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A B S T R A C T   

Environmental pollution has become a global issue due to continuing anthropogenic activities 
that result in the production of enormous amounts of waste and the subsequent release of haz-
ardous trace metals. The increasing levels of trace metals in the environment must be monitored 
regularly and reduced to prevent contamination of food chain. Numerous conventional tech-
nologies that are widely used for the removal of trace metals from environmental matrices have 
many drawbacks. Currently, the preferred method to remove trace metal ions is the adsorption 
process, which normally uses adsorbents. This review investigated the applications of coal fly ash 
(CFA) as a cost-effective adsorbent and the role it plays in the improved properties of nano-
materials that are used for treatment of trace metals in water. The use of CFA and its role in 
chemical modification processes results to high removal efficiency of trace metals. CFA is a by- 
product of coal combustion which is available in abundance and therefore its use is not only 
beneficial in water treatment processes, but also reduce the burden of solid waste disposal.   

1. Introduction 

Coal mining and anthropogenic activities are still the main sources of environmental pollution due to the production of tailings, 
solid and liquid wastes characterized by various toxic pollutants, including trace metals [1]. For example, coal-based thermal power 
plants contribute significantly to environmental pollution through the generation of coal fly ash (CFA), which requires large areas of 
land for disposal. This results in the loss of vegetation, and in certain cases, a threat to wetland ecosystems and the people who live 
nearby, by leaving behind a negative ecological impact [2]. Moreover, through leachate and wind movements from CFA dams, the 
release of organic and inorganic pollutants such as metals and their derivatives may occur [3–6]. In the past few years, there has been a 
cumulative global public health and ecological alarm linked to environmental contamination by trace metals [6,7]. Environmental 
contamination with trace metals is a major concern in point source locations like smelters and foundries, metal-based industrial and 
mining activities [7]. Evaporation of some metals from water bodies, soil and groundwater, soil erosion of metal ions, sediment 
re-suspension, leaching of trace metals, air deposition, and metal corrosion can all lead to the environmental pollution [8,9]. Natural 
processes such as volcanic eruptions and weathering processes have also been reported to highly contribute to the release of trace 
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metals into the environment [6,10]. With the hypothesis that toxicity and heaviness of metals are interrelated, according to 
Tchounwou et al. [7], metalloids like arsenic, which can induce toxicity at low exposure levels are also considered as trace metals. 
Trace metals have negative effects on human health as well as on food chain and marine ecosystem [7,11,12]. Because trace metals are 
found in diverse environmental matrices in trace amounts, and therefore are regarded as trace elements [13]. Trace metals are 
non-biodegradable and carcinogenic (chromium, arsenic, beryllium, nickel cadmium, etc.), hence their presence in water in higher 
concentrations could induce critical health problems to biota [14–16]. Physical parameters such as phase association, temperature, 
sequestration, and adsorption have an impact on their bioavailability. It is also impacted by lipid octanol/water partition coefficients, 
solubility, chemical variables, and complexation kinetics that affect speciation at thermodynamic equilibrium. Due to continuing 
mining, industrial and agricultural activities that leave behind hazardous substances, the synthesis of environmentally-friendly, 
efficient, and cost-effective methods of trace metal removal from the environment is urgently required [10]. 

Various techniques have been applied to remove or reduce trace metals from different environmental matrices [17]. Methods such 
as membrane filtration, adsorption, precipitation, electrochemical, reverse osmosis, solvent extraction, electrodialysis, photocatalytic 
degradation, flocculation, flotation, ion-exchange, coagulation, and advanced oxidation processes are mostly used [14,15,18–21]. The 
adsorption process presents advantages including effectiveness, operation simplicity and cost-effectiveness over other treatment 
methods. Adsorption is highly favored due to its potential to remove both organic and inorganic pollutants, even at low levels from 
wastewater. It is one of the most efficient methods for the removal of metals due to its low-cost, high efficiency, easy operation, and its 
performance, which is mainly dependent on the type of adsorbent used. CFA is gaining much interest as a low-cost and effective 
adsorbent or as a starting material to prepare other adsorbents materials. Various studies were conducted on the development of 
efficient and environmentally-friendly adsorbents from CFA [22–24]. 

