, the LOA drastically increased upon light onset and then gradually decreased 
(Table 4, β β+t I

(6)
1

= −2.4029; β β+t I
(6)

2
2

= 12.5912). At 9 dpf, the LOA decreased in both linear and nonlinear 
pattern over time, and its nonlinear term was significantly different than that at 3 dpf (Table 4, β β−I I

(9) (3)
2 2

=14.7728, p < 0.0001).
These results again unveiled new information and complemented the findings from the Hotelling’s T-squared 

test that were thoroughly discussed in our previous study31. For example, in our previous work, the Hotelling’s 
T-squared test showed a significant difference in the activities of larvae from different stages of development upon 
the same Light-On stimulus (Table 5); whereas the results of GLMM in this study further explained the details of 

Mean (standard error) (p-value*)

Basic Effects
Intercept β0 βt β t2

−2.9206 (<0.0001) −2.4019 (<0.0001) 12.5726 (<0.0001)

Strain Effect

Main effect Interactions with time

β β−s
TL

s
AB( ) ( ) 1.2551 (<0.0001) β β−I

TL
I
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1
( )

1
( ) −0.8793 (0.05) β β−I
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I
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2
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2
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s
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TLAB
I
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1
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1
( ) −3.0496 (<0.0001) β β−I
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I
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2
( ) −7.9245 (0.0330)
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s
TLAB( ) ( ) 0.6951 (<0.0001) β β−I

TL
I
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1
( )

1
( ) 2.1698 (<0.0001) β β−I

TL
I

TLAB
3
( )

3
( ) −6.8037 (0.05)

Table 1.  The GLMM results of Light-On VMR from 1 to 30s for different WT strains at 6 dpf. *p-values of these 
tests were adjusted using the Benjamini–Hochberg procedure to control for Type I error.
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these differences. First, the LOAs were different between larvae at 3 and 6 dpf due to significant interactions with 
time (Table 4; β β−I I

(6) (3)
1 1

: 3.2779; β β−I I
(6) (3)
2 2

: 36.3283). This indicates the LOAs of these larvae were changing 
differently over time, as also shown by the left panel of Fig. 3. Second, the LOAs were different between larvae at 
3 dpf and 9dpf, both at the main-effect level (Table 4; β β−G G

(9) (3):0.9693), and the interactions-with-time level 
(β β−I I

(9) (3)
2 2

: 14.7728). The significant main effect suggests the LOA curves between these larvae should be simi-
lar in shape, as demonstrated in the left panel of Fig. 3. The main difference between these curves is that the one 
for 9-dpf larvae was generally shifted upward (β β−G G

(9) (3): 0.9693). Third, the LOAs were different between larvae 
at 6 dpf and 9 dpf in both the main effect (Table 4; β β−G G

(9) (6): 1.1838) and the interactions with time (β β−I I
(9) (6)
1 1

: −2.3585; β β−I I
(9) (6)
2 2

: −21.5533). This indicates that the LOA curve of the 9-dpf larvae was shifted upward and 
was changing in a nonparallel pattern compared with that of the 6-dpf larvae, as showed in the left panel of Fig. 3.

Discussion
The locomotor behaviour of zebrafish larvae has been widely used to study neurobehaviour. One reason for this 
popularity is that these larvae are small and are amenable for high-throughput collection of data from multiple 
larvae arranged in multi-well plates. The larval activities collected from this arrangement, however, present chal-
lenges to statistical analysis. These values are not only measured repeatedly over time, but they are also imbal-
anced and correlated in time and by location. These statistical issues cannot be dealt with by traditional methods 

Figure 1.  Plots of VMR during the first 30 seconds of Light-On stimulus for WT larvae at 6 dpf. Left panel: 
Proportions of moving larvae summarized from the data. Y-axis is the proportion of moving larvae and x-axis is 
time (1–30s). For each strain, the proportions are shown in different colours. The corresponding ribbon 
represents 1 standard error from the proportion. Middle panel: Predicted probability of moving larvae. Y-axis is 
the predicted probability of detecting a moving zebrafish larva =P̂ y( 1)ij  and x-axis is time (1–30s). The 
predicted probability is shown in a different colour for each strain. The corresponding ribbons represent the 
lower and upper quartiles. Note that the Y-axes of left and middle panels are the proportion and predicted 

probability of moving larvae respectively, which can be derived from the LOA, defined as 

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Right panel: Mean Burst Duration of zebrafish larvae during the same time interval. For each strain, its 
corresponding ribbon represents 1 standard error from the mean activity. These data were used for the 
Hotelling’s T-squared tests that are reproduced in Table 2. The sample size in this example is 16560 (AB: 5730; 
TL: 5280; TLAB: 5550).

AB VS. TL TL VS. TLAB AB VS. TLAB

Test statistic* 
(p-value) 5.1843 (<0.0001) 2.3645 (<0.0001) 3.7021 (<0.0001)

Table 2.  The Hotelling’s T-squared test of Light-On VMR data used in Table 1. *These results are reproduced 
from 31 for comparison.

