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ABSTRACT: Structure activity relationship (SAR)-based read-across
often is an integral part of toxicological safety assessment, and justification
of the prediction presents the most challenging aspect of the approach. It
has been established that structural consideration alone is inadequate for
selecting analogues and justifying their use, and biological relevance must
be incorporated. Here we introduce an approach for considering
biological and toxicological related features quantitatively to compute a
similarity score that is concordant with suitability for a read-across
prediction for systemic toxicity. Fingerprint keys for comparing
metabolism, reactivity, and physical chemical properties are presented
and used to compare these attributes for 14 case study chemicals each
with a list of potential analogues. Within each case study, the sum of these
nonstructural similarity scores is consistent with suitability for read-across
established using an approach based on expert judgment. Machine
learning is applied to determine the contributions from each of the similarity attributes revealing their importance for each structure
class. This approach is used to quantify and communicate the differences between a target and a potential analogue as well as rank
analogue quality when more than one is relevant. A numerical score with easily interpreted fingerprints increases transparency and
consistency among experts, facilitates implementation by others, and ultimately increases chances for regulatory acceptance.

1. INTRODUCTION
Structure activity relationship (SAR)-based read-across is one
of the most widely used animal alternative methods for safety
assessment. The technique is used to fill toxicological data gaps
and involves the use of toxicological data for a data-rich source
compound or analogue to establish the safety of a data-poor
target compound or structure of interest (SOI). Read-across is
simple in concept but can be difficult in practice, and the most
challenging aspect of the approach involves identifying
analogues and justifying their use in predicting toxicity. The
P&G framework for analogue selection relies on the use of
expert judgment to evaluate similarity in structure, metabolism,
reactivity, and physical chemical properties as it relates to
systemic toxicity to assign one of the following analogue
ratings: “suitable”, “suitable with interpretation”, “suitable with
precondition”, and “not suitable”.1,2 “Suitable” analogues are
very close to the analogue structurally, undergo the same
metabolic pathways, and display the same structural alerts with
nearly identical physical chemical properties. “Suitable with
interpretation” analogues are similar in all attributes but with
small differences in one attribute with little impact on relative
toxicity such as differences in physical chemical properties. If
an analogue is a metabolite of the SOI or if the SOI and
analogue potentially may converge metabolically, the analogue
is rated “suitable with precondition”. Finally, “not suitable”
analogues possess little similarity in one or more attributes.

The approach was tested using 14 case study chemicals and
was shown to correlate well with in vivo toxicological data for
systemic toxicological effects including the following end
points: repeat-dose, developmental and reproductive (DART),
skin sensitization, genetic toxicity, and carcinogenicity
(genotoxic mode of action).3

The framework has been applied for over 10 years to
establish the safety assessment of more than 1500 compounds.
Recently, by analyzing approximately 4000 SOI/analogue pairs
of structures, it was shown that there is little correlation
between suitability for read-across and quantitative structural
similarity scores computed using Tanimoto comparisons of
molecular fingerprints. Instead, all SOI/analogue pairs of
structures analyzed where the analogue was deemed suitable
for read-across were described as matched molecular pairs
(MMPs) of structures possessing a common core or scaffold
with small changes between attached R groups. These small
changes fell into one of five categories of changes for both
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aliphatic and aromatic compounds. A workflow describing
these structural changes recently has been published to
facilitate implementation of the approach by others.4

While current practices of read-across often require
calculating a quantitative structural similarity score as a first
step in analogue selection, it is well-known that structural
considerations alone are insufficient for justifying analogue
suitability.2,5 However, the similarity score is appealing because
it provides a quantitative comparison of two structures even if
comparing molecular fingerprints is not always sensitive to
differences in toxicity. For this reason, quantitation of all
similarity attributes, chemical as well as biological, is needed
and has been proposed to facilitate regulatory acceptance.6

Frameworks and tools enabling a read-across toxicological
assessment have been described and combined into a

harmonized framework that suggests integrating quantitative
measures of structural similarity with other similarity
considerations such as physical chemical properties, structural
alerts, and features from a metabolic profiler.7

There are examples of recent efforts to quantify non-
structural similarities in read-across. Gadaleta et al. have
combined structural, biological, and metabolic similarity in the
analogue selection process using MACCS (Molecular Access
System) fingerprints for structural similarity, biotransforma-
tions predicted using SyGMa (Systematic Generation of
possible Metabolites) software for metabolic similarity, and
the outcome of high-throughput screening assays from
PubChem for biological similarity.8,9 The authors demonstrate
improved predictivity using all three similarity measures
relative to structural similarity alone. Others have proposed

