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The Extreme Learning Machine (ELM) is a simple and efficient Single Hidden Layer
Feedforward Neural Network(SLFN) algorithm. In recent years, it has been gradually
used in the study of Alzheimer’s disease (AD). When using ELM to diagnose AD based
on high-dimensional features, there are often some features that have no positive
impact on the diagnosis, while others have a significant impact on the diagnosis.
In this paper, a novel Key Features Screening Method based on Extreme Learning
Machine (KFS-ELM) is proposed. It can screen for key features that are relevant to
the classification (diagnosis). It can also assign weights to key features based on their
importance. We designed an experiment to screen for key features of AD. A total
of 920 key functional connections screened from 4005 functional connections. Their
weights were also obtained. The results of the experiment showed that: (1) Using all
(4,005) features to diagnose AD, the accuracy is 95.33%. Using 920 key features to
diagnose AD, the accuracy is 99.20%. The 3,085 (4,005 - 920) features that were
screened out had a negative effect on the diagnosis of AD. This indicates the KFS-ELM
is effective in screening key features. (2) The higher the weight of the key features and
the smaller their number, the greater their impact on AD diagnosis. This indicates that
the KFS-ELM is rational in assigning weights to the key features for their importance.
Therefore, KFS-ELM can be used as a tool for studying features and also for improving
classification accuracy.

Keywords: fMRI, brain functional connectivity, extreme learning machine, AD, KFS-ELM

INTRODUCTION

Alzheimer’s disease (AD) is a neurodegenerative disease. Compared to cognitively normal
individuals, the AD patient’s brain undergoes morphological or functional changes. For example,
Kazemifar et al. (2014) found significant atrophy of the temporal cortex in AD patients. Supekar
et al. (2008) used resting-state fMRI to find reduced local efficiency of functional brain networks
in AD patients. Buckner et al. (2009) used resting-state fMRI data to find that the distribution
of core nodes in the functional brain network overlaps highly with the brain regions where Aß
amyloid is deposited in AD patients. It means that the brain connection hub area is vulnerable
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to receive attacks. Zhou et al. (2012) used resting-state functional
brain networks to predict the course of developmental changes
in AD pathology. These studies above not only provide
experimental evidence for the brain region disconnection
hypothesis of AD from the perspective of functional integration,
but also provide an explanation for the abnormalities in
functional integration of the AD brain.

The AD Neuroimaging Initiative (ADNI), led by Dr. Weiner,
was launched in 2004. This is a long-term research plan
jointly composed of several institutions. It integrates the
database of multi-center and cross-disciplinary longitudinal
studies carried out by various methods. Such as clinical cognitive
function evaluation, neuroimaging examination, and detection
of molecular biological markers of cerebrospinal fluid and blood
(Susanne et al., 2005). Its primary goal is to explore the patterns
of relationships between clinical, cognitive, imaging, genetic and
biomarker features as the disease progresses. It also has the
goal of establishing standardized methods for imaging/biomarker
collection and analysis, and ultimately for use in clinical research.

In 2004, Huang et al. (2004) proposed the Extreme Learning
Machine (ELM). ELM generates random input weights and
uses the Moore-Penrose pseudo-inverse (MPP) to calculate the
output weights. It is a feed-forward neural network based on
randomization(RFNN). The RFNN was introduced by Schmidt
et al. (1992) and Suganthan and Katuwal (2021). Methods using
random input weights and MPP also include random vector
function linked neural networks (RVFL) (Pao et al., 1994), and
a method proposed by Guo et al. (1995).

The ELM be widely used in many fields such as disease
diagnosis, traffic sign recognition, image quality assessment and
so on (Chyzhyk et al., 2015; Huang et al., 2016; Wang et al., 2016).
ELM strives to solve the research problems in machine learning
fields such as regression, classification, supervised learning and
unsupervised learning under a single framework (Huang et al.,
2014). From the perspective of learning efficiency, ELM is concise
to implement, with extremely high learning speeds and less
human intervention. From the perspective of theoretical studies,
ELM can still maintain SLFN’s interpolation ability (Huang
et al., 2016), general approximation ability (Huang and Chen,
2007) and classification ability (Huang et al., 2012) even in the
case of randomly generating hidden layer neuron parameters.
From the perspective of structural risk minimization, the VC
dimensionality (Vapnik-Chervonenkis dimensionality) of ELM
depends on the number of neurons in the hidden layer (Liu
et al., 2012). The size of the VC dimensionality can be controlled
by adjusting the number of neurons in the hidden layer of
ELM, to make a compromise between training error and model
complexity, and get the optimal generalization performance.
ELM has also been extended to a deep learning model (Tang et al.,
2015; Kim et al., 2017), and made a lot of research results.

In recent years, RFNN has also been gradually used for
AD studies based on medical images. Sharma et al. (2021)
proposed that the FAF-DRVFL method achieved 86.67% accuracy
in classifying AD with CN. Malik et al. (2022) proposed
the IFRVFL method for diagnosing AD. Its performance is
better than standard ELM and RVFL. Lama and Kwon (2021)
proposed the ElM+Graph embedding method achieved 90.93%

accuracy in classifying AD, MCI, CN. Nguyen et al. (2019)
proposed the MVPA+ELM method achieved 98.86% accuracy
in classifying AD, MCI, CN. The RFNN is often used as a
classifier in these studies. It is mainly used to process selected low-
dimensional features. Few studies have used RFNN as a feature
screening method.

