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Abstract

A major goal in neuroscience is to understand how populations of neurons code for stimuli

or actions. While the number of neurons that can be recorded simultaneously is increasing

at a fast pace, in most cases these recordings cannot access a complete population: some

neurons that carry relevant information remain unrecorded. In particular, it is hard to simulta-

neously record all the neurons of the same type in a given area. Recent progress have

made possible to profile each recorded neuron in a given area thanks to genetic and physio-

logical tools, and to pool together recordings from neurons of the same type across different

experimental sessions. However, it is unclear how to infer the activity of a full population of

neurons of the same type from these sequential recordings. Neural networks exhibit collec-

tive behaviour, e.g. noise correlations and synchronous activity, that are not directly cap-

tured by a conditionally-independent model that would just put together the spike trains from

sequential recordings. Here we show that we can infer the activity of a full population of ret-

ina ganglion cells from sequential recordings, using a novel method based on copula distri-

butions and maximum entropy modeling. From just the spiking response of each ganglion

cell to a repeated stimulus, and a few pairwise recordings, we could predict the noise corre-

lations using copulas, and then the full activity of a large population of ganglion cells of the

same type using maximum entropy modeling. Remarkably, we could generalize to predict

the population responses to different stimuli with similar light conditions and even to different

experiments. We could therefore use our method to construct a very large population merg-

ing cells’ responses from different experiments. We predicted that synchronous activity in

ganglion cell populations saturates only for patches larger than 1.5mm in radius, beyond

what is today experimentally accessible.

Author summary

A major goal of neuroscience is to understand how entire populations of neurons process

sensory stimuli. This understanding is limited because current experimental techniques

do not allow to record all relevant neurons of a sensory structure. A possible strategy to
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overcome this issue, is to use sequential recordings from cells recorded in multiple experi-

ments to reconstruct how the entire population will respond. Yet this approach can not

account for collective behaviour and synchronous activity within the population. Here we

address this issue in the retina and propose a method to infer the activity of an entire pop-

ulation of neurons of the same type from sequential recordings. Our method assumes that

we have access to many single cell recordings gathered from different experiments, and

additionally to a few synchronous recordings of pairs of neurons of the same type. By

combining copula distributions and maximum entropy modeling, we used these data to

reconstruct the collective activity of a large population of neurons and to show how syn-

chrony grows with the number of neurons.

Introduction

A major goal of neuroscience is to understand how populations of neurons process sensory sti-

muli. This understanding is limited because, among other reasons, accessing the activity of all

neurons of a sensory structure is very challenging. Most techniques only give access to a small

fraction of neurons [1, 2] (but see [3, 4]), leaving as hidden variables many neurons that may

play a role in information processing but are not recorded.

To overcome this issue, an emerging, ‘divide and conquer’ approach is to first classify the

neurons in a given area into different cell types, where neurons of the same type are supposed

to be functionally identical. Then, in a second step, one can characterize the neuronal function

of each cell type, to eventually predict how populations composed of all the neurons of the

same type will respond to sensory stimuli.

There has been tremendous progress recently in achieving the first step of this approach.

Several studies have shown that it is possible to cluster cells in different homogeneous types

[5]. This can be done using either the responses of each cell to several standard stimuli [6–8],

or using genetic tools [9, 10]. These methods have proven successful in isolating most cell

types in the retina [7, 11, 12] and there are several ongoing studies trying to apply these

approaches in the cortex [13].

For the second step, many studies have tried to model and predict how neurons of a single

type respond to complex stimuli. This strategy has been applied in the retina [14–18] and in

many low-level areas [19–21]. A complementary strategy is to use mouse lines expressing GFP

in specific cell types in order to record sequentially (i.e. repeatedly across different experi-

ments) from cells that are functionally identical. This has been performed in the retina [6, 22]

and enables one to present as many stimuli as desired to cells belonging to the same type. It is

thus possible to gather a lot of information about how single neurons of a well-defined cell

type will respond to many different sensory stimuli, using sequential recordings of neurons of

the same type taken from different experiments.

Extensive characterization of single cell responses to sensory stimuli is thus possible. The

next challenge is to infer how the entire ensemble of neurons of a single type responds together

to stimuli. Ideally, one would like to record from all the neurons of a given type, but this is

rarely possible.

One possible strategy is to use these sequential recordings from cells of the same type to

reconstruct how the entire population will respond. However, reconstructing the activity of a

full population from sequential recordings cannot be done by simply pooling the responses to

a given stimulus from many sequential recordings. In many cases, pairs of neurons are corre-

lated due to shared noise (noise correlation), which might significantly reshape the neurons’
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activity [23], and play an important role in information encoding and transmission [15, 24–

29]. Because these noise correlations cannot be predicted from sequential recordings, a model

is needed to predict them and therefore to infer the activity of a full population of neurons of

the same type.

Here we address this issue and propose a method to infer the activity of an entire popula-

tion of neurons of the same type from sequential recordings in the retina. Our method assumes

that we have access to many single cell recordings gathered from different experiments of neu-

rons of the same type, where the same stimulus has been displayed, and additionally to a few

recordings of pairs of neurons of the same type. We used these data to reconstruct the activity

of a large population of neurons, with a shared noise consistent with the paired recordings.

Previous works have built models capable of predicting the activity of ensembles of neurons

in the retina [15, 30–35]. However, they were fitted and tested on an ensemble of neurons

recorded simultaneously, and it is unclear if they can generalize to predict correlated activity

across experiments, a critical feature necessary to reconstruct activity from sequential record-

ings. Other approaches [36–40] have focused on predicting missing correlations in a dataset of

multiple neuronal ensembles. However, most of these works rely on some overlap between

two simultaneously recorded populations to predict correlations for neurons that are not

recorded together, while our method is capable of predicting correlations across experiments.