1.1. Physical and chemical properties of CFA 

A complete understanding of the physical and chemical properties of CFA, such as mineralogy, composition, morphology, and 
surface chemistry, renders a clear frame for exploring the possibility of its new applications. The chemical composition of CFA depends 
on the feed coal, whether it is anthracite, bituminous, sub-bituminous or lignite, which implies the content of metal oxides, sulphur and 
loss of ignition (LOI). CFA is divided into two major classes, class C and class F depending on its origin and chemical composition [25]. 
Class F mostly originates from bituminous and anthracite coals, and it has higher LOI than class C. It also has pozzolanic properties, 
which make it ideal for usage in the construction industry for manufacturing cement, bricks, and road beds [26,27]. Class C CFA is 
normally produced from sub-bituminous and lignite coals and has both pozzolanic and cementitious properties. The amount of un-
burned carbon in the CFA contributes to its physical appearance (from dark brown to grey), the darker the color of CFA (e.g.: anthracite 
and bituminous CFA), the higher the carbon content and their particle size distribution is close to that of silt (<0.075 mm) [28]. CFA 
particles have a spherical shape, either hollow or solid and amorphous depending on the coal type. CFA generation is highly linked to 
coal mining activities and has become a major pollutant of environmental matrices in different ways such as release of dust, particulate 
matter, mine drainage and coal residue dumping. 

1.2. The use of CFA in the removal of trace metals from water 

CFA poses an environmental challenge since it requires a huge space to be disposed of, and its application as an adsorbent can 
contribute significantly to pollution reduction. Trace metals in wastewater occur from various activities including agriculture, mining 
and industrial development. Due to their inherent toxicity, vast origins, persistence, and non-degradability nature, among other 
reasons, trace metals can be exceedingly detrimental to humans, animals, plants, and the environment [1]. To remediate trace 
metal-containing wastewaters, three types of methods are available: physical, chemical and biological. Electrochemical treatment 
technologies, ion-exchange and chemical precipitation are some of the chemical treatments that are currently used [29]. Biological 
methods employ microorganisms and adsorbents. Adsorption which can be physical or chemical is amongst the methods that use 
low-cost nanomaterials (activated carbon, CFA or CFA-based adsorbents and other cheap adsorbents from recycled waste raw ma-
terials) to decontaminate the environment [1,15,19,30]. This method has a wide range of advantages such as the generation of a small 
amount of sludge, reusability of the adsorbents, a simple design to operate, availability of raw materials, cost-effectiveness, auto-
maticity, reasonable technical maturity, eco-friendly technique, and low-cost synthesized adsorbents that are commercially supplied 
[14,31,32]. The adsorption process can utilize adsorbents produced from different waste raw materials such as waste tire-activated 
carbon, polymers and fruit peels due to the characteristics of lignin, pectin, cellulose and hemicellulose which provide metal bind-
ing sites facilitating their removal [32–36]. The adsorbent is an integral part that captures pollutants onto itself and adsorbents can 
either be conventional or non-conventional. Examples of conventional adsorbents include ion-exchange resins (porous crosslinked 
polymers, non-porous resins and polymeric organic resins), commercial activated carbons (peat, wood, coals, coconut shells) and 
inorganic materials (activated alumina, molecular sieves, zeolites, and silica gel) [37,38]. The non-conventional adsorbents are of 
natural origin or sourced from industrial waste by-products such as CFA and activated carbons obtained from industrial by-products 
(red mud, metal hydroxide sludge, CFA, and sludge) and agricultural solid wastes (bark, sawdust and solid wastes), natural materials 
(clays, siliceous and inorganic materials), industrial by-products such as red mud, bio-sorbents such as chitosan and chitin, and 
miscellaneous adsorbents such as hydrogels, cotton waste, calixarenes, and cucurbituril [37,39–41]. Amongst them, CFA is a tech-
nologically feasible low-cost and effective adsorbent to remove trace metals from wastewater as it is highly available and has high 
content of metal oxides [42,43]. The adsorption process also uses polymers and biopolymers or sorbents to enhance the activity of 
nanofillers and adsorbents [42,44]. The interest in nanomaterials is gaining momentum because they are regarded as effective 
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adsorbents for wastewater treatments due to their abundant reactive sites, large specific surface areas, nanostructure nature, and small 
particle sizes. They have high porosity, good pore channel connectivity, facile tunability, excellent biocompatibility, and easily 
scalable fabrication [45–47]. Adsorption depends on the surface area of the adsorbent, permeability, available sites, and types of 
interactions and does not change the morphology due to the regeneration capacity of the adsorbents [11,41,48]. Low-cost adsorbents 
can be obtained from industrial by-products and their huge specific surface area sets them apart from traditional adsorbents in terms of 
adsorption rate. Adsorbents can be based on nanoparticles and according to Gacem, Telli, & Khelil [41], they offer enormous potential 
for cleaning processes and are more active and quicker to remove different pollutants and trace metals with a relatively high density 
from wastewaters. However, the adsorption of trace metals using CFA as a low-cost adsorbent has been extensively explored [49]. 