The ELM classifier has redundant hidden layer nodes when
the number of hidden layer nodes is large enough. Rong et al.
(2008) proposed the method Pruned-Extreme Learning Machine
(P-ELM), as well as Miche et al. (2010, 2011) improved the P-ELM
method, which was used to pruning of the hidden layer nodes
with the aim of making the ELM classifier more compact, with
high speed and more robustness. But it cannot improve the
accuracy of the classifier. In ELM classifiers with high feature
dimensionality, some input nodes have no positive effect on
classification. Useless input nodes are removed using the idea
of P-ELM. It can screen features that have an impact on the
classification. It may even improve the accuracy of the classifier.

We analyzed the state of machine learning techniques in
diagnosing AD (Tanveer et al., 2020). We found no method to
prune the network to extract key features. Some of the work
involving AD feature extraction (Bi et al., 2018; Richhariya
et al., 2020; Hao et al., 2021; Sadiq et al., 2021) have achieved
good results in terms of classification accuracy, but none have
assigned weights to the importance of these features. In this
study, we propose a novel key features screening method based
on extreme learning machine (KFS-ELM) to screen key features
of AD. It is a data-driven approach that is not based on empirical
assumptions or prerequisites. It prunes the ELM classifier to
determine the relationship between each feature and AD, screens
the key features, and identifies their importance. This will make
the key features more intuitive, facilitate the study of the patterns
behind AD, and benefit the construction of better classifiers to
diagnose AD. The KFS-ELM can be used not only for studying
AD, but also for other research fields where the studied subjects
have a high dimension of features.

The rest of this article is organized as follows. The section
“Materials and Methods” describes the “Brain Functional
Connectivity Network,” “ELM,” and “KFS-ELM method.” The
section “Experiment” introduces the experimental procedure,
experimental environment, data preparation, screening of key
features by the KFS-ELM method, and validation of key features.
The section “Results” presents the streamlining ability of the
KFS-ELM method, the distribution of the screened key features,
and the effect of the key features on the classification of the
ELM classifier. The section “Discussion” discusses the limitations
of the ELM method and the advantages of the KFS-ELM
method, and analyzes the key features. The section “Conclusion”
summarizes the work of this study.

MATERIALS AND METHODS

Brain Functional Connectivity
Brain functional connectivity network is a mathematical
representation defined by a set of nodes and edges (Rubinov
and Sporns, 2010; Liu et al., 2016). These nodes represent brain

Frontiers in Aging Neuroscience | www.frontiersin.org 2 May 2022 | Volume 14 | Article 888575

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-14-888575 May 19, 2022 Time: 14:30 # 3

Lu et al. Features Screening for Alzheimer’s Disease

regions on different scales. The temporal correlations (functional
connectivity) between the fMRI time course of these nodes form
the edge of the brain’s functional network. The smaller the size
of a node, the greater the number of nodes and edges. The more
complex the described pattern of neural activity in the brain, the
more difficult it is to calculate and analyze. Researchers often
divide the brain into regions or nodes by using atlas. automated
anatomical labeling (AAL) (Tzourio-Mazoyer et al., 2002) is
one of the most commonly used atlas. Templates is one of the
most commonly used templates. AAL divides the brain into 116
regions, including 90 regions of the cerebrum and 26 regions of
the cerebellum. The feature measures adopted in this paper is
the whole cerebrum functional connectivity network. It includes
4005 functional connectivity features.

Extreme Learning Machine
Extreme learning machines belong to single hidden layer feed
forward neural networks (SLFNs) and have the characteristics
of single hidden layer neural networks. (1) Implement complex
nonlinear mapping directly from the input layer. (2) It can
provide appropriate classification model for large category data
sets. Compared with other single hidden layer neural network
models, the speed of model training and classification is faster.
Huang and Babri (1998) indicated that the input layer weights
and hidden layer bias values of other SLFNS networks need to be
iteratively adjusted to fit the current training data. When there
are a large number of hidden layer nodes, this calculation can
lead to significant computational time consumption (Huang and
Chen, 2008; Huang et al., 2011). At the same time, since gradient
descent has become an effective method to solve SLFNs, this
method not only limits the solving speed, but also can easily
fall into the local minimum from the calculation principle of
the calculation method. Aiming at the above problems, Huang
et al. (2006) proposed the algorithm of extreme learning machine.
It transformed the iterative solution method into the solution
method of linear equations by randomly specifying the weight
and bias values of the input layer, and finally obtained the
analytical solution of the network. It can be quickly solved on the
premise of ensuring the accuracy of calculation.

Extreme learning machine can be described as: given
N arbitrary samples {Xi, ti}, Xi = [xi1, xi2, . . . , xin]T ∈
Rn, ti = [ti1, ti2, . . . , tim]T ∈ Rm. For a single hidden layer
neural network with L hidden layer nodes, it can be expressed as

L∑
i = 1

βig
(
Wi · Xj + bi

)
= Oj, i = 1, · · · , L j = 1, . . . ,N

(1)
Where g (x) is the activation function.

Wi =
[
wi,1,wi,2, . . . ,wi,n

]
is input weight.

βi = [βi,1, · · · , βi,m]
T is output weight, bi is the bias of

the ith hidden layer node. Oj =
[
oj,1, · · · , oj,m

]T is output of
the sample Xj. The goal of single-hidden layer neural network
learning is to minimize the output error, can be represented as

N∑
i = 1

||Oi − Ti|| = 0, i = 1, . . . ,N (2)

There exist βi, Wi and bi, such that

L∑
i = 1

βig
(
Wi · Xj + bi

)
= Tj, j = 1, . . . ,N (3)

It can be expressed in matrix form

Hβ = T (4)

WhereH is the output of the hidden layer node, β is the output
weight, and T is the expected output.