We applied this method in the rat retina, where the activity of many neurons of the same

type can be recorded through repetitions of multi-electrode array experiments [3], so that the

method can be validated. We first show that a copula-based analysis [41–45] of synchronous

activity allows a simple description of noise correlations, that is invariant across stimulus iden-

tities and experimental preparations. This description depends only on the individual activities

of pairs of cells and on their physical distance. This result allowed us to construct a model

based on copulas and to predict -across experiments- the extent of pairwise noise correlations

from sequential recordings of neurons of the same type. From this estimation of pairwise cor-

relations we then used a time-dependent maximum entropy model [33–35] to infer the activity

of the full population of neurons of the same type. We show that this method is accurate and

reproduces several features of the recorded population activity. We then applied our method

to infer the activity of a large population of neurons of the same type, beyond what can be cur-

rently recorded experimentally. Thanks to our inference method, we could estimate the extent

of synchronous firing in such a large population, and show that it first grows significantly to

then saturate for large populations of about 200 neurons.

Results

Overview of the inference method

The purpose of our method is to reconstruct the activity of a population of neurons of the

same type from their individual responses to a same stimulus. Part of this population activity is

directly accessible from sequential recordings, but another part needs to be predicted. For

example, if we have recorded sequentially two neurons responding to the same stimulus, a

naive solution is to pool together their responses as if they had been recorded at the same time.

If the noise present in these responses is independent between the two neurons, this is indeed

equivalent to recording them together. However, in many cases, the noise between different

neurons is correlated. In that case, pooled sequential recordings are not equivalent to simulta-

neous recordings [23], and the difference is what is usually termed the noise correlation

between these two neurons.

Our method aims at inferring these noise correlations from parsimonious pairwise record-

ings of a few cells, and use them to predict how noise will be correlated across an entire
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population of hundreds of neurons. From this we can reconstruct how a large population of

neurons would respond if they were recorded simultaneously, based on sequential recordings.

Our method is divided in three steps. First, we infer the parameter of a model based on cop-

ulas [41–43] from simultaneous recordings of few cells. Second, we used the inferred model to

predict noise correlations between pairs of neurons from sequential recordings, using only

information on the distance between the recorded cells. Our method allows predicting noise

correlations for the same pair of neurons responding to a different type of stimulus, and can

generalize to predict noise correlations for another pair of neurons of the same type recorded

in a different experiment. Third, we use a time-dependent maximum entropy model [33–35]

to generalize from pairs of neurons to a full population. This step does not require any addi-

tional empirical information with respect to the second step. Note that simultaneous record-

ings are necessary only for model inference (and validation), yet sequential recording are

sufficient for making prediction.

Here we applied this method to cells of the same type in the rat retina. These data allowed

us to test if our reconstruction of the population activity is accurate. Finally, we used our

method to infer the synchronous activity of a large neuronal population, much larger than

what is nowadays experimentally accessible.

Strong noise correlations between nearby OFF retinal ganglion cells

We recorded rat retinal ganglion cells (RGCs) in response to different visual stimuli. We used

a previously described method [18] to divide them in different types. Briefly, we clustered their

responses to a full field flicker and isolated a single type of OFF-alpha ganglion cells. All these

cells responded reliably to a checkerboard stimulus (Fig 1A). The cell responses to random

checkerboard have been used to estimate their receptive fields and to find their location. The

receptive fields of these cells tiled regularly the visual field (mosaic in Fig 1B).

To estimate noise correlation between pairs of cells, we computed the cross-correlation of

their spike counts and the cross-correlation of their firing rates (the mean over stimulus repeti-

tions of the spike count, respectively green and black lines in Fig 1C inset). Consistently with

previous findings [30, 32], at short time-scales, spike-count correlation is larger than that of

firing rates, but only for nearby pair of cells (Fig 1D). We term noise-correlation the difference

between the zero-lag cross-correlation of spike counts and firing rate (Methods). We observed

a similar behavior for all visual stimulations and experiments.

In the following we used these data to test our method. We first used copulas to predict the

noise correlations between pairs of cells. We then used maximum entropy modelling to recon-

struct the activity of a large population of ganglion cells from sequential recordings.

Copula model predicts pairwise response from sequential recordings

A copula is a method that can build pairwise probability distributions from pairs of single-vari-

able distributions (Fig 2 and Methods). We used this approach to build the joint spike count

distributions of pairs of neurons, that, if marginalized, reproduce the empirical single neuron

distributions. For each time-bin, for each recorded neuron, we first estimated the spike count

distribution from the response to stimulus repetitions, and from this we obtained its cumula-

tive distribution function (Fig 2A). Next a copula model allowed us to compute the joint spike

count distribution for all neurons pairs and time-bins using sampling (Fig 2B). Note that in

our framework, the copula model and its parameter is the same for all time-bins.

Pairwise parametric copulas are joint cumulative distribution functions (c.d.f.) character-

ised by model families with one or several parameters. Among the many possible copulas, a

pairwise Gaussian copula is a joint c.d.f that takes a Gaussian form and is characterised by a
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correlation coefficient tuning the interaction between the two variables. It is possible to show

(suppl. sect. S1 Text) that Gaussian copula modelling is equivalent to discrete dichotomized

modelling over integer variables [46]. From this point of view, copulas with different model

families can be seen as a generalisation of dichotomized Gaussians, with different functional

forms for generating the correlation structure. To determine which was the best model family

for our data, we tested several ones (independent, Gaussian, Gumbel, Frank and Clayton, see

Methods) and estimate the Kullback-Leibler divergence with the empirical joint distribution.