Table 1. Case Study Chemicals
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similar methods for assessing metabolic similarity. Boyce et al.
computed metabolic similarity using pathway transformations
predicted by Meteor for 3,4-toluenediamine and potential
analogues for defining a fingerprint with comparisons
performed by calculating a Jaccard distance.10 Yordanova et
al. considered metabolic similarity by comparing side-by-side
arrays of metabolites for a target/analogue pair of structures for
identification of common metabolic pathways, common
metabolites, as well as consideration of the formation of
common reactive metabolites.11 Yang et al. defined “analogue
quality” as the geometric mean of similarity in structure and
molecular/physical chemical properties for a target/analogue
pair and show that this metric may be used to derive a range of
NOAEL (No Observed Adverse Effect Level) values for the
target based on those values determined for analogues deemed
to be high quality.12 Finally, “biological similarity” may be
calculated by comparing the output from various HTS (high-
throughput screening) assays that may include profiles of gene
expression, assays of enzymatic activity, or measurements of
cytotoxicity.13,14

The work presented in this Article quantifies similarity in
metabolism, reactivity, and physical chemical properties
between an SOI and a potential analogue to justify use of
the analogue in a read-across assessment for the prediction of
systemic toxicological effects which are not end point specific
but may include references to structural alerts associated with
known toxicity. Fingerprints representing metabolism, reac-
tivity, and physical chemical properties are presented and
defined for the 14 case study chemicals previously used to
validate the P&G framework for analogue selection and listed
in Table 1.3 To characterize similarity in metabolism, the
product of the similarity scores characterizing the metabolic
pathway of the compound and the presence of reactive species
resulting from metabolic biotransformation or limited
detoxification is used to heavily weight any differences in
metabolism between the two compounds. A fingerprint listing
structural alerts for each compound is used to compute
similarity in reactivity. Finally, a fingerprint for comparing the
physical chemical properties for two chemicals is determined
based on four properties including lipophilicity (logP),
molecular weight (MW), charge, and volatility. Once the
fingerprints are defined, they are compared for each SOI/
analogue pair of compounds using the Tanimoto algorithm to
compute a similarity score (S) as shown below:

S
c

a b c
=

+ (1)

where a is the number of bits in SOI fingerprint A, b is the
number of bits in analogue fingerprint B, and c is the number
of bits present in both A and B.15

In the study presented here, fingerprints representing
biologically relevant similarity attributes are presented, and
their use for justifying a read-across prediction is investigated
for 14 different case study chemicals and their series of
potential analogues used previously in validation of the expert-
judgment-based P&G framework.3 The correlation between
structural similarity and suitability for read-across is explored
using common molecular fingerprints to identify any molecular
features that may be sensitive to analogue ratings. The
importance of each nonstructural similarity attribute also is
considered to identify which attribute dominates the suitability
decision for each class of compounds. Finally, two different
weighting scenarios are evaluated for optimum concordance

between a weighted sum of nonstructural similarity attributes
and analogue suitability.

2. MATERIALS AND METHODS
2.1. Metabolism Similarity. Metabolism is critical for assessing

the suitability of an analogue for read-across. Xenobiotic metabolism
can produce both nontoxic metabolites which tend to be polar and
readily excreted and also reactive metabolites which can interact with
macromolecules potentially resulting in toxicity. We capture both the
formation of nontoxic metabolites and the formation or presence of
species that may bind cellular macromolecules species when we
consider similarity in metabolism as the product of a metabolism
similarity score and reactive metabolism similarity score. Although the
rate and extent of metabolism may differ between an SOI and
potential analogues, “suitable” analogues share the same metabolic
pathways and form the same reactive metabolites as the SOI.
Therefore, similarities of the major metabolic pathways and reactive
metabolites are compared for all SOI/analogue pairs.

The metabolic pathways of the SOI and analogues were
summarized from literature data if identified or were predicted
based on the presence of the functional group in a similar scaffold or
substructure frequently supported by data for such compounds with
similar structural features. For each SOI and analogue, a metabolism
fingerprint was created that consists of key entries corresponding to
biotransformations known or predicted to occur for the compound. A
starting list of biotransformations used as metabolism fingerprint keys
was obtained from the SyGMa (Systematic Generation of potential
Metabolites) prediction tool.9 The output of the SyGMa tool was not
used, but rather only the list of biotransformations which was
expanded to include those missing from the list. Transformation
names were edited in some cases to remove structurally specific
references. For example, in some instances it was not necessary to
specify the position of hydroxylation of an alkyl chain (e.g., terminal,
penultimate, or at another position along the chain) if this
transformation represents a minor metabolic event along the pathway.