H =
(
W1, . . . , WL, b1, . . . , bL,X1, . . . ,XL

)
=

 g
(
W1 · X1 + b1

)
· · · g

(
WL · X1 + bL

)
... · · ·

...

g
(
W1 · XN + b1

)
g
(
WL · XN + bL

)

N × L

(5)

β =

β
T
1
...

βTL


L × m

, T =

TT
1
...

TT
N


N × m

(6)

In the ELM algorithm, Wi and bi are randomly determined,
and the output matrix H of the hidden layer is uniquely
determined. The training of the single-hidden layer
neural network can be transformed into adding a linear
system, Equation (4). And the output weight β can be
determined by Equation 7.

β̂ = H†T (7)

Where H† is the Moore-Penrose inverse of H. and the
solution norm of β̂ is minimal and unique. We solve for β̂
to construct ELM.

In this paper, the ELM classifier is constructed by dividing the
data set into three sets: training set, validation set, and test set.
The training set is used to build enough classifiers. The validation
set is used to verify the accuracy of each classification, and find
the best ELM classifier. As the input weights of the ELM classifier
are randomly generated, its classification accuracy will also vary
randomly. To ensure that the classifier has high accuracy, a
sufficient number of ELM classifiers need to be trained, until
the average accuracy of all classifiers converges. The number of
classifiers constructed is Loop, and the average accuracy of ELM
classifiers is Accuracy. The value of the variable Loop should
satisfy the constraint of Equation 9, where the parameter p
is the allowed fluctuation of the average accuracy. The loop
calculation produces 2∗Loop accuracies, and the absolute value of
the difference between the average accuracies of any consecutive
Loop times should be less than or equal to parameter p. The
2∗Loop ELM classifiers are validated with the validation set, and
the classifier with the highest accuracy is the optimal classifier we
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are looking for. In this experiment p = 0.15%.

Accuracy =
∑Loop

i = 1 Accuracyi
Loop

(8)

∣∣∣∣∣
∑Loop+n−1

i = n Accuracyi
Loop

−

∑Loop
i = 1 Accuracyi

Loop

∣∣∣∣∣ ≤ p,

n ∈
(
2, 3, . . . , Loop+ 1

)
(9)

KFS-ELM Method
The main idea of the KFS-ELM algorithm lies in pruning the
ELM classifier. Removing input nodes and hidden layer nodes
(including the weights connected to them) which have no positive
impact with the classification, and keeping the accuracy of the
ELM classifier from decreasing on the training and validation
sets. The features corresponding to the input layer nodes of the
pruned classifier are considered as key features. They are strongly
related to the classification.

Definition 1: Wi is the diagonal matrix, i ∈ [1, . . . , n],n
is the dimensionality of the subject’s features. Wi satisfies
the constraints of rank

(
Wi)

= i, rank(∗) denotes the
rank of the matrix.

Definition 2: β j is the diagonal matrix, j ∈ [1, · · · , L], L is the
number of hidden layer nodes of the ELM classifier. β j satisfies
the constraints of rank

(
β j)
= j.

In the ELM classifier the output weight β̂ , the input weight
W, and the bias b are known quantities. The output weights
after pruned can be expressed as β j · β̂ . The input weights can
be expressed as W ·Wi. The key feature matrix of the subject can
be expressed as Wi

· X. One Wi corresponds to a group of key
features. The pruned ELM classifier can be described by Equation
(10) as

f
(
Wi, β j

)
= g

(
W ·Wi

· X + b
)
· β j · β̂ = O (10)

g(∗) is the activation function. X is the input matrix consisting
of the features of the input data set (training set, validation
set and test set). X = [X1, · · · ,XN], where Xi denotes the
feature vector of the ith subject, and there are N subjects.
O is the output matrix. O = [O1, · · · ,ON], Oi is the label
vector output by the ELM classifier, corresponding to a subject.
Oi = [oi,1, · · · , oi,m]T , there is only one oi,j = 1, oi,j ∈ Oi,
the others oi,j = 0. T = [T1, · · · ,TN] is the set of labels
corresponding to the data set, where Ti denotes the label vector
corresponding to the ith subject. Ti = [ti,1, · · · , ti,m]T , there is
only one ti,j = 1, ti,j ∈ Ti, the others ti,j = 0. The accuracy of
the ELM classifier can be expressed as Equation 11. ‖ ∗ ‖ denotes
the Modulus of the vector.

h (O) = 1−
1
N

N∑
i = 1

‖ Ti − Oi ‖
√

2
(11)

In Equation 10, Wi and β j are the variables to be solved,
and the other parameters are known quantities. Wi

should satisfy inequality (Equation 12). β j should satisfy
inequality (Equation 13).{

h
(
f
(
β j,Wi)) > h

(
f
(
β j,Wi−1))

h
(
f
(
β j,Wi)) > h

(
f
(
β j,Wi+1)) (12)

{
h
(
f
(
β j,Wi)) > h

(
f
(
β j−1,Wi))

h
(
f
(
β j,Wi)) > h

(
f
(
β j+1,Wi)) (13)

Pruning an ELM classifier obtains a Wi, which corresponds to
a set of key features. Pruning enough ELM classifiers will obtain
enough Wi. The merge set of W∗ =

∑
Wi correspond to the

complete key features. It should be noted that the datasets used
for validation W∗ are the training and validation sets and do not
include the test set.

KFS-ELM Algorithm Steps
1. Construct an ELM classifier using all the features from the

training and validation sets.
2. Prune the input layer nodes and their corresponding

output weights in the ELM classifier, which means that
keeping β j constant to solve Wi iteratively. The initial
values of Wi and β j are nth-order unit matrix and Lth-
order unit matrix, respectively, where n is the feature
dimensionality of the subject and m is the number of ELM
hidden layer nodes. When the inequality (12) is satisfied,
take Wi and β j into step 3.