The Gumbel copula gave the best fits when tested on a stimulus (full-field) different from the

one used for training (checkerboard) (Fig 3A) and the improvement over the second best, the

Gaussian copula, was significant (t-test over the difference between the log-likelihoods, p-

value� 0, Fig 3B). Also the coefficient of determination (c.o.d) for the prediction of the corre-

lation between each pair shows that the Gumbel copula has the larger performance (Fig 3C).

Because of this result, we kept the Gumbel family for all the following analysis.

A Gumbel copula is characterized by a parameter that tunes the interaction strength of

the two variables, and that can be inferred from data. We found that this copula parameter

only depended on the distance between the two cells, and can be fitted using a function with

just three parameters (θ = exp(exp(a + bx + cx2)), where x is the distance between the two

cells. Fig 4A, suppl. sect. S2 Text). We could thus describe the joint activity between all pair

of neurons using copulas characterised by only three parameters across the entire population

of cells. Once applied on the same response to checkerboard stimulation used for training,

our model predicted noise correlations with high accuracy (Pearson’s ρ = 0.97, n = 300 pairs,

Fig 1. High noise correlation between nearby RGCs subject to checkerboard stimulation. A) Raster plots of two example cells in

response to checkerboard stimulation. Each line corresponds to a repetition of the same visual stimulation. Black line: averaged

firing rate of the cell. B) Receptive field mosaic of the recorded OFF cell population. Cyan receptive fields refer to the cells showed in

panel A. C) Cross-correlation for the two cyan cells (green, dt = 17ms), superimposed to the cross-correlation of their firing rates

(black). Inset: Cross-correlation at finer time scales (dt = 1ms). D) Zero-lag (dt = 17ms) noise-correlation plotted against the distant

between cells.

https://doi.org/10.1371/journal.pcbi.1008501.g001
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larger than ρ = 0.92 obtained by fitting directly noise correlations (suppl. sect. S4 Text) and

c.o.d. = 0.92).

We have built a model with only 3 parameters, that can predict the noise correlation

between any pair of neurons from the activity of single cells. We then tested if this model can

generalize and predict noise correlations measured in response to different stimuli. We first

inferred the copula model from the response to checkerboard stimulation (that of Fig 1).

Then, from the response to repetitions of another type of stimulus, we estimated the spike-

count distributions of each neuron in each time-bin. Finally, we used our copula model to

compute the mean noise-correlations of each neuron pair. We applied this strategy to the

RGCs’ response to full-field and moving-bar stimuli (Fig 4B and 4C). In both cases, the copula

model was able to reproduce the empirical estimates of noise-correlations with high accuracy

(Pearson’s ρ = 0.95 and ρ = 0.95, c.o.d. = 0.84 and c.o.d. = 0.88 for full-field and moving-bar

Fig 2. Schematic of the copula model. A) First step. Spike counts are estimated across stimulus repetition for a given pair of cells, in a given time-bin. Empirical

histogram of the spike counts are then estimated and later used to compute the empirical cumulative distribution function. B) Second step. A copula distribution then

accounts for the mutual dependency of two random variables. From it we draw many samples of pairs of real numbers (u1, u2) 2 [0;1]2 with uniform marginals.

Inverse of the cumulative distribution functions transform these samples into pairs of positive integer numbers, whose distribution matches the empirical spike count

marginals by construction and accounts for their mutual dependency.

https://doi.org/10.1371/journal.pcbi.1008501.g002
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respectively, n = 300 pairs). In addition, in suppl. sect. S3 Text we show that our predictions

are robust across a wide range of time-bins.

To further demonstrate the robustness of our method we tested if our copula model could

predict noise correlations in a different RGC population of the same type, recorded in a differ-

ent experimental preparation (Fig 5A and 5B). Note that in the new experiments firing rates

were higher than before (Fig 5C). We used the model inferred from the data of the first experi-

ment to predict noise correlations between the same type of RGC, but recorded during a sec-

ond experiment. Using only single cell responses, our model outperforms an independent

copula model (Fig 5D) and its predictions were accurate (Fig 5E, Pearson’s ρ = 0.95 and c.o.d.

= 0.91, n = 496 pairs), and accounted for how noise correlations decrease with distance (Fig

5F). The functional dependence of the copula parameter with respect to inter-cell distances is

Fig 3. Gumbel copula outperforms other copula families. A) Kullback-Leibler divergence between empirical and model-predicted distribution for multiple copula

families averaged over all cell pairs. B) Scatterplot of the Kullback-Leibler divergences for Gumbel and Gaussian families for each pair of cells. C) As A but using the c.o.d.

for the prediction of noise correlations.

https://doi.org/10.1371/journal.pcbi.1008501.g003

Fig 4. Copula model predicts noise correlations across stimulus ensembles. A) Gumbel copula parameter as a function of the

inter-cell distance. B) Scatterplot of the empirical and model predicted noise correlations for the response to full-field stimulation.

C) As B but for the moving-bar stimulation. In both cases the model has been inferred from the response to checkerboard

stimulation.

https://doi.org/10.1371/journal.pcbi.1008501.g004
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thus robust across experiments, and hence corresponds to a general property of OFF-Alpha

cells in the rat retina. We obtained similar results for all the 8 testing experiments (overall

Pearson’s ρ = 0.92 and c.o.d. = 0.80, for a total of n = 1633 pairs).

Note that in order to predict noise correlations (Fig 5) our model never accessed to the

simultaneous recordings, but only to the collection of single neuron responses. We could have

thus predicted the noise correlation between pairs of neurons in these new experiments using

only the sequential recording of each neuron. Therefore, our approach allows for predicting

pairwise noise correlations across experiments without requiring simultaneous recordings.