Because toxicity is frequently associated with the formation of
reactive metabolites, it is important to highlight biotransformation
keys involved in any activating processes. For each chemical
considered, a reactive metabolism fingerprint also was generated to
heavily weight and compare reactive metabolite formation. A current
list of the biotransformations included in our fingerprints is shown in
Table S1A grouped according to phase 1 and phase 2 transformations.
Table S1B displays a collection of the biotransformations from the
first list along with the name of the reactive species which possesses
the potential to react with cellular macromolecules. In some cases, the
biotransformation listed is considered detoxifying such as glutathio-
nation of a compound along with the species that may react with
cellular macromolecules when glutathione has been depleted. While
toxicity associated with this functional group also is highlighted in the
corresonding alert similarity, it is important to compare both the
potential for transformations that may be considered detoxifying as
well as transformations involving reaction with cellular macro-
molecules when comparing similarity in metabolism. A Tanimoto
comparison of the metabolism fingerprints and the reactive
metabolism fingerprints was performed for all SOI/analogue pairs
to calculate a metabolism similarity score (MSS) and a reactive
metabolism similarity score (RMSS). For both calculations, the
counts of the biotransformation keys were included so that if a
biotransformation was shown or predicted to occur more than once,
the counts for the keys were included by modifying the
biotransformation name accordingly, e.g., aromatic_hydroxylation,
aromatic_hydroxylation-, and aromatic_hydroxylation-. A total
metabolism similarity score (TMSS) was then computed as the
product of the two metabolism similarity scores as shown below:

TMSS MSS RMSS= × (2)

Fingerprints and similarity scores were generated using Pipeline
Pilot software (Biovia version 2021). Metabolism fingerprint data for
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all 14 case study chemicals are included in the Supporting
Information.

2.2. Alert Similarity. Analogous to metabolism similarity, a
fingerprint defining alerts for all compounds was generated, and a
Tanimoto comparison was performed to compute an alert similarity
score for all SOI/analogue pairs. Keys for the alert similarity
fingerprint consist of alerts generated from DEREK (Lhasa Nexus
6.1.0) and an internal tool for assessing the potential of a chemical for
developmental and reproductive toxicity (P&G DART Decision Tree
v. 1.6).

DEREK (Deductive Estimation of Risk from Existing Knowledge)
is a software package produced by Lhasa Nexus that predicts
toxicological alerts for a chemical using expert knowledge, rules, and
references. Structural fragments of a chemical are compared to
chemical structures with known toxicity. The knowledge-base covers a
range of toxicological end points including carcinogenicity,
chromosome damage, mutagenicity, and skin sensitization.16 Exten-
sive coverage of bacterial mutagenicity and skin sensitization end
points permits the software to provide reasoning describing a known
absence of toxicity for a compound. For bacterial mutagenicity and
skin sensitization, the software provides negative predictions of
“inactive” and “non-sensitizer,” respectively. In addition, DEREK has
several prediction levels, and all chemicals considered in this study
were evaluated at the “Plausible” prediction level.

The P&G Automated DART DT (Developmental and Reproduc-
tive Toxicity Decision Tree) is a screening tool used to predict DART
toxicity by comparing the structure of an input chemical to a virtual
library of structures possessing structural features associated with
compounds with a known precedent for DART toxicity.17 Tool
output consists of the following five predictions: Maps Positive, Maps
Scaffold, No Maps, DART Negative, and Not Covered.

An SD file containing the SOI and analogues was generated for
each case study, and the output from DEREK and the DART DT
were used as fingerprints to analyze the reactivity of all SOI/analogue
pairs. If a DEREK alert was fired for a chemical (SOI or analogue),
the reactive fingerprint consisted of the name of the toxicological end
point alert concatenated to the alert value. If an alert was not fired for
a chemical at the “Plausible” level, the reactive fingerprint consisted of
the name of the toxicological end point concatenated to the following
values: “null” when no alert was fired, “inactive” (negative for bacterial
mutagenicity), or “non-sensitizer” (negative for skin sensitization).
The five different predictions from the DART DT provided an
additional fingerprint key. If a chemical is classified as Maps Positive,
Maps Scaffold, or DART Negative, the category and/or the name of
category also was included in the fingerprint. The reactive fingerprints
are listed in Table S2.

2.3. Physical Chemical Similarity. Similarity in physical
chemical properties is important in demonstrating that an analogue
display similar pharmacokinetic profiles to the SOI including
similarity in absorption, distribution, metabolism, and excretion
(ADME). Absorption is important in describing how the chemical
gets into the body, and distribution describes where it will go once
inside the body; metabolism describes how the compound breaks
down, and excretion describes how the compound leaves the body.
Predictions of these properties is critical to the pharmaceutical
industry in which poor pharmacokinetic properties often limit the
development of new drugs. To obtain an early read on
pharmacokinetic properties of potential drugs, the pharmaceutical
industry employs many in vitro and in vivo methods. A set of
interpretable rules of thumb or guides on structure−property
relationships based on the results of ADMET (absorption,
distribution, metabolism, excretion, and toxicity) assays were
summarized using principal component analysis. In the exercise, it
was shown that 81% of the variation in the assays can be described by
the top 4 principal components including predicted values for
lipophilicity (cLogP), molecular weight (MW), and positive or
negative charge.18 These properties are incorporated into a fingerprint
for calculating similarity in physical chemical properties between
potential analogues with an SOI.