3. Prune the input layer nodes and their corresponding
output weights in the ELM classifier, which means that
keeping Wi constant to solve β j iteratively. When β j

satisfies inequality (13), take Wi and β j into step 2. When
Wi and β j satisfy both inequalities (10) and inequality (11),
take Wi into step 4.

4. Loop through steps 1-3, find W∗ =
∑

Wi. And
Construct ELM classifier based on the key features
corresponding to W∗. When the accuracy of the ELM
classifier is no longer increasing, the calculation ends. The
features corresponding to the final W∗ are the key features
screened by the KFS-ELM method.

EXPERIMENT

Flow of the Experiment
This experiment consists of three parts: data preparation, screen
features by using KFS-ELM, test ELM classifier, and validate key
features (as shown in Figure 1).

1. Data preparation: fMRI data for AD and CN are acquired
from the ADNI database and pre-processed using DPARSF,
SPM to obtain the functional brain connectivity matrix
for all subjects.

2. Screen key features using KFS-ELM: Screening for key
features which are relevant to the diagnosis of AD.

3. Test ELM classifier: Test the ELM classifier before and after
pruning, and observe the change in classifier performance.
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FIGURE 1 | Flow of the experiment.
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4. Validate key features: compare the ability to diagnose
AD using the key feature set versus the full feature set.
Compare the impact of key features with different weights
on diagnosing AD.

Environment of the Experiment
All experiments run on a PC with intel core i7-8700 @
3.20GHz, NVIDIA GeForce RTX 2080 8GB, 16GB DDR4
3600MHz, 1TB SSD.

Data of the Experiment
The fMRI data used in this paper are all from LONI’s ADNI
database ADNI2 project. It included 100 Cognitively Normal
(CN) subjects, 49 females and 51 males, with a mean age
and standard deviation of 74.09 ± 5.45. And it included 100
Alzheimer’s disease (AD) subjects, 44 women and 56 men, with
a mean age and standard deviation of 75.07 ± 7.59. All subjects
used the same acquisition parameters. Field Strength = 3.0
tesla; Flip Angle = 80.0 degree; Manufacturer = Philips
Medical Systems; Matrix X = 64.0 pixels; Matrix Y = 64.0
pixels; Mfg Model = Intera; Pixel Spacing X = 3.3125 mm;
Pixel Spacing Y = 3.3125 mm; Pulse Sequence = GR;
Slices = 6720.0; Slice Thickness = 3.312999963760376 mm;
TE = 30.000999450683594 ms; TR = 3000.0 ms; The subject data
can be downloaded at http://adni.loni.usc.edu.

Pre-processing of Data
The data pre-processing tools chosen for this experiment are
“Data Processing Assistant for Resting-State fMRI Advanced
Edition” (DPARSF 4.4 Advanced Edition1)(Yan and Zang, 2010)
and “ Statistical Parametric Mapping” (SPM122). Remove the
first 10 time points for each subject in order to remove the
phase where the subject is familiar with the MRI scanner
environment at the beginning of the data scan, and where
brain activity is not smooth during the noise. Slice Timing and
Head Motion correction is performed for each subject, and
EPI template is used for standardization. Band-pass filtering
is used to obtain signals between 0.01 and 0.1Hz. After
processing, the bounding box of all subjects is [-90-126-72;
90 90 108], and the Voxel size is [3 3 3]. And then detrend
the signal. The functional connectivity network of the brain is
extracted based on the ALL template. Finally, we obtained 100
functional connectivity matrices for each of the two categories of
subjects, AD and CN.

Grouping of Data Sets
The 200 functional connection matrices are divided into three
groups: training set, validation set, and test set. The ratio of AD
subjects to CN subjects within each group is 1:1.

In the KFS-ELM and test ELM classifier sections, the ratio of
subjects in the training set, validation set and test set is 90:90:20.
The test set is generated randomly. It does not change during
the KFS-ELM calculation. The training and validation sets were
randomly divided for the construction of each ELM classifier.

1http://rfmri.org/DPARSF
2https://www.fil.ion.ucl.ac.uk/spm/software/spm12/

The training set is used to construct the ELM classifier. The
validation set is used to evaluate and find the best ELM classifiers.
In the pruning process, both the training and validation sets
are used to evaluate the change in the accuracy of the ELM
classifiers. Test set for evaluating changes in ELM classifier before
and after pruning.

In the validation of key features section, the ratio of subjects in
the training set, validation set and test set is 160:20:20.

Construction of ELM Classifier
The training and validation sets are re-divided before each
training of the classifier. The number of subjects and the
proportion of categories in each set are kept constant. The
number of input layer nodes is 4005, corresponding to all
functional connections of the cerebrum. In our previous study,
we found that the number of hidden layer nodes is positively
correlated with the accuracy of the classifier in scenarios
with small sample size and high feature dimensionality. The
number of hidden nodes is set to 64,000 as the hardware
performance allows. Due to the fact that this experiment involves
two categories of data, the number of output nodes is set
to 2. The convergence precision threshold p = 0.0015. The
only things that need to be set manually are the number of
hidden layer nodes and the convergence precision threshold.
After the ELM classifier has been constructed, it will be tested
using the test set.