CFA can reduce environmental pollution through easy processing due to its high porosity, appropriate pore size, high surface area, 
and other properties (such as high percentage of CaO and unburned carbon left in the CFA particles). According to Wilkins et al. [50], 
the use of CFA has gained much attention due to its increased adsorption capability and therefore also used to improve the adsorption 
capacity of other commercially available adsorbents. For example, zeolite-A can be synthesized from CFA using hydrothermal con-
version with tap water or mine water as a dissolution solvent (see Fig. 1), microwave irradiation, ultrasound and fusion techniques. 
When compared to untreated CFA, modified-CFA demonstrated considerably higher levels of trace metal adsorption capacity [51]. 

The removal efficiency of trace metals from wastewater is influenced by the choice of an adsorbent [15]. The trace metal ions that 
have received the most interest include Cd, Cu, Pb, Zn, Mn, Cr, and Ni [52]. For example, Ankrah et al. [53,54] effectively removed 
trace metals from industrial effluents using CFA as an adsorbent. The adsorption of trace metals is enhanced by higher amount of 
aluminium and silica oxides available in the CFA [55,56]. It is however important to monitor the pH, as studies have shown that the pH 
of the aqueous solution directly affects the adsorption of metal ions due to fluctuations in the surface charge of adsorbent and ioni-
zation level. For instance, significant Cu (II) and Zn (II) ion adsorption is possible with CFA at pH 8 [54]. The use of CFA to adsorb Ni 
(II) and Cr (III and VI) ions from wastewater has also been investigated in a few studies [57,58]. According to Rao et al. [57], the 
highest efficiency was reported at lower pH values and Cr (VI) concentrations were lowered from wastewater using CFA. Adsorption is 
also highly influenced by other factors such as temperature, contact time, and an adsorbent dosage or mass. Moreover, the concen-
tration of metal in the aqueous solution, temperature, pH and particle size all affected the percentage of adsorbate removal by CFA [58, 
59]. Cr (VI) adsorption on CFA was observed to be endothermic, and kinetic studies showed that the overall adsorption rate adhered to 
the pseudo-second order [60]. At low initial Cr (VI) concentrations, film diffusion effects assisted in limiting the total rate of 
adsorption; but at higher initial Cr (VI) concentrations, pore diffusion became more significant. At 20 ◦C, the adsorption capacity was 
high, with a reported value of 6.82 mg. g− 1 [61]. Furthermore, CFA materials with different carbon and mineral contents (oxides) were 
used as adsorbents to investigate the roles of adsorption in the removal of aqueous Cu (II) [52,62]. Copper (II) reduction in wastewater 
was significantly influenced by carbon content in CFA [12]. Aigbe et al. [52] studied the selective adsorption of various metal ions and 
the study assessed the potential of two CFA samples based on their chemical composition. The CFA sample with high amount of carbon 
and oxides was found to be able to selectively adsorb metals from aquatic systems [12,63,64]. Dynamic column experiments were used 
to assess the saturation capabilities of sorbents by monitoring breakthrough volumes of trace metal solutions [50]. According to Zhao 
et al. [65], the order of insolubility for the corresponding metal hydroxides determined the sorption sequence as Cu > Pb > Cd. When 
CFA was impregnated with Fe and Al, the adsorption of Ni (II), Zn (II) and Cr (VI) was highly improved [66]. Using enthalpy change 
data, it was determined that adsorption was exothermic for Ni (II) and endothermic for Zn (II) [51,65]. Hussain et al. [51] found that 
the alkaline character of the CFA neutralizes the metal solution, which is linked to the removal efficiency. Notably, CFA is able to 
adsorb trace metals without being impacted by high ionic strength or notable amounts of Cl and Ca [67]. When the concentration of 
calcium (CaO) increases, CFA adsorption efficiency increases as well [27]. The effect of CFA treatment on the concentrations of trace 
metals and toxicity in wastewater treated by a municipal wastewater treatment facility was examined by Ajorloo et al. [68]. The 
amounts of Pb and Cu were significantly reduced after 4 h, lowering the toxicities of these elements. Adsorption of Cu and Pb by CFA is 
an effective means for lowering the toxicities of these elements in wastewater [69]. A study showed that up to 90–95 % of Cu and Zn 
are removed by the generated adsorbent in batch and column studies. When the adsorption of both metal ions increased with 