Lipophilicity is the most important property for determining
ADMET behavior, and here the absolute value of the difference in
LogP (predicted using ACD Percepta software version 2020) for an
analogue and SOI (shown below) is considered for fingerprint entries;
these differences are binned according to the ranges listed in Table S3.
Bins were chosen based on the absolute value for LogP differences
calculated for more than 3000 SOI/analogue pairs for which the
analogue was considered “suitable” or “suitable with interpretation”
following the P&G framework.4

LogP LogP(analog) LogP(SOI)= | | (3)

Keys corresponding to MW bins were established in a manner
similar to the bins used by Gleeson.18 Charge was determined as the
charge of the largest fraction of species calculated using the
Henderson−Hasselbalch equation.19 A final property used to
determine analogue suitability is volatility. A volatile analogue
would not be a suitable read-across analogue for establishing the
safety of a nonvolatile SOI. Using the definition of a low-vapor-
pressure volatile organic compound (VOC) specified by the
California Air Resource Board, a compound is considered a VOC
[true (1) or false (0)] if it contains at least one carbon atom and is
consistent with one of the following:

(1) vapor pressure <0.1 mmHg

(2) boiling point <216 °C
(3) contains ≤12 carbon atoms

2.4. Total Similarity. A total similarity score (TotalScore) is
defined as the following sum of the similarity scores:

TotalScore total metabolism similarity alert similarity

physical chemical similarity

= +
+ (4)

While weighting the individual components to TotalScore results in
improved correlation with analogue rating, we have found that a
simple 1:1:1 weighting of total metabolism similarity:alert similar-
ity:physical chemical similarity is sufficient for the limited number of
case studies considered here. As we populate our database of
similarity scores with more SOI/analogue pairs, the optimum
weighting for each component may change. Pipeline pilot software
(Biovia, version 2020) was used to calculate all nonstructural
similarity scores and TotalScores.

2.5. Data Analysis. 2.5.1. Structural Similarity and Separability
Analysis. Structural similarity scores were computed for comparison
with analogue ratings. Structural fingerprint sets were obtained using
open-source python libraries (PyFingerprint,20 and RDKit21). A
diverse set of structural fingerprints was selected to maximize the
chemical information content extracted from the structural similarity
data. The fingerprint types comprised the following: (1) circular
count-based extended connectivity fingerprints (ECFC4, 2048
substructure keys), (2) circular binary ECFP4 (2048 substructure
keys), (3) Molecular ACCess System public keys (MACCS, 166
substructure keys), (4) RDKit (2048 substructure keys), (5) path-
based Avalon (512 substructure keys), (6) pharmacophore-based
extended reduced-graph (ErG, 315 features), and (7) Saagar
structural feature-based fingerprint (834 features�v1).22 The
structural similarity score was computed using the Tanimoto
coefficient for all molecular fingerprints, except for the pharmaco-
phore-based ErG fingerprints for which an algebraic form of
Tanimoto coefficients was used. The structural fingerprints and
their respective similarity scores were computed in a jupyter
notebook23 using python (3.6).24

To evaluate and quantify predictivity of analogue rating using all
types of similarity scores, a categorical statistical metric was computed
called degree of separability, Sd, which represents the effectiveness of a
similarity metric in distinguishing analogues considered “not suitable”
from those rated either “suitable” or “suitable with interpretation”.
The criterion for separation per case study is defined with the
following expression:
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where scorei refers to a similarity score of an analogue in either the
“suitable” or “suitable with interpretation” rating groups, and scorej
refers to a similarity score of a “not suitable” analogue. max(score{NS})
is the maximum score for all analogues rated “not suitable”, and
min(score{S,SI}) is the minimum similarity score for the “suitable/
suitable with interpretation” analogue bin. NNS is the total number of
“not suitable” analogues, and NS+SI is the total number of “suitable/
suitable with interpretation” analogues. Sd for each approach is
calculated as the fraction of analogues that satisfy the above condition.
For example, for an SOI with 10 analogues, where 9 analogues can be
distinguished with a similarity score and 1 analogue has the same
score as an analogue from a different analogue group (borderline), the
degree of separability would be 90%. Separability analyses were
performed using R (4.1.0)25 and python (3.6)23 in an Rmarkdown
notebook26 and jupyter notebook,22 respectively.