Time-dependent maximum entropy model reconstructs the activity of

large population from the copula’s pairwise predictions

Our copula model predicted pairwise synchronous firing. To reconstruct the activity of a large

population of neurons from single cell recordings, we then used a time-dependent Maximum

Entropy population model.

Standard Maximum Entropy models [31] aim at predicting the probability of any spike pat-

tern from the mean firing rate of each neuron and the correlations between each pair of cells.

Here we use a recent generalization of this approach [34, 35] that takes into account a time-

varying firing rate. This approach builds a collection of pairwise Maximum Entropy models

(one for each time-bin), which share the same couplings, but with different external inputs

(fields) for each cell and each time bin [34, 35] (Methods). Time-dependentMaximum Entropy

Fig 5. Copula model predicts noise correlations across experimental preparations. Data from a second dataset (#2), different from

the one used for training the model (#1). A) Raster plots of two example cells in response to checkerboard stimulation for a second

experiment. Each line corresponds to a repetition of the same visual stimulation. Black line: averaged firing rate of the cell. B) Receptive

field mosaic of the recorded OFF cell population for the new dataset. C) Firing rate distributions over cells and time-bins for the two

experiments. D) Scatterplot of the Kullback-Leibler divergence between empirical and model-predicted distribution for Gumbel and

Independent copula models. Each point correspond to a different cell pair. E) Scatterplot of the empirical and model predicted noise

correlations from the response to checkerboard stimulation. F) Behavior of the empirical and model predicted noise correlations plotted

against the distance between cells.

https://doi.org/10.1371/journal.pcbi.1008501.g005
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modelling thus disentangles intrinsic interaction, due to network effects, from extrinsic corre-

lations, due to common inputs [35].

We inferred the time-dependent Maximum Entropy population model from the activity of

single neurons and the pairwise correlations predicted by the copula model. The inferred cou-

plings are large only between nearby cells, and the model reconstructs a “nearest-neighbour”

interaction network (Fig 6A). We benchmarked the model against a time-dependent Maxi-

mum Entropy model inferred over the first half of the recording. Remarkably the model log-

likelihood in each time-bin was only slightly smaller than the control (Fig 6B). As expected the

model reproduced well the pairwise noise correlation (Fig 6C, Pearson’s ρ = 0.95, coefficient of

determination cod = 0.91, n = 496 pairs), which were already finely predicted by the copula

model (Fig 6E). Remarkably, Fig 6D shows that the model also partially accounts for the triplet

noise correlation (Methods) (R2 = 0.3, n = 4960 triplets. R2 = 0.25 for the control time-depen-

dent Maximum Entropy inferred on the first half of the data.). In order to show that our

model captures the synchronous behavior of the neuronal population, we compute the proba-

bility distribution of the population rate, i.e. the total number of spikes emitted by the entire

population in a given time-bin. We compared this distribution with the “shuffled” distribution,

which destroys noise correlations, and is equivalent to the prediction made by a conditionally-

independent model (i.e. a model that would assume there are no noise correlations). The

Fig 6. Time-dependent maximum entropy model predicts population synchronous firing across experimental

preparations. Data from a second dataset (#2), different from the one used for training the model (#1). A) Behavior of the

inferred couplings with the distance between cells. Grey dotted line threshold for identifying strong couplings. Inset: Position

of the cells on the retinal surface, and strong couplings linking them. B) Scatterplot of the log-likelihoods of the copula-based

model against those of a model inferred for data of the same experiment. C) Noise correlation prediction of the model against

empirical value. As expected by construction, the model reproduces the copula estimations, and hence the empirical values (Fig

5B). D) Model prediction of triplet noise correlations against empirical value (R2 = 0.3, n = 4960). E) Empirical, shuffled (cond.

independent) and model distributions of the population activity averaged over all time-bins. F) Same as E but for the 5% of

time-bins with the highest mean population firing rate.

https://doi.org/10.1371/journal.pcbi.1008501.g006
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distribution computed after shuffling the data overestimated the probability of number of

spikes close to the average population rate, and underestimated the occurrence of transients of

very large or very low activity (Fig 6E and 6F). Remarkably, our model captured the empirical

behavior of the population rate averaged over the whole recording (Fig 6E) or when focusing

only on highly active time-bins (Fig 6F).

Synchrony behavior in a large population of ganglion cells reconstructed

from multiple experiments

Thanks to our model, we could reconstruct the activity of a large population of neurons using

only single cell activity. Since the model can generalize across experiments, it means that the

activity of the different single cells can be taken from different experiments. Our method only

needs a few pairs of neurons recorded simultaneously to fit the three parameters of the model.

In the following we illustrate how this model can be used to reconstruct the activity from a

very large population of neurons, bigger than what could be recorded experimentally. We illus-

trate how this inference of the activity of a large population of cells can be useful by measuring

synchronous activity over increasing number of cells.

We first built a synthetic lattice representing the positions of the cells reproducing the

empirical statistics of inter-cells distances (Fig 7A and Methods). Then, we collected the (mar-

ginal) response of many cells recorded during multiple experiments, and constructed a large

population of n = 400 cells. We associated to each lattice position the response to�2sec

Fig 7. Large population model. A) Synthetic mosaic of n = 400 cells. Blue: example of sub-population. B) Probability distribution

of the population activity for the time-bin with the highest firing rate. C) Population activity variance (synchrony) for many sub-

populations against their number of neurons. Pairwise correlations are inferred either with our copula model (red), either with a

stretched (yellow) or compressed (violet) model where the neurons correlate over a longer or smaller spatial scale. Black: cond.

independent model without noise correlations. Blue point corresponds to the subpopulation of panel A. D) As C, but plotted with

respect to the radius of the patch.

https://doi.org/10.1371/journal.pcbi.1008501.g007
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checkerboard stimulation (repeated 79 times) of a randomly chosen cell among the ones

recorded in all experiments (excluding those from the experiment used to learn the model

parameters). Finally we applied our two-step approach to predict how this large population of

cell would have responded to a checkerboard stimulus.