Fig. 1. Preparation of zeolite from CFA using hydrothermal approach.  
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temperature, it was demonstrated that the adsorption process was exothermic [67]. The removal efficiency of metals is influenced by 
the concentration of the metals present in wastewater. At an ideal pH of 4.0, Zn removal percentage was effective at low concentrations 
and 60–65 % removal efficiency was achieved at higher concentrations of the metal within 6 to 8 h equilibration period [70,71]. At 
higher concentrations, removal occurred through particle diffusion; at lower concentrations, it occurred through the film diffusion 
process [61]. Umejuru, Prabakaran, & Pillay [72] demonstrated the effectiveness of CFA modified with graphene and polyaniline 
(CFA/GO/PANI) nanocomposites for adsorption of Cr. Nanoparticles of iron oxide are recognized as effective adsorbents due to 
low-cost, recyclable nature and magnetic properties and these materials were successfully recovered from CFA, this highlighting its 
advantage as a valuable resource [73]. 

1.3. Preparation of CFA-based nanocomposite materials or adsorbents 

In recent years, the use of CFA has received a lot of attention due to its potential to reduce the environmental burden of solid waste 
disposal, while contributing to economic gain [74,75]. CFA can work independently as an adsorbent as it contains nanosized particles 
(1–100 nm) with higher reactivity and large surface area and can also be incorporated into other adsorbent materials to improve their 
effectiveness [76]. The high efficiency of CFA-based adsorbents is also attributed to their high surface area which can be as high 1000 
m2 g− 1, their alkaline nature and capacity for adsorption/co-precipitation of elemental ions. 

Most of the economical and efficient CFA-based adsorbents are generally produced using conventional methods such as impreg-
nation with non-metallic or metallic compounds and chemical modification through basic and acidic treatment [77]. The tight 
wrapping of adsorbents on the CFA surface normally reduces the recombination of holes and electron charge carriers [78]. In addition, 
several other methods such as fusion, ultrasonic, hydrothermal treatment, sol-gel, microwave irradiation, and a combination of some 
of them such as sol-gel-hydrothermal method are generally used to produce various adsorbents and nanomaterials (photocatalysts, 
zeolites, geopolymers, and catalysts) from CFA [72,73,77,79,80]. Although CFA is cheap and has been evaluated as an effective 
adsorbent, there are some limitations in its application which require chemical modification. The limitations are attributed to its 
fineness property, low absorption capacity and content of hazardous trace metals. For example, Al-Zboon et al. [81] and Huang et al. 
[82] modified the chemical properties of CFA with sodium hydroxide and the results revealed its enhanced adsorption properties due 
to chemical modification. Other CFA-based materials tested to increase the adsorption capacity of CFA include modified zeolites, 
CFA/C HNCPs, TiO2/CFA, ZnO/CFA, CFA-decorated with tungsten oxide-graphene oxide, Mg(OH)2/calcined CFA nanocomposite and 
polyethyleneimine (PEI)/CFA [4,12,45,75,83–86]. For examples, Tauanov et al. [85] and Mofulatsi et al. [86] have also used a 
manganese coated zeolite to adsorb Cu (II) and Pb (II) ions and showed that the coating makes the adsorbent more efficient. 