Mean (p-value)

Basic Effects
Intercept β0 βt β t2

0.1268 (0.0470) 0.2496 (0.1888) 4.3020 (0.0028)

Light Stimulus 
Effects

Main Effect Interaction with Time

β β−L
ON

L
OFF( ) ( ) −3.0963 (<0.0001) β β−I

ON
I

OFF
1
( )

1
( ) −2.6759 (<0.0001) β β−I

ON
I

OFF
2
( )

2
( ) 8.4131 (0.0043)

Table 3.  The GLMM results of VMR data from 1 to 30s for AB larvae at 6 dpf.
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including the t-test and ANOVA. In a previous study, we addressed the time-dependency issue by the Hotelling’s 
T-squared test31. In this investigation, we addressed the data-imbalance problem and location-correlation issue 
using the GLMM.

The GLMM modeled the relationship between binary responses and explanatory predictors with both fixed 
and random effects41. This approach offered at least two advantages in analyzing VMR data: First, it reduced the 
degree of imbalance in zebrafish responses by transforming the activity values into binary responses. All non-zero 
values were transformed to 1, or zero otherwise. For example, all larvae in the right panel of Fig. 1 had mean 
activities less than 0.075. Many of them actually did not move during any second and had a zero in their response 
value. This phenomenon resulted in more zero values in responses. When these larval activities were transformed 
into binary responses, the maximum proportions of moving larvae were close to 0.5, comparable to the propor-
tion of zero values. Second, the GLMM considered the location effect introduced by repeated measurements as 
a random effect, and explicitly quantified the variations among different locations by estimating the variance of 
random effect. For example, the variance of random effect in Example 1 was estimated to be 0.1149, indicating 
that the variations among different wells was 0.1149.

The GLMM had some limitations in analyzing VMR data. First, it only handled binary responses and quan-
tified the probability of larval movement; it could not handle larval displacement. Second, the LOAs from the 
model might show nonlinear patterns across time (Fig. 2, left and right panel), and the linear and quadratic 
terms in the model could not capture such patterns. To address the first limitation, we propose that the VMR 
data should be analyzed by both the GLMM and the Hotelling’s T-squared test. The GLMM quantifies the proba-
bility of moving (i.e. how many larvae moved), whereas the Hotelling’s T-squared test defines whether the mean 
activities (i.e. how much the larvae moved) between two groups are different. Combining these observations 
would provide a better interpretation of the larval movement. The Hotelling’s T-squared test would also facilitate 
building a GLMM. When the test finds larval activities significantly affected by certain variables, these variables 

Figure 2.  Plots of VMR during the first 30 seconds of the light-stimulus change for AB larvae at 6 dpf. Left 
panel: Proportions of moving larvae summarized from the data. Y-axis is the proportion of moving larvae and 
x-axis is time (1–30s). For light onset and offset, the proportions are shown in different colours. The 
corresponding ribbon represents 1 standard error from the proportion. Middle panel: Predicted probability of 
moving larvae. Y-axis is the predicted probability of detecting a moving zebrafish larva and x-axis is time (1–
30s). The predicted probability is shown in a different colour for each strain. The corresponding ribbons 
represent the lower and upper quartiles. Note that the Y-axes of left and middle panels are the proportion and 
predicted probability of moving larvae respectively, which can be derived from the LOA defined as 
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light onset or offset, its corresponding ribbon represents 1 standard error from the mean activity. These data 
were used for the Hotelling’s T-squared tests showed in Example 2. The sample size in this example is 11460 
(Light-On: 5730; Light-Off: 5730).

Mean (p-value*)

Intercept β0 βt β t2

−2.7059 (<0.0001) −5.6808 (<0.0001) −23.7371 (<0.0001)

Main effect Interactions with time

β β−G G
(6) (3) −0.2142 (0.0528) β β−I I1

(6)
1
(3) 3.2779 (<0.0001) β β−I I2

(6)
2
(3) 36.3283 (<0.0001)

β β−G G
(9) (3) 0.9693 (<0.0001) β β−I I1

(9)
1
(3) 0.9164 (0.1445) β β−I I2

(9)
2
(3) 14.7728 (<0.0001)

β β−G G
(9) (6) 1.1838 (<0.0001) β β−I I1

(9)
1
(6) −2.3585 (<0.0001) β β−I I2

(9)
2
(6) −21.5533 (0.0034)

Table 4.  The GLMM results of Light-On VMR from 1 to 30s for AB larvae at different stages. *p-values of these 
tests were adjusted using the Benjamini–Hochberg procedure to control for type I error.
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can be used to build the GLMM. To address the second limitation of GLMM, further analysis should be focused 
on using smoothing spline ANOVA, a nonparametric model to characterize the nonlinear pattern across time.

To conclude, this study has implemented the GLMM to solve the data-imbalance and location-correlation issues 
in VMR data analysis. This approach also complements the Hotelling’s T-squared test. Together, they reveal distinc-
tive aspects of locomotor output of a group of larvae induced by light and by different experimental perturbations. 
This information would facilitate the analysis of activation circuitry that drives locomotor behaviour in zebrafish42. 
Such knowledge may aid translating the interesting findings from neurobiology1–15, pharmacology3, 5–7, 9–12, 16–18  
and toxicology19–27 to humans. We recommend the following general data-analysis workflow: (1) Compare the 
average larval activities of different groups with the Hotelling’s T-squared test; (2) Select significant variables as 
candidate predictors and apply the GLMM to model the relationship between binary responses and candidate 
predictors; and (3) Combine the results from (1 & 2) to interpret larval activities. These two statistical approaches 
therefore have established a statistical framework for VMR analysis that can be generalized to other locomotor 
behavioural data with similar data structure. This framework is expected to provide new insights into neurobe-
havioural studies.
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