2.5.2. Machine Learning (ML) Modeling. Binary classification
models were built using python package Scikit-learn7 to estimate the
relative feature importance or coefficients of the similarity
components contributing to the qSIM (quantitative similarity) score
(eq 6) for predicting the analogue ratings shown in Figure 4 where
two classes of ratings are considered (class 1 = S or SI versus class 2 =
NS). A classification-based machine learning pipeline was constructed
to explore how well the different machine learning models predicted
the expert-judgment-based analogue ratings using the similarity
components. Multinomial logistic regression was found to be the
best-performing model for predicting the analogue rating class, with
feature importance computed using Scikit-learn built-in libraries.27

The inputs of the machine learning models are the three qSIM

components, and the output of the model is a two-class categorical
prediction (class 1 = S or SI versus class 2 = NS).

Weighted averages of the similarity components were computed
using the ML-derived coefficients (a, b, c) in eq 6. The coefficients
represent normalized feature importance values. The weighted
averages were multiplied by 3, the maximum qSIM score, to scale
the data for comparing different forms of the qSIM score. The
computed rescaled weighted averages were compared against the base
qSIM score consisting of a linear sum of the components where a = b
= c = 1, to identify coefficients that best fit the expert-judgment-based
analogue rating assignments. The rescaled weighted average scores
can be expressed with the following equation:

a b c
a b c

qSIM
AlertSim PhysChemSim TotalMetabSim

3= × + × + ×
+ +

×

(6)

where AlertSim (alert similarity), PhysChemSim (physical chemical
similarity), and TotalMetabSim (total metabolism similarity) are the
similarity components, and a, b, and c are the component coefficients,
respectively. TotalScore (eq 4) corresponds to the base score (eq 6)
with equal weighting of the individual similarity scores (a = b = c = 1).
The derived component coefficients from machine learning modeling
optimize the qSIM score to improve the separability of the qSIM
score between the different analogue rating groups.

3. RESULTS
For all case study chemicals, analogues requiring metabolism
to justify their use in read-across are excluded from the studies
presented here. These analogues are labeled “suitable with
precondition” and require metabolism data and extrapolation
to in vivo concentrations to justify their use.

3.1. Case Study 1�Benzyl Alcohol (CAS 100-51-6).
Relevant fingerprint keys and similarity scores are presented in
Table 2 for case study 1 which is benzyl alcohol (CAS 100-51-

Table 2. Fingerprint keys and similarity scores for case study 1 (benzyl alcohol). Analogue ratings are as follows: SOI =
structure of interest, S = suitable, SI = suitable with interpretation, and NS = not suitable

SOI 589-18-4 89-95-2 536-60-7 100-39-0

Metabolism Keys
aliphatic_hydroxylation_(primary_carbon) 0 0 0 1 0
primary_alcohol_oxidation_(benzylic) 1 1 1 1 0
glycination_(aromatic_carboxyl) 1 1 1 1 0
O-glucuronidation_(aromatic_carboxyl) 1 1 1 1 0
GSH conjugation 0 0 0 0 1
metabolism similarity score (MSS) SOI 1 1 0.75 0

Reactive Metabolite/Species Keys
benzyl_halide 0 0 0 0 1
reactive metabolism similarity score (RMSS) SOI 1 1 1 0
total metabolism similarity score (MSS) × (RMSS) SOI 1 1 0.75 0

Alert Keys
Mutagenicity in vitro bacterium_Alkylating Agent 0 0 0 0 1
Skin sensitization mammal_Benzylic, allylic, or propargylic halide 0 0 0 0 1
Carcinogenicity mammal_Alkylating Agent 0 0 0 0 1
Chromosome damage in vitro _mammal_alkylating agent 0 0 0 0 1
DART_DT 0 0 0 0 0
alert similarity score SOI 1 1 1 0.11