At first, we looked at the population rate as previously defined. In comparison with shuffled

data, our model predicted a more frequent occurrence of transients with either very high or

very low population activity (Fig 7B). This is a signature that synchronous activity extends up

to large populations.

Then, to study how correlated firing grows with the population size, we sub-sampled the

synthetic model and estimated the population synchrony. Note that in order to sub-sample the

population, we did not choose neurons at random positions, but instead we randomly select a

circle (by choosing a radius and a center location) and picked all the neurons within it (blue

points in the example of Fig 7A). When enlarging the sub-population, new neurons are added

at the border of the patch, and therefore can be very far from most of the others. Because in the

data and in our model neurons are correlated only over finite distance (Figs 1D and 5F), the

impact of a newly added cell on the population synchrony will strongly depend on the size of

the sub-population. In case of a small sub-population, the added neurons will correlate with

most of the present cells, thus having a large impact on the population synchrony. In case of a

large sub-population instead, the added neurons will correlate with only with the nearest cells

in the sub-population, and the population synchrony will not increase by much. We therefore

expected a saturation of the population synchrony. We defined the population synchrony as

the average over time of the variance of the population rate, divided by the population size

(similar to the magnetic susceptibility in physics):

Synchrony �
1

N
hVarð

X

i

nðtÞi Þ itime ¼
1

N

X

ij

Covnoiseðn
ðtÞ
i ; n

ðtÞ
j Þ ð1Þ

where nðtÞi is the spike count of neuron i at time t. As Eq 1 shows (see Methods for a derivation),

the population synchrony can be estimated as the sum of all pairwise noise-covariances. For a

large population, and for a fixed neuron i, only the terms corresponding to the nearest neurons

will contribute to the summation in Eq (1). As a consequence, when increasing the population

size, most of the new pairwise terms will not contribute to the sum, and the synchrony satu-

rates. This saturation size depends mostly on the correlation length of the system. Red points

in Fig 7C and 7D show that for our system this saturation happens at around 200 neurons, cor-

responding to a patch of radius 1.5mm, larger than what is experimentally accessible for syn-

chronous recordings. To show how this saturation depends on the system correlation length,

we repeated the same analysis after stretching (yellow points) or compressing (violet points)

the copula parameter fit by a factor of two. The curve saturated later or before, respectively.

When there is no noise correlation (shuffled data, black points), synchrony does not increase

at all.

Discussion

We have shown that our new method allows for reconstructing the population activity of large

populations of neurons of the same type in the retina, based on sequential recordings and a

few pairwise recordings. We have first developed a model to predict noise correlations across

experiments. Thanks to this, once the model parameters are learned with paired recordings,

we can take any pair of cells taken from new experiments, and predict the noise correlations

from the activity of each single cell. Thanks to this prediction we could then reconstruct the

activity of large populations of neurons of a single type at a scale beyond what can be recorded
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experimentally. Using this method, we have shown that synchrony in the population of rat

OFF-alpha ganglion cells grows with the number of cells, becomes large and then saturates for

very large populations. Understanding how the collective behaviour of neural ensembles scales

with the number of neurons is a crucial issue, and our tool is a key method for this purpose,

because it allows accurate inference of population activity, at a scale currently not accessible

with experimental recordings.

Previous works have shown how different methods can be used to model and predict noise

correlations. The Generalised Linear Model [15] uses spike history filters to couple the spiking

activity between different neurons. Stimulus dependent maximum entropy models [34, 35]

have coupling terms to model synchronous activity between pairs of neurons. These models

have been successfully used to model how a population of neurons responds to a stimulus

ensemble. However, they were never used to predict the activity of a population across differ-

ent experiments. A main obstacle for this is that firing rates can vary from experiments to

experiments, which would induce parameter changes in most of these models, and make gen-

eralization difficult. Here we have found that the noise correlation could be predicted using

our model knowing just the distance between the two cells and their individual activity. Previ-

ous attempts did not allow using information on the marginal distribution of the spiking activ-

ity in the novel experiment. This flexibility is crucial in our method: our copula based model

can include information of the marginal distributions straightforwardly, and this is one of its

major advantages. Nevertheless, having a model that generalizes across experiments is crucial

to pool together recordings from neurons of the same type and reconstruct activity of large

neural ensembles.

On a broader perspective, our method can be included in the literature of attempts to pre-

dict missing correlations in a dataset. Woher and collegues [36], for example, propose to pre-

dict noise correlations as a function of stimulus correlations. Although this approach works

for many stimulus ensembles, it will fail when, as in our elongated bar stimulations, stimulus

correlations extend over large spacial scales, whereas noise correlations decrease sharply with

distance (Fig 1). [37], instead, proposes to predict missing correlations when a large neural

population is recorded through multiple measurements of overlapping patches. Yet, this

method can not be applied easily to predict correlations in novel experiments. [38] recon-

structs the trial-by-trial dynamics of large populations by extracting the common low-dimen-

sional manifold. However this method also requires sequential but partially overlapping

measurements, and thus suffers the same drawbacks. In a similar spirit, [39] assumes a com-

mon low-dimensional dynamics to predict the missing correlations in a large population

recorded through multiple experiments. However, they find that some overlap between the

recorded population is necessary for the stitching to work, and this exclude the application

across different experiments. [40] combines data from different experimental sessions to infer

the properties of the common underlying dynamical system, and then predict latent variables

states across different experiments. However, even if it shows that the trial-to-trial variability

follows the same principles across different populations, it’s not used to predict the variability

in novel experimental settings.