Pruning of the Input Layer
The pruning of the input layer is actually solving Equation 10
for Wi, While ensuring that it satisfies the constraints of the
set of inequality (12). As there are two variables Wi and β j in
Equation (10), the value of β j is fixed first when solving for Wi.
Due to the fact that the activation functions of the hidden layer
nodes are nonlinear and the input layer is fully connected to
the hidden layer, pruning the input layer nodes will result in a
nonlinear variation in the output of the ELM classifier. Different
pruning order or different number of nodes per pruning may
screen different input layer nodes. Thus there are various ways
of solving Wi. In this experiment, Wi is solved by zeroing the
elements on the diagonal of Wi one by one according to their
order. that is, a new Wi is generated when the accuracy of the
ELM classifier is unchanged or improved (using the training and
validation sets) after zeroing an element in Wi. Also because
of the nonlinearity of ELM, if one or more nodes are pruned
in the input layer pruning process, the pruning process needs
to be executed again until no input node can be pruned. For
the same reason, if β j changes, it is also necessary to prune the
input layer again.

Pruning of the Hidden Layer
In the process of pruning the hidden layer nodes, the hidden
layer nodes that have no effect on the accuracy of ELM classifier
or improve the accuracy are pruned in turn. And then find
β j. Because the ELM output is a linear summation of the
hidden node outputs, no iterative computation is required.
If any hidden layer node is pruned, the new β j and Wi

should be substituted into the process of “ELM classifier
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input layer pruning” to update Wi again. If no hidden layer
nodes are pruned, the pruning process of a single ELM
classifier is completed.

Obtain Key Features
A single Wi corresponds to only part of the key features.
ELM classifiers constructed by them are also less accurate.
As more key features corresponding to W∗ are available,
the higher the accuracy of the ELM classifier constructed
using it will be. When the accuracy of the ELM classifier

is no longer improved, the corresponding key features
become complete.

Validate Key Features
First, set the weights of non-key features equal to 0. A series of
feature groups is formed by gradually excluding the features with
the lowest weights from all features. We write the feature group
as Fi, i = [0, · · · , s], s is the highest weights of key features. Fi
is the feature group, containing all features whose weight i. s+ 1
feature groups will be formed.

TABLE 1 | Accuracy of ELM trained with full amount of features,

Classifier no. Training accuracy (%) Verification accuracy (%) Test accuracy (%)

1 100.00 97.78 95.00

2 100.00 97.78 85.00

3 100.00 98.89 90.00

4 100.00 97.78 95.00

5 100.00 97.78 95.00

6 100.00 97.78 95.00

7 100.00 97.78 100.00

8 100.00 97.78 75.00

9 100.00 97.78 75.00

10 100.00 97.78 95.00

11 100.00 97.78 100.00

12 100.00 97.78 100.00

13 100.00 97.78 95.00

14 100.00 97.78 95.00

15 100.00 97.78 90.00

16 100.00 97.78 100.00

17 100.00 97.78 90.00%

Mean 100.00 97.84 92.35%

TABLE 2 | Number of nodes and accuracy of ELM classifier after pruning.

Classifier no. Training accuracy (%) Validation accuracy (%) Test accuracy (%) Number of input
nodes screened

Number of hidden
layer nodes
screened

1 100.00 100.00 100.00 71 707

2 100.00 100.00 85.00 87 963

3 100.00 100.00 80.00 160 1,094

4 100.00 100.00 85.00 82 680

5 100.00 100.00 90.00 106 1,245

6 100.00 100.00 95.00 150 1,563

7 100.00 100.00 85.00 89 716

8 100.00 100.00 65.00 154 1,577

9 100.00 100.00 85.00 86 890

10 100.00 100.00 85.00 117 738

11 100.00 100.00 95.00 175 1,939

12 100.00 100.00 85.00 108 1,402

13 100.00 100.00 95.00 63 557

14 100.00 98.89 70.00 85 641

15 100.00 98.89 80.00 87 825

16 100.00 98.89 85.00 96 934

17 100.00 100.00 75.00 90 1,252

Mean 100.00 99.80 84.71 106.24 1,042.53
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Then, redivide the training set, validation set and test
set randomly. The ratio of training set, validation set and
test set is 160:20:20, and the ratio of AD to CN in each
set is 1:1. The data input to the ELM classifier is the

features which are selected from each data set base on the
feature group Fi.

Finally, the ELM classifier constructed from each group
of features is used to validate the feature group classification

FIGURE 2 | (A) Key features filtered in the first ELM classifier, (B) key features filtered in the second ELM classifier, (C) key features filtered in the third ELM classifier,
(D) the concatenated set of all key features.

TABLE 3 | Accuracy of constructing ELM classifier with full amount of features or key features with different weights.

Criteria for feature
selection

Amount of
features

Selected features/Full
amount of features (%)

Training accuracy
(%)

Validation
accuracy (%)

Test accuracy ±

Standard deviation

Weight ≥ 0 4005 100.00 100.00 100.00 95.33% ± 0.0035

Weight ≥ 1 920 22.97 100.00 100.00 99.20% ± 0.0021

Weight ≥ 2 397 9.91 100.00 100.00 96.92% ± 0.0057

Weight ≥ 3 199 4.97 100.00 100.00 95.24% ± 0.0048

Weight ≥ 4 109 2.72 100.00 100.00 93.33% ± 0.0074

Weight ≥ 5 62 1.55 100.00 100.00 91.68% ± 0.0090

Weight ≥ 6 45 1.12 100.00 100.00 87.84% ± 0.0106

Weight ≥ 7 28 0.70 100.00 99.75 82.19% ± 0.0126

Weight ≥ 8 22 0.55 100.00 97.55 75.27% ± 0.0195

Weight ≥ 9 11 0.27 100.00 92.70 69.03% ± 0.0170

Weight ≥ 10 8 0.20 100.00 87.75 60.14% ± 0.0359

Weight ≥ 11 4 0.10 100.00 81.65 51.69% ± 0.0251

Weight ≥ 12 1 0.02 58.05 84.85 55.34% ± 0.0140
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(diagnostic) ability. 10 times 10 fold cross-validation is performed
for each feature group.