Physical Chemical Property Keys
DeltaLogPbin 1 (0 ≤ ΔLogP < 2) 1 1 1 1 1
MWbin2 (100 ≤ MW < 300) 1 1 1 1 1
charge�neutral 1 1 1 1 1
VOC 0 0 0 0 1
Physchem similarity score SOI 1 1 1 0.6
total similarity score SOI 3 3 2.75 0.7
analogue rating SOI S S SI NS
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6). The metabolism of benzyl alcohol (SOI) is well-known in
humans where it has been shown that the alcohol is rapidly
oxidized to benzaldehyde and then to benzoic acid which
undergoes phase 2 conjugation with glycine to form hippuric
acid or with glucuronic acid to form the O-glucuronide.28 The
metabolism fingerprint for benzyl alcohol contains 3 active
biotransformation keys representing oxidation of the alcohol to
the acid (aldehyde oxidation is not considered as a separate
step) and the phase 2 transformations glycination and O-
glucuronidation of the benzoic acid group with no reactive
metabolism transformations. Analogues p-methylbenzyl alco-
hol (CAS 589-18-4) and o-methylbenzyl alcohol (CAS 89-95-
2) possess benzoic acid scaffolds with an extra methyl group at
the p- or o-positions. These analogues are known metabolites
of p- and o-xylene, respectively, and it has been demonstrated
that the alcohol group undergoes oxidation followed by phase
2 conjugation with no biotransformation of the methyl
groups.29 Therefore, these two analogues possess the same
nonzero biotransformation keys as the SOI with no reactive
metabolite keys identified resulting in a TMSS of 1. Analogue
4-isopropylbenzyl alcohol (CAS 536-60-7) has an additional
isopropyl group at the p-position, which would yield
hydroxylation of the isopropyl group as an additional
metabolic pathway. Alcohol oxidation, glucuronidation, and
glycine conjugation of CAS 536-60-7 would still occur; the
MSS of this analogue is 0.75, and in the absence of reactive
metabolite formation the TMSS is 0.75. Analogue benzyl
bromide (CAS 100-39-0) is an electrophilic benzyl halide with
glutathione conjugation being the major metabolic trans-
formation.30 No common metabolic pathways can be found
between the SOI and this analogue; therefore, the MSS = 0.
Because benzyl bromide itself is a reactive species exemplified
by the reactive metabolite/species key for a benzyl halide, the
RMSS = 0 for this analogue resulting in a TMSS = 0.

Benzyl alcohol and the three alkyl derivatives fire no alerts in
DEREK or the DART DT resulting in a reactivity similarity
score of 1.0 for these SOI/analogue pairs. Benzyl bromide, on
the other hand, fires four structural alerts in DEREK due to the
key functional group alkyl bromide which produces DEREK
alerts for carcinogenicity, chromosome damage, and muta-
genicity in vitro in mammals in addition to alerts for eye
irritation, respiratory track irritation, and skin sensitization. As
such, the alert similarity score for this SOI/analogue pair is
0.11.

Benzyl alcohol and the four analogues possess similar
physical chemical properties and all fall into the same ΔLogP
bin and MW bin and are neutral in charge. Volatility is the only
key for which differences exist since the SOI and its alkyl
derivatives are not considered volatile; however, the benzyl
bromide has a much higher predicted vapor pressure resulting
in a positive VOC classification. The similarity score for
physical chemical properties is then equal to 1 for the three
analogues that are alkyl derivatives of the SOI while benzyl
bromide results in a PhysChem similarity score of 0.6 with the
SOI.

A sum of all similarity scores results in a TotalScore for each
analogue shown in the second to last row of Table 2 and
correlates well with the expert-judgment-based analogue rating
assigned for these compounds and listed in the last row of the
table. The correlation with analogue rating is more evident in
the stacked bar plot for case study 1, shown in Figure 1, where
the two “suitable” analogues receive a TotalScore of 3; the
“suitable with interpretation” analogue has a score of 2.75

while the TotalScore for “not suitable” analogue is much lower
at 0.7.

3.2. Case Study 3�Diisobutyl Ketone (CAS 108-83-8).
The phase I metabolism of diisobutyl ketone (SOI) was
studied in the rat, is shown in Scheme 1, and includes

reduction of the carbonyl group (1) to the alcohol (2),
oxidation of the alcohol group back to the carbonyl (1), and
hydroxylation of the alkyl chain at the primary (ω-position, 4)
or tertiary carbon (ω-1-position, 3).31 Fingerprints for
metabolism, structural alerts, and physical chemical properties
are summarized in Table 3 along with similarity scores which
are shown graphically in Figure 2 with chemical structures.
Analogue diisoamyl ketone (CAS 2050-99-9) contains the
same structural features and has the same metabolism
fingerprint as the SOI; therefore, the TMSS for this analogue
is 1. Analogue 2,6,8-trimethyl-4-nonanone (CAS 123-18-2)
possesses an extra branched methyl group at the 6-position,
which may lead to an additional hydroxylation biotransforma-
tion key resulting in an MSS of 0.8. Compounds 3-ocatanone
(CAS 106-68-3), 3-nonanone (CAS 925-78-0), 4-heptanone
(CAS 123-19-3), 3-hexanone (CAS 589-38-8), 6-undecanone
(CAS 927-49-1), and 7-tridecanone (CAS 462-18-0) are
straight-chain monoketones. Because of the absence of chain
branching, the ω-1 hydroxylation of these analogues occurs at
a secondary carbon (vs a tertiary carbon in the SOI), while the
other three metabolic pathways match those for the SOI. The
MSS for each of these analogues is 0.6, and because no reactive
metabolites will form for these analogues, the RMSS for these
analogues is 1 resulting in a TMSS = 0.6.