Our approach to model noise correlations is based on copula distributions, and assumes

that the copula parameter is constant across experiments. An alternative, simpler approach

could have been to assume that noise correlations themselves remain similar across experi-

ments. We constructed this simpler model by fitting an exponential function over noise corre-

lations in our training dataset. This approach, however, gave significantly worse results than

our method based on copulas (supplementary sect. S4 Text), demonstrating that our approach

captures non-trivial properties of the correlated firing, i.e. its dependence on the firing rate of

each cell. Previous works have shown that this dependence cannot be ignored and plays a
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major role in shaping the stimulus dependence of noise correlations [47]. Among the different

proposed approaches, Dichotomized Gaussian, and their generalization to integer variables,

have been shown to account with high precision for correlation patterns between spike counts

[46]. In suppl. sect. S1 Text we have shown that Dichotomized Gaussians are mathematically

equivalent to Gaussian copulas. The only difference is the method usually applied to infer the

parameters (moment matching against maximum log-likelihood). For our data, Gumbel cop-

ula outperforms the Gaussian one (Fig 3), and therefore Dichotomized Gaussian. This result

shows that with respect to previously proposed approaches, our copula based model provides

an improvement in modeling noise correlations, and it is essential for the following steps of

this work.

Remarkably, our description of noise correlation depends only on the physical distance

between the pair. In suppl. sect. S2 Text, we have relaxed these assumptions and found that the

copula parameter did not vary much with time, cell identity or stimulus. First, if we assume

one copula parameter per time bin for a given pair of neurons, it varied little with time, and

approached a constant value when the pairs’ firing rate were large enough. Second, when we

inferred one parameter for each pair of cells to account for cell identities, their values still fol-

lowed closely our parametric function. Finally, when we inferred copula parameters from the

response to different stimulus ensembles, we obtained very similar values. This shows that the

same copula distribution accounts well for the correlation between the two cells, indepen-

dently of their firing rate, identities and of the stimulus ensemble.

Copulas have rarely been used in neuroscience studies [42–45, 48–50], but none of them

applied this method to predict noise correlations. In [42] and [44], discrete copula distribu-

tions were used to model the total spike-count correlation in, respectively, pre-motor and pre-

frontal cortex neurons. However, they did not distinguish stimulus from noise correlations as

we have done here.

Our ability to generalize across stimuli and experiments—with similar mean luminance

and contrast, but different statistics—demonstrates that the couplings between the recorded

ganglion cells are insensitive to the context and depend mostly on the retinal adaptation state.

This means that these couplings reflect an intrinsic property of the retinal circuit, and that the

mechanism generating these noise correlations in not influenced by changes in the stimulus

statistics or in overall firing rate. Since the timescale of the observed noise correlations is very

fast (few ms, Fig 1C), the most likely mechanism is gap junctions, which create direct electrical

connections between ganglion cells [51, 52]. Noise correlations might be more dependent on

the context if they are generated by a shared noise source, e.g. the photoreceptor noise [53] or

synaptic inputs [24]. Nevertheless, our results suggest that the strength of gap junctions are

tuned to a value that seems preserved between different experiments—as long as mean lumi-

nance and contrast are kept constant [52].

An interesting outcome of our method is the possibility to construct models of arbitrary

large populations, as long as enough sequential recordings are available. This possibility opens

for testing a number of hypotheses on how correlated firing affects the overall population

activity. Previous studies [31, 54] have made conjectures on the behavior of the retinal syn-

chronous activity at large scale by extrapolating their results obtained upon sub-sampling the

population of cells experimentally available. The validity of these extrapolations has been

recently questioned [55], pointing out how the observed correlation pattern of small systems

must be different from that of larger ones. In particular, [55] showed how sub-sampling a pop-

ulation may introduce spurious correlations that differ from those of a large population. Here

we took the opposite strategy: in order to avoid the risk of sub-sampling, we built a large popu-

lation model (Fig 7) pooling together real data and using our validated model to infer noise

correlations between cells. Importantly, our method kept the spatial structure of correlations
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(spatial correlation scale), allowing for building realistic ganglion cells populations with the

correct mosaic organisation. Our synthetic model thus provided the framework to further test

the conjectures on the system’ behavior for large numbers of neurons, beyond what can be

done experimentally.

We applied our method to the retina, where it is possible to have recordings of many neu-

rons of the same type. In principle, our approach is general and could potentially be applied in

other sensory area, provided that sequential recordings of the same type of cells are available,

as well as some pairwise recordings to fit the model parameters. Further technological

advances will make this method relevant to understand cortical populations, where it should

be soon possible to define the cell type of each recorded cell using genetic (e.g. single cell tran-

scriptomics [9, 10]) and physiological (e.g. clustering of responses [7]) tools. One issue could

arise if noise correlations depend strongly on behavioural states, arousal or attention. In this

case pooling together multiple recordings from different states may lead to heterogenous data-

sets that will not be well reproduced by our method. One step going in this direction has been

made by [56], where correlations between cells appear correlated with the difference of their

orientation preference, but only after conditioning on a state variable (in their case the global

firing rate of the population). Computational approaches have also shown to be capable of

accounting for these effects, for example by adding and learning an external modulator net-

work that introduces a gain factor depending on running speed and pupil dilation [57].