RESULTS

According to the KFS-ELM method, the accuracy of ELM
classification constructed using the key feature set corresponding
to W∗ is no longer improved when screening to the 17th group
Wi. The accuracy of the 17 ELM classifiers is shown in Table 1.
The average training accuracy is 100%, the average verification
accuracy is 97.84%, and the average test accuracy is 92.35%.

The accuracy of the 17 ELM classifiers after pruning is shown
in Table 2. After pruning, the average training accuracy of all
ELM classifiers remained 100%. the average validation accuracy
increased from 97.84% to 99.8%. And the average test accuracy
decreased from 92.35 to 84.71%. The number of input nodes and
the number of hidden nodes are drastically reduced. The average
number of input nodes decreases from 4005 to 106.24, which is

2.65% of the original number of input nodes. The average number
of remaining hidden nodes decreased from 64,000 to 1042.53,
which is 1.63% of the original number of hidden nodes.

The key features corresponding to the pruned ELM classifier
are shown in Figure 2 by the functional connectivity matrix.
Figures 2A–C are the image representations of the key features
(functional connectivity matrix) of the 1st, 2nd, and 3rd ELM
classifier, respectively. Figure 2D is the image representation
of W∗. The horizontal and vertical coordinates of the image
correspond to the serial numbers of the 90 brain regions of
the AAL template. The colors of the points correspond to the
weights of the key features. The total number of key features
corresponding to W∗ is 920. where the highest weight is 12. That
is, the intersection of 17 Wi is empty.

Table 3 shows the performance of testing the classification
(diagnosis) ability of key features with different weights versus
full features for AD. Perform ten times 10 fold cross-validation
and calculate the average of their accuracy rates. The ELM
classifier trained using the full amount of features had a test

TABLE 4 | The key features with weight value greater than or equal to 6.

Functional connectivity Weight Functional connectivity Weight Functional connectivity Weight

FFG.R-STG.R (56–82) 12 MOG.R-PCUN.R (52–68) 8 ORBsup.L-MTG.L (5–85) 6

MOG.L-PCUN.R (51–68) 11 MOG.R-PCL.R (52–70) 8 ORBmid.L-IFGtriang.L (9–13) 6

TPOsup.R-ITG.R (84–90) 11 IOG.L-IOG.R (53–54) 8 IFGoperc.L-SFGmed.L (11–23) 6

MTG.L-TPOmid.L (85–87) 11 FFG.R-PCL.L (56–69) 8 IFGoperc.R-HIP.R (12–38) 6

ORBsup.L-TPOmid.L (5–87) 10 PCL.L-ITG.R (56–90) 8 SOG.R-PCL.L (50–69) 6

ORBmid.L-IFGoperc.L (9–11) 10 STG.R-ITG.R (82–90) 8 SOG.R-PCL.R (50–70) 6

FFG.R-PUT.L (56–73) 10 TPOmid.L-ITG.L (87–89) 8 IOG.L-FFG.R (53–56) 6

FFG.R-TPOsup.R (56–84) 10 PreCG.L-THA.L (1–77) 7 FFG.R-PCUN.R (56–68) 6

PreCG.R-HES.R (2–80) 9 SFGdor.R-TPOsup.R (4–84) 7 FFG.R-TPOsup.L (56–83) 6

MFG.L-IFGoperc.L (7–11) 9 MFG.R-IFGtriang.R (8–14) 7 PoCG.R-IPL.L 58–61) 6

MOG.L-PCL.L (51–69) 9 CUN.R-PCUN.R (46–68) 7 PCUN.R-MTG.L (68–85) 6

MFG.R-IFGoperc.R (8–12) 8 MOG.L-SPG.L (51–59) 7 PCL.R-PUT.L (70–73) 6

SOG.R-IOG.R (50–54) 8 CAU.R-STG.R (72–82) 7 PCL.R-PUT.R (70–74) 6

MOG.L-PCUN.L (51–67) 8 SFGdor.R-THA.R (4–78) 6 MTG.L-ITG.R (85–90) 6

MOG.L-PCL.R (51–70) 8 ORBsup.L-PCL.R (5–70) 6 MTG.R-TPOmid.L (86–87) 6

TABLE 5 | The brain regions corresponding to the key features with weight greater than or equal to 6.

Brain region (serial No.) Weight Brain region (serial No.) Weight Brain region (serial No.) Weight