Figure 1. Horizontal stacked bar plot of the TotalScore for case study
1 (benzyl alcohol). Each bar is the sum of the following components:
total metabolism similarity (red), alert similarity (blue), and physical
chemical similarity (green). Analogue ratings correspond to S
(suitable), SI (suitable with interpretation), and NS (not suitable).

Scheme 1. Metabolic Pathways for Case Study 3, Diisobutyl
Ketone (CAS 108-83-8)
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Analogue diethyl ketone (CAS 96-22-0) is a short-chain
monoketone for which alkyl chain hydroxylation is unlikely to
occur as observed in the rat resulting in an MSS and TMSS of
0.5.32 Analogue acetylacetone (CAS 123-54-6) contains two
carbonyl groups, which would have a count of 2 for the
carbonyl reduction and secondary alcohol oxidation bio-
transformation keys. Because of the shorter alkyl chain for
this analogue, alkyl chain hydroxylation is not likely to occur
resulting in an MSS and TMSS of 0.33.32

Analogues 3-heptanone (CAS 106-35-4) and 5-methyl-3-
heptanone (CAS 541-85-5) are linear and methyl-branched
ketones, respectively, and because of the position of the
carbonyl group, ω-1 hydroxylation followed by alcohol
oxidation would lead to the formation of a γ-diketone reactive
metabolite that may cause neurotoxicity.33 The MSSs for 3-
heptanone (CAS 106-35-4) and 5-methyl-3-heptanone (CAS
541-85-5) are 0.5 and 0.43, respectively. Due to the reactive
metabolite formation, the RMSSs are 0 for these two
analogues. Analogues methacrolein (CAS 78-85-3) and
diisobutenyl ketone (CAS 504-20-1) contain one or more
α,β-unsaturated ketone group resulting in different metabolic
pathways from the monoketone, but it is also a reactive
functional group. Therefore, analogues methacrolein and
diisobutenyl ketone result in an MSS of 0 and 0.33,
respectively, but with RMSSs = 0, the resulting total
metabolism similarity TMSS is 0.

The alert fingerprint and similarity scores for analogues of
diisobutyl ketone (CAS 108-83-8) also are shown in Table 3.
For this structural class the structural alerts are reflective of
reactive metabolite formation with no alerts found for the first
10 analogues consisting of straight-chain or branched alkyl
ketones that form no reactive metabolites. The two analogues,
3-heptanone (CAS RN 106-35-4) and 5-methyl-3-heptanone
(CAS RN 541-85-5), are γ-diketone precursors and fire a
DEREK alert for neurotoxicity leading to an alert similarity
score of 0.71. Acetylacetone (CAS RN 123-54-6) also has an
alert similarity score of 0.71, but this results from the presence
of two ketone groups (diketone) instead of two alkyl groups
(dialkyl ketone) resulting in a skin sensitization alert in
DEREK. Diisobutenyl ketone (CAS RN 504-20-1) is an α,β-
unsaturated dialkyl ketone resulting in a DEREK alert for
chromosome damage. In addition, it fires a Scaffold Match
alert in the P&G DART DT. All together this leads to an alert

similarity score of 0.50. Methacrolein is an α,β-unsaturated
aldehyde and results in the lowest alert similarity score of 0.33.
The structure fires DEREK alerts for both mutagenicity and
skin sensitization along with a positive alert in the P&G DART
DT.

Table 3 and Figure 2 show that most analogues for this case
study are similar in physical chemical properties to the SOI. 10
out of the 15 analogues have a physical chemical similarity
score of 1 with the SOI because all compounds possess similar
alkyl chain length, occupy the lowest ΔLogP bin and the same
MW bin as the SOI, and are all classified as VOCs. The longer
alkyl chain length for 6-undecanone (CAS 927-49-1) results in
a negative VOC classification and a physical chemical similarity
of 0.60. The even longer alkyl chain length for 7-tridecanone
(CAS 462-18-0) results in a logP that is greater than 2 units
away from that for the SOI in addition to a negative VOC
classification producing a physical chemical similarity score of
0.33. Diethyl ketone (CAS 96-22-0) falls into a lower MW bin
than the SOI and receives a physical chemical similarity score
of 0.60. Acetylacetone (CAS RN 123-54-6) has a much lower
LogP than the SOI and falls into ΔLogP bin 2 resulting in a
physical chemical similarity score of 0.60, and a much lower
LogP and MW for methacrolein produce a physical chemical
property similarity of 0.33.