Another issue could arise if noise correlations strongly depend on the stimulus, as it has, for

example, been reported for V1 [58]. In our data, noise correlations depend very little on the

stimulus, which allowed us to reduce our model and let copula parameters depend only on

the distance between cells. However, if noise correlations depend largely on the stimulus, the

model can be extended. The simplest solution would be to make the copula parameters depend

on the stimulus. If this stimulus dependence can be explicitly modeled, our method would still

manage to predict the activity of large ensembles of neurons. In addition, our method is based

on pairwise copulas and pairwise Maximum Entropy models, and for analysing cortical activ-

ity, it might be necessary to account for higher order noise-correlations. In this case it will be

necessary to extend our method with multivariate copulas [59] and higher order max-ent

models [60].

Finally, here we predicted the responses of a population of neurons to a stimulus for which

we have access to single cell responses across stimulus repetitions. If a model is available to pre-

dict the responses of single cell to other stimuli, it could be used to predict the marginal proba-

bility distribution of each individual neuron, and then combined with our approach to predict

the activity of the whole population. This makes our method complementary to recent efforts

trying to model and predict accurately the response of single neurons to complex stimuli in

sensory areas [17, 57, 61].

Methods

Ethic statement

Animals were euthanized according to institutional guidelines in adherence with the Directive

2010/63/EU of the European Parliament, and approval was granted by the local ethical com-

mittee (CETEA no5). Rats were sacrificed by CO2 inhalation followed by a quick cervical

dislocation.

Multi-electrode array recordings

We analyze the response of rat RGCs to visual stimulation recorded in 9 multi-electrode array

ex-vivo experiments [3], from retina patches within 10-20 deg of eccentricity, and spike sorted
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with SpyKING CIRCUS [62]. This dataset and the experimental methods have been already

previously described [18]. In one experiment we probed the retinal response to three different

visual stimuli: (i) a random black and white checkerboard, with spatio-temporal uncorrelated

checkers; (ii) a full-field stimulus with fluctuating luminance and (iii) two gray horizontal bars

performing an independent Brownian motion along the vertical direction [18]. In the other 8

experimental sessions, only the response to random black and white checkerboard and full-

field was retained and analyzed here. Each of these stimulations lasted about 10sec and have

been repeated at least R = 79 times. Spiking times have been binned with a window of about

17ms, corresponding to a bin rate of 60Hz. With a custom algorithm [18] -similar to that of

[7]- we used the cell’s response to the full-field stimulation to identify the type of the recorded

RGCs. Across the 9 experiments, we identified populations of 20 ± 6 (mean ± s.d.) OFF-Alpha

cells.

Stimulus and noise correlations

After binning the spiking response of each cell, we estimate nðt;rÞi , the number of emitted spikes

by cell i, in the time-bin t, during repetition r, and its mean across repetitions m
ðtÞ
i . Then we cal-

culate the total covariance between two neurons (i, j) as follows:

Covtotalðni; njÞ ¼
1

T

XT

t¼1

1

R

XR

r¼1

ðnðt;rÞi � miÞðn
ðt;rÞ
j � mjÞ ð2Þ

Where mi ¼
PT

t¼1
m
ðtÞ
i =T is the mean number of spikes across repetitions, and then averaged in

time. It is possible to decompose the total covariance into a sum of the so called “stimulus” and

“noise” covariances. We calculated these quantities as follows

Covnoiseðni; njÞ ¼
1

T

XT

t¼1

1

R

XR

r¼1

ðnðt;rÞi � m
ðtÞ
i Þðn

ðt;rÞ
j � m

ðtÞ
j Þ ð3Þ

Covstimulusðni; njÞ ¼
1

T

XT

t¼1

1

R

XR

r¼1

ðm
ðtÞ
i � miÞðm

ðtÞ
j � mjÞ ð4Þ

Noise correlations are then estimated as:

Corrnoiseðni; njÞ ¼
Covnoiseðni; njÞ

ffiffiffiffiffiffiffiffiffi
ViVj

p ð5Þ

where Vi = Covtotal(ni, ni).
Triplet noise correlations are instead defined as:

Corrnoiseðni; nj; nkÞ ¼
1

T

PT
t¼1

1

R

PR
r¼1
ðnðtÞi � m

ðtÞ
i Þðn

ðtÞ
j � m

ðtÞ
j Þðn

ðtÞ
k � m

ðtÞ
k Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ViVjVk

p ð6Þ

Copulas

Pairwise Copula-based modeling allows for disentangling the marginal distributions of two

random variables from their mutual dependency, that can therefore be modeled alone, without

the additional difficulties due to potentially complicated marginal distributions. Consider two

random variables X and Y, with joint distribution fX,Y, marginal distributions fX and fY and

marginal cumulative distribution function (c.d.f.) FX and FY respectively. By construction, the
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random variables UX� FX(X), X� fX and UY� FY(Y), Y� fY have uniform distributions over

[0, 1]. Consequently the joint distribution of (UX, UY) has uniform marginals, yet it contains

all the information about the mutual dependence between X and Y. This property allows us

to model the dependency of UX and UY instead of that of X and Y. Specifically, a copula is the

c.d.f. of the joint variable (UX, UV), i.e. a function C(�, �): [0, 1]2! [0, 1]. and it can be used to

reconstruct the joint distribution of (X, Y), via its c.d.f.:

FX;Yðx; yÞ ¼ CðFXðxÞ; FYðyÞÞ: ð7Þ

Sklar’s theorem (supplementary sect. S1b Text) ensures the existence and uniqueness of C, and

this allows for modeling the mutual dependency between X and Y, independently from their

marginal distributions. Note that when copulas are used to model discrete variables such as

our spike counts, Sklar’s theorem still assures the existence of the copula, but its uniqueness

is lost. However this is enough to model discrete joint distribution with copulas (suppl. sect.

S1c Text).

Parametric copula families

In this work we have considered the following parametric bivariate copula families:

• Gumbel:

CGumbelðu; vjyÞ ¼ exp
�
� ð� ðlog uÞy þ � ðlog vÞyÞ1=y

�
; ð8Þ

where θ 2 [1,1] is the copula parameter.