2. Beneficiation of CFA in the synthesis of adsorbents or nanocomposite materials, their characterization and applications 

Characterization is an important step to identify the properties of the product and is mainly carried out for physical, chemical, 
morphological and mineralogical analysis purposes [77,87]. Different instruments and techniques are used to characterize the syn-
thesized adsorbents and nanocomposite materials depending on the application or remediation process or nature of these materials 
[46,73,88,89]. Different parameters such as dispersion, functional group of nanoparticles, morphological shape, features, elemental 
composition, crystallinity, internal or surface morphology, d-spacing, amorphous nature, surface area and the structure, can be 
identified. The double beam spectrophotometer can be used to analyse the dispersion of final purified silica nanoparticles (SiNPs), 
while the Fourier transform-infrared spectroscopy (FT-IR) is used to identify the functional groups [72]. 

The morphological shape and features of SiNPs and residues were determined using field emission scanning electron microscope 
(FESEM) while their elemental composition was analyzed using electron diffraction spectroscopy (EDS) attached to the FESEM 
[72,73]. Yadav et al. [73] also used X-Ray diffraction (XRD) and transmission electron microscope (TEM) to determine the crystallinity 
and the internal morphology of these nanoparticles. Moreover, high-resolution TEM (H-RTEM) was used to obtain the d-spacing of the 
SiNPs, while the scattering area electron diffraction (SAED) was used to identify the amorphous nature or crystallinity of the nano-
particles. In another study, Umejuru, Prabakaran, & Pillay [72] conducted a study on CFA/GO/PANI nanocomposites for effective 
adsorption of Cr (VI) and its reuse for photocatalysis. The surface area of CFA/GO/PANI nanocomposite was identified through 
Braunauer-Emmett-Teller (BET) analysis and the functional groups were also identified using FT-IR. Angaru et al. [75] conducted a 
study on the synthesis of economical feasible CFA-based zeolite-supported nanozerovalent iron and nickel (nZVI/Ni@FZA) bimetallic 
composite for potential removal of trace metals from industrial effluents. The authors used SEM-EDS, BET, XRD, and X-ray photo-
electron spectroscopy (XPS) to characterize the structure of the zeolite as well as their formed composite material. Imoisili, Nwanna, & 
Jen [79] characterized the synthesized silica nanoparticles from a South African CFA using XRD for elemental composition and 
crystallinity was determined by X-Ray fluorescence (XRF) spectrometer and XRD. Furthermore, Wen et al. [45] used BET, FT-IR, 
SEM/SEM-EDS and XPS to characterize the synthesized bio-sorbent composite (chitosan-coated with CFA utilized to adsorb chro-
mium (VI) from aqueous solutions. Similarly, Adamczuk, & Kołodyńska [80] used the same techniques in addition to XRD for the 
characterization of the CFA-coated with chitosan. 

The application of CFA as an adsorbent material is attributed to the inorganic or organic nano-sized particles (ultrafine glassy 
spheres, cenospheres, nanotubes, and carbonaceous nanospheres) with surface area as high as 1000 m2. g− 1 that can adsorb trace 
metals from wastewater and can be incorporated into other materials or as a synthesized composite to enhance its removal efficiency 
[49,90,91]. 

CFA-based adsorbent materials that have been applied to remove trace metals from industrial effluents, water, CFA slurry, and 
wastewater [4,12,45,72,75,79,92] are illustrated in Table 1. 
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In Table 1, most of the researchers exploited class F CFA (Canada, China, Greece, India, Korea, Poland, and South Africa). Class F 
CFA was used because of its low calcium oxide content (less than 10 wt%) and it is rich in Al2O3, Fe2O3 and SiO2 (greater than 70 wt% 
combined) according to the American Society for Testing Materials Standards. As mentioned in the introduction section, it mostly 
originates from bituminous and anthracite coals and has higher LOI than class C CFA and has pozzolanic properties [27]. Class F CFA 
from South Africa has been confirmed to be a good substrate for silica nanoparticle and zeolite syntheses due to its compositional 
dominance of silicate and aluminosilicates [79,93]. Methods or techniques found to be mostly used to synthesize nanomaterials 
include alkaline fusion, pulverization, sol-gel technique, hydrothermal method, coating and microwave irradiation. The kinetic and 
isotherm models of CFA-based nanomaterials dominating others were pseudo-second order and Langmuir models, respectively. The 
pseudo-second order kinetic model followed in some studies assumes that the rate-limiting step is chemisorption in which adsorption 
increases with an increasing temperature and predicts the behaviour over the whole range of adsorption process [91,92,94]. Optimum 
pH and removal efficiency ranged between 3.0 and 8.0, and 40.00–97.41 %, respectively. The removed trace metals were Cu (II), Cr 
(VI), Hg (II), Cd (II), As, Zn, Cr (III), Pb (II), Ni, Co, and Mn. Ideal surface areas of reviewed nanomaterials (Table 1) ranged between 
1.40 and 154.11 m2. g− 1 which is a good range for suitable nanomaterials while adsorption capacity ranged between 0.22 and 147.06 
mg. g− 1. The advantages presented by the use of CFA make this industrial by-product a highly sought precursor material to synthesize 
other nanomaterial composites for trace metal removal from wastewaters. 