FFG.R (56) 66 MOG.R (52) 16 CUN.R (46) 7

MOG.L (51) 43 IOG.R (54) 16 SPG.L (59) 7

PCL.R (70) 40 PUT.L (73) 16 CAU.R (72) 7

PCUN.R (68) 38 MFG.R (8) 15 THA.L (77) 7

TPOmid.L (87) 35 IFGoperc.R (12) 14 IFGtriang.L (13) 6

ITG.R (90) 33 IOG.L (53) 14 SFGmed.L (23) 6

MTG.L (85) 29 SFGdor.R (4) 13 HIP.R (38) 6

TPOsup.R (84) 28 PreCG.R (2) 9 PoCG.R (58) 6

STG.R (82) 27 MFG.L (7) 9 IPL.L (61) 6

IFGoperc.L (11) 25 HES.R (80) 9 PUT.R (74) 6

PCL.L (69) 23 PCUN.L (67) 8 THA.R (78) 6

ORBsup.L (5) 22 ITG.L (89) 8 TPOsup.L (83) 6

SOG.R (50) 20 PreCG.L (1) 7 MTG.R (86) 6

ORBmid.L (9) 16 IFGtriang.R (14) 7
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accuracy of 95.33% with a standard deviation of 0.0035. The ELM
classifier trained with all key features (920 features, 22.97% of the
total number of features) had the highest test accuracy of 99.20%
with a standard deviation of 0.0021. When the number of key
features is 199 (4.97% of the total number of features), its test
accuracy is 95.24%, which is only 0.09% lower than the accuracy
of the full number of features. That is, the number of selected
features was reduced from 4005 to 199, and the accuracy of the
constructed ELM classifier test did not decrease significantly.
When the number of selected features is 45 (1.12% of all features),
its verification accuracy can still reach 100%, and the test accuracy
is 87.84%. When the selected features are further reduced, the
accuracy of the ELM classifier is also further reduced. When the
number of selected features is 4 or 1, the ELM test accuracy is
close to 50%. It is no longer practical to do classification using
only these features.

Considering the visualization effect, this paper takes 45 key
features with weights greater than or equal to 6 as an example
to show their distribution. Table 4 shows the features (functional
connectivity) and their corresponding weights. Table 5 shows the
brain regions corresponding to the features and their weights. Its
weight is the sum of the weights of all functional connections
involving that brain region. Figure 3 is a demonstration of these
key features. The visualization tool used is BrainNet Viewer
(Xia et al., 2013).

DISCUSSION

Comparing the ELM classifier before and after pruning
(according to Tables 2, 3), a significant decrease in the number
of input nodes was observed. The average number of input nodes
decreased from 4005 to 106.24. Its corresponding number of
key features accounts for 2.65% of the total number of features.
According to the constraints of Inequality (12) and Inequality
(13), removing any of the key nodes will lead to a decrease in
the accuracy of the classifier. It shows that all these features
are important. The KFS-ELM feature screening experiments
yielded 17 groups of key features whose intersection is empty.
This indicates that the key features that contribute differently
in different classifiers. Therefore, the union of these key feature
groups can describe AD more comprehensively.

The performance of the full amount of features and key
features in building ELM classifiers was tested in the experiments.
The ELM classifier trained using the full amount of features
(4,005 features) has a test accuracy of 95.33%. The ELM
classifier trained using all key features (920 features) has a test
accuracy is 99.20%. It indicates that, training the ELM classifier
with fewer features results in higher test accuracy, the 3,085
(4,005 − 920 = 3,085) features that were excluded had a negative
effect in classification. Therefore, the KFS-ELM is effective in
screening key features.

In this experiment, the weights assigned to the features by
KFS-ELM are from 0 to 12, and the bigger the weights, the more
important they are. In the testing section, we divided the features
into 13 groups according to their weights and gradually excluded
the group with the lowest feature weights to test the diagnostic

ability of the remaining features for AD. For example, in Table 3,
the row where “Weight ≥ 1” indicates the diagnostic ability of
all key features (excluding features with weights equal to 0) for
AD. Comparing the results of “Weight ≥ 0” and “Weight ≥ 1,”
the features with weight equal to 0 play a negative role in AD
diagnosis. The row where “Weight ≥ 2” indicates that the key
features “Weight = 0” and “Weight = 1” are excluded. Comparing
the results of “Weight ≥ 2” and “Weight ≥ 1,” we can judge
the effect of the “Weight = 1” feature group on the diagnosis of
AD. Adding the feature group of “Weight = 1” to the feature
group of “Weight ≥ 2” increased the number of features by
523 (920 - 397), and the training and validation accuracy did
not change, while the test accuracy increased by 2.28% (99.20 -
96.92%). That is, the 523 features(“Weight = 1”) contributed
2.28% to the test accuracy of AD. In this way, the effect of the
features with weight = 10 on the diagnosis of AD can be shown
by comparing the experimental results of “Weight ≥ 10” and
“Weight ≥ 11.” The feature group with Weight = 10 contributed
6.10% (87.75 - 81.65%) to the validation accuracy and 8.45%
(60.14 - 51.69%) to the test accuracy in AD diagnosis. According
to this rule, the effect of feature groups with different weights on
AD diagnosis was calculated based on the results in Table 3, as
detailed in Table 6. In addition, according to Table 3, the accuracy
of the training set was 58.05% when "Weight≥ 12", which means
that the group of features with Weight = 12 is not enough to
distinguish AD from normal people, so this result is not adopted
as the basis for Table 6. Therefore, in Table 6, the impact of
AD diagnosis can only be assessed for the feature groups with
weights from 0 to 10.

Each row in Table 6 indicates the effect of a key feature
group on the accuracy of AD diagnosis for a given weight.
The first column indicates the weights of the feature group.
The second column indicates the number of features in the
group. The third column indicates the contribution of the feature
group to the validation accuracy. The fourth column indicates
the average contribution of each feature in the group to the
validation accuracy. The fifth column indicates the contribution
of the feature group to the test accuracy. The sixth column
indicates the average contribution of each feature in the group
to the test accuracy.

According to Table 6, in terms of the contribution of single
feature to the validation accuracy (column 4), basically the higher
the weight of the feature, the more it contributes to the AD
diagnosis (except weight = 9). In terms of the contribution of
single feature to the test accuracy (column 6), basically the higher
the weight of the feature, the more it contributes to the AD
diagnosis (except weight = 8 and weight = 9). Basically, it can
be considered that the higher weight the feature has, the greater
contribution it makes to the AD diagnosis.