• Gaussian:

CGaussianðu; vjyÞ ¼ FyðF
� 1ðuÞ;F� 1ðvÞÞ; ð9Þ

where θ 2 [−1, 1] is the copula parameter, and Fθ is the joint cumulative distribution func-

tion of a multivariate normal with unit variance and covariance equal to θ. F is the cumula-

tive of a standard normal distribution.

• Frank:

CFrankðu; vjyÞ ¼ � y
� 1 log ð1þ

ðe� yu � 1Þðe� yv � 1Þ

e� y � 1
Þ; ð10Þ

where y 2 R is the copula parameter.

• Clayton:

CClaytonðu; vjyÞ ¼ ½maxfu� y þ v� y � 1; 0g�
� 1=y

; ð11Þ

where θ 2 [−1,1]/{0} is the copula parameter.

• Independent:

CIndependentðu; vÞ ¼ uv; ð12Þ

We have inferred all the parameter values by log-likelihood maximization (suppl. sect. S2

Text). Once θ has been inferred, the marginal distributions can in turn be approximated either

with some model, or, as we will do in this work, empirically. We refer to the Mathematics
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section, the literature and textbooks (see, for example, [41]) for more explanations and details

on copula models and/or other copula families.

Copula-based model

We constructed a copula model able to predict PðnðtÞi ; n
ðtÞ
j Þ, the joint distribution of pair of

spike counts in time:

PðfnðtÞi ; n
ðtÞ
j g

T

t¼1
Þ ¼

YT

t¼1

cGumbel

�
FðtÞi ðn

ðtÞ
i Þ; F

ðtÞ
j ðn

ðtÞ
j Þ
�
� ŷðdijÞ

�
; ð13Þ

where cGumbel is the copula density function, corresponding to the c.d.f. of Eq (8), and FðtÞi ðn
ðtÞ
i Þ

is the empirical c.d.f. of nðtÞi , that we estimate across repetitions, dij is the distance between

neurons i and j, and ŷðdijÞ is a parametric function: ŷðdÞ ¼ expð expðaþ bdþ cd2Þ Þ and

ŷðdÞ ¼ 0 if d> 1mm. To infer this function from data, we first inferred a copula parameter

for each pair of neurons, θij, by log-likelihood maximization, and then we obtained a = 0.73,

b = −0.014μm−1 and c = 810−6 μm−2 by fitting the behavior of θij with respect to the distance

dij. See suppl. sect. S2 Text for further information.

Time-dependent maximum entropy model

The time-dependent maximum entropy model we used is:

PðffnðtÞi gÞ
N
i¼1
g
T

t¼1
Þ ¼

YT

t¼1

exp
X

i

hðtÞi n
ðtÞ
i þ

X

i�j

nðtÞi Jijn
ðtÞ
j �

X

i

lnðnðtÞi !Þ

( )

=ZðtÞ
 !

ð14Þ

where nðtÞi 2 ½0; 1; . . . ; nMax� is an integer spike-count, with nMax matched from data. The index

“(t)” expresses the time dependence. Z(t) is a normalization constant (the partition function).

hðtÞi is the local field for neuron i at time t imposing the firing probability and Jij is the couplings

network that allows for reproducing the system’s correlations. Note that Jij does not depend on

time and it includes also the diagonal terms Jii which set each neurons variance equal to its

empirical value [35, 63]. The log-factorial term allows for matching the single neurons statistics

[63], as by taking J = 0 the model reduces to a collection of independent Poisson distributions.

Inference of the time-dependent maximum entropy model

The inference of the model (14) is done by log-likelihood maximization using an iterative algo-

rithm with adaptive learning rate similar to that of [64]. Because the model belongs to the

exponential family, the log-likelihood derivative with respect to any parameter θi takes the

form: hOiidata − hOiimodel, where Oi is the sufficient statistics conjugated to the parameter θi.
As a consequence, the model inference requires only the first two moments of nðtÞi across repe-

titions and the value of the noise covariances (Methods section c). In our case we estimate the

firsts from the marginal response of each neurons and we used the copula model to predict the

second, without any other empirical information or statistics.

Synthetic lattice

In order to construct a synthetic lattice that respects the inter-cells distance of empirical

recordings, we started by a triangular regular lattice with side 194μm, and then we added a

Gaussian noise with a standard deviation of 22μm to the x and y coordinate of each cells.
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These parameters are optimized in order to match the distribution of cells distances measured

in real experimental recordings.

Synchrony as the population activity variance

We computed the population activity at time t as the sum over all the neurons of their spike-

counts, KðtÞ �
P

in
ðtÞ
i . We then defined the population synchrony as the average over time of

the variance of K(t). It follows:

Synchrony �
1

N
hVarðKðtÞÞ itime ¼

1

N
hVarð

X

i

nðtÞi Þ itime

¼
1

N

X

ij

hCovðnðtÞi ; n
ðtÞ
j Þitime ¼

1

N

X

ij

Covnoiseðn
ðtÞ
i ; n

ðtÞ
j Þ

ð15Þ
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Data curation: Oleksandr Sorochynskyi, Stéphane Deny, Olivier Marre, Ulisse Ferrari.

Formal analysis: Oleksandr Sorochynskyi, Ulisse Ferrari.

Funding acquisition: Olivier Marre.

Investigation: Oleksandr Sorochynskyi, Stéphane Deny, Ulisse Ferrari.
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1. Buzáki G. Large-scale recording of neuronal ensembles. Nat Neurosci. 2004; 7(5):446–51. https://doi.

org/10.1038/nn1233
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