3. Conclusion and future perspectives 

Worldwide, high amounts of CFA are still being produced due to high usage of coal for generation of electricity. Environmental 
pollution due to its disposal have resulted to exploration of its potential for reuse. CFA can be recycled and applied in water treatment 
processes due to its noteworthy properties.. Reuse processes can contribute significantly to the reduction of this voluminous waste 
material and provide low-cost adsorbent materials. This review highlights the advantages of CFA as an excellent adsorbent material for 
removal of metals from environmental samples. Findings show that CFA as an adsorbent (nano-sized particles) or as a precursor 
material to synthesize nanomaterials has the potential for removal of trace metals from wastewater and can be modified to improve its 
adsorption capacity. Based on these findings, researchers and scientists can benefit from the reuse of CFA as it does not require an 

Table 1 
Examples of research on some CFA-based adsorbents and nanoparticles.  

Parameters Adsorbent or nanocomposite materials 

CFA-based zeolite- 
supported 
nanozerovalent Fe 
and Ni bimetallic 
composites 

Zeolite LTA 
(CFA-ZA) 

CFA/C HNCPs CFA-coated by 
chitosan 
(CCFAICS) 

Chitosan- 
coated CFA 
composite 

Porous pellets Floral-shaped 
nanosilica 

Environmental 
sample 

Industrial effluents Industrial 
wastewater 

Water Water Water Wastewater CFA slurry 

Class of CFA used F F F F – C F 
Optimum pH 3.0 (Cr) and 5.0 (Cu) – – – 5.0 pH 7.0 (Cr2+, 

Pb2+) and pH 8.0 
(Zn2+) 

5.0 (Pb) and 
7.0 (Zn) 

Contaminant Cu(II) and Cr(VI) Hg(II) Cd(II) As, Cr, Zn, and 
Cu 

Cr(VI) Cr(III), Pb(II), 
and Zn(II) 

Ni, Co, Al, Pb, 
Cr, Zn, Mn, Cd, 
and Cu 

Method Alkaline fusion Microwave 
irradiation 

Hydrothermal 
method 

Coating Coating Pulverization 
(pelletizing) 

Sol-gel 
technique 

Order model and 
kinetic 
models 

Pseudo-second-order Pseudo-second- 
order 

Pseudo-second 
order 

Pseudo second 
order 

– Pseudo-second- 
order 

– 

Adsorption type Chemisorption Physisorption 
and 
chemisorption 

– Chemisorption – Chemisorption – 

Adsorption 
capacity 
(mg/g) 

48.31 (Cr) and 147.06 
(Cu) 

0.44 – 19.10–55.52 33.27 0.22 Pb (II), 0.27 
Zn (II) and 0.44 
Cr (III) 

– 

Removal 
efficiency 
(%) 

– 94.00 97.41 – – – 40.00–90.00 

Isotherm model Langmuir Freundlich Langmuir Freundlich Langmuir Langmuir – 
BET surface area 

(m2/g) 
154.11 – 25.50 1.40 26.95 23.41 – 

Size of the 
material 
(nm) 

100.00 – – 200.08 – 3.50–4.50 20.00–70.00 

Country Korea Canada South Africa Poland China Greece India 
References [75] [92] [12] [79] [45] [4] [72]  
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intensive pretreatment process for its application. CFA is a low-cost by-product material and is readily available in large quantities. 
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