According to the pattern in column 2 of Table 6, the lower
the weight of the feature group, the higher amount of features
it contains. However, the group with a weight of 9 has fewer
features than expected and the group with a weight of 8 has
more features than expected. This also caused the contribution of
features to diagnose AD deviated when the weight equals 8 and
9. We consider that this is due to the ELM classifier’s randomness
in the utilization of features (refer to Figure 2). There are some
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deviations in the results of feature screening from the probability
distribution of the features. Features with weights of 8, 9, 10,
11, and 12 account for 0.27, 0.07, 0.10, 0.07, and 0.02% of all
features, respectively, and there are only 22 of these features in
total, accounting for 0.55% of the total number of features. If
there is a deviation of 0.1% in the feature screening, the results
may deviate from the expected pattern, as it happens in Table 6
when the weights are equal to 8 and 9. When the number of
features in the feature set is greater than or equal to 17 (0.42%
of the total features), no such deviation occurs.

We have taken four references with similar work for
comparison, as shown in Table 7. They all use functional
connectivity as a feature measure, and they all screen for
features as well. All the five studies used different feature
screening methods. Bi et al. (2018) obtains feature sets by
clustering, without assigning weights. It selects a class with the
best classification performance from a large number of classes.
Nguyen et al. (2019) set thresholds on the original values of
the features. These values do not have a clear relationship with
classification. Sadiq et al. (2021) and Hao et al. (2021) have

FIGURE 3 | Full-view diagram of key features with weights greater than or equal to 6.

TABLE 6 | Effect of features with different weights on AD diagnosis.

Weight of feature
group

Features
amount

Contribution of feature
group to validation

accuracy (%)

Contribution of each
feature to validation

accuracy (%)

Contribution of
feature group to

test accuracy (%)

Contribution of
each feature to

test accuracy (%)

Weight = 10 4 6.10 1.5250 8.45 2.1125

Weight = 9 3 4.95 1.6500 8.89 2.9633

Weight = 8 11 4.85 0.4409 6.24 0.5673

Weight = 7 6 2.20 0.3667 6.92 1.1533

Weight = 6 17 0.25 0.0147 5.65 0.3324

Weight = 5 17 0.00 0.0000 3.84 0.2259

Weight = 4 47 0.00 0.0000 1.65 0.0351

Weight = 3 90 0.00 0.0000 1.91 0.0212

Weight = 2 198 0.00 0.0000 1.68 0.0085

Weight = 1 523 0.00 0.0000 2.28 0.0044

Weight = 0 3085 0.00 0.0000 -3.87 -0.0013
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TABLE 7 | Comparison the performances with references.

References DataSet AD:CN Feature
measures

Feature
screening
methods

Criteria for
feature selection

Feature weights
represent

importance on
classification

Classifier Selected features Selected
features/All
features(%)

Acc (%)

Bi et al., 2018 25:36 Funtional
Connectivity (FC)

random neural
network cluster

Selection of the
best feature set
from 11,000 times
clustering

NO Elam Neural
Network

120 30.00 92.31

Nguyen et al., 2019 34:31 voxel-wise regional
spontaneous, FC

t-test, SVM-RFE,
LASSO

Thresholds for
selecting features

NO ELM – – 98.86

Sadiq et al., 2021 35:31 FC ReliefF Top n Features NO K-Nearest
Neighbor

100 1.50 87.10

200 3.00 93.50

300 4.50 88.70

400 6.00 91.90

500 7.50 91.70

Hao et al., 2021 252:215 (none
ADNI)

first-order
neighborhood
aggregation of FC

Weight-constrained
lowrank Learning

Top n Features NO Multi-Kernel SVM – 25.00 88.63

Proposed method 100:100 FC KFS-ELM Automatic
generation

YES ELM 45 1.12 87.84

62 1.55 91.68

109 2.72 93.33

199 4.97 95.24

397 9.91 96.92

920 22.97 99.20
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in common that the features are given new weights by the feature
screening method. They are both selected the top N features
according to the weight. Hao et al. (2021) did not test the effects
of different numbers of features on classification. It cannot be
shown that there is a clear relationship between the weights of
the features and the classification. Sadiq et al. (2021) used the
ReliefF method to screen for features. This is a method that is
widely used for feature screening. They tried 100, 200, 300, 400,
500 features for classification, respectively. The accuracy did not
show a positive correlation with the number of features. Our
experimental results show a clear positive correlation between the
accuracy and the number of features.

In summary, the KFS-ELM method can rationally identify the
weights of key features. The higher the weights of the features, the
greater the impact in AD diagnosis.

Extreme learning machine is linearly transformed between the
hidden and output layers. The KFS-ELM method has achieved
good performance based on ELM. Some other representative
RFNN methods may achieve high classification accuracies in
scenarios with high-dimensional features, such as RVFL, where
it is non-linearly transformed between the hidden and output
layers. In the future, we will attempt to use the idea of key
feature screening for research on the RVFL. We will also apply
the proposed method to explore patterns in AD-like diseases or
other brain sciences.

CONCLUSION

The experimental results and discussion analysis showed that,
the KFS-ELM method can effectively screen key features related
to the diagnosis of AD, and can assign rational weights to the
features to identify their importance for the diagnosis of AD.
The KFS-ELM can be used to construct better classifiers for the
diagnosis of AD, and can also be used as a feature analysis tool
to study the patterns inherent in the brains of AD patients. We
consider that the KFS-ELM is also applicable to the classification
and the study of feature patterns of the other objects with high
feature dimensions, even with small sample sizes.
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