As shown in Figure 2, the suitable analogue receives the
highest TotalScore which is equal to 3 corresponding to
similarity scores of 1 for each of the nonstructural attributes.
All suitable with interpretation analogues have TotalScores less
than 3 resulting from small changes in metabolism as reflected
by TMSSs < 1 and TotalScores ranging from 2.2 to 2.8. 6-
Undecanone (CAS 927-49-1) is the “suitable with interpreta-
tion” analogue with a TotalScore of 2.2 resulting from changes
in physical chemical properties from the longer alkyl chain
length as well as small differences in metabolism. It is
interesting to note that diethyl ketone (CAS 96-22-0) receives
a rating of “not suitable” with a similarity score of 2.1 resulting
from differences in metabolism and physical chemical proper-
ties. The remaining “not suitable” analogues display Total-
Scores less than 2 resulting from large differences in
metabolism due to the formation of reactive metabolites also
captured in the alert similarity formation for 3-heptanone
(CAS 106-35-4), 5-methyl-3-heptanone (CAS 541-85-5),
diisobutenyl ketone (CAS 504-20-1), and methacrolein
(CAS 78-85-3). Meanwhile, the much longer alkyl chain for
7-tridecanone (CAS 462-18-0) results in a much lower
physical chemical similarity score. Finally, acetyl acetone
(CAS 123-54-6) is a diketone, and its low TotalScore results
from low metabolism similarity and alert similarity.

3.3. Case Study 10�4-Nitrotoluene (CAS 99-99-0). 4-
Nitrotoluene (CAS 99-99-0) is the SOI for case study 10 and
is an interesting case of a small alkyl nitrobenzene. Computed
TotalScores with analogue structures are displayed in Figure 3
(see the Supporting Information for contributing fingerprints
and similarity scores), and metabolism similarity is the most
important attribute contributing to the TotalScore for the first
8 analogues. 4-Nitrotoluene (CAS 99-99-0) is extensively
metabolized in the rat producing major metabolites consistent
with oxidation of the methyl group to produce 4-nitrobenzoic
acid (CAS 62-23-7) and reduction of the nitro group of the 4-
nitrobenzoic acid (CAS 62-23-7) metabolite followed by N-
acetylation to form p-acetaminobenzoic acid.34 What is most
important about the metabolism of this compound is that
oxidation of the methyl group is a primary biotransformation

Figure 2. Horizontal stacked bar plot of the TotalScore for case study
3 (diisobutyl ketone). Each bar is the sum of the following
components: total metabolism similarity (red), alert similarity
(blue), and physical chemical similarity (green). Analogue ratings
correspond to S (suitable), SI (suitable with interpretation), and NS
(not suitable).
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pathway in contrast to the methyl derivatives of benzyl alcohol
in case study 1 where no metabolism was observed for these
substituents. Because the methyl group of the nitrotoluenes
undergoes hydroxylation followed by oxidation as well as
reduction of the nitro group followed by acetylation, the
metabolic pathway for 3-nitrotoluene is similar to that of the
SOI. For 2-nitrotoluene, the primary pathway involves
oxidation of the methyl group followed by benzyl alcohol
oxidation to form 2-nitrobenzoic acid; however, the proximity
of the acid group to the nitro group results in a much lower
extent of nitro group reduction to aniline for 2-nitrotoluene
relative to 4-nitrotoluene with no N-acetylation of aniline.
Biotransformation trends observed for the nitrotoluenes are
extended to the dimethyl nitrobenzene derivatives, and slightly
lower metabolism similarity scores of 0.71 result because
similarity is calculated on a counts basis with two counts for
benzylic hydroxylation and carboxylic acid formation. The
“suitable” assignment for 4-ethylbenzene reflects “rules of
thumb” that have evolved as the P&G framework has been
applied; however, the TotalScore is only 2.67 because of the
difference in metabolism similarity for biotransformation of the
ethyl group relative to the methyl group of the SOI.
Replacement of the methyl group of 4-nitrotoluene with an
amine 4-nitroaniline (CAS 100-01-6), a second nitro group
1,4-dinitrobenzene (CAS 100-25-4), and 4-nitrophenol (CAS
100-02-7) results in significantly lower similarity scores for
metabolism and alerts similarity due to the different
biotransformation pathways and structural alerts for these
compounds relative to the SOI.

3.4. Results for All Case Studies. TotalScores for all
SOI/analogue pairs for the 14 case study chemicals are
presented in Figure 4 with analogue rating assignments (see
the Supporting Information for chemical structures, finger-
prints, and similarity scores for metabolism, alerts, and physical
chemical properties). Analogue rating assignments reflect a
combination of assignments discussed in Blackburn et al.,
2011, but with updates reflecting changes warranted by closer
scrutiny of each analogue, new metabolism and alerts data, as
well as evolution and standardization of the approach over the
past 10 years of implementation.3 For all case studies,
analogues rated “suitable” display the highest TotalScore
with values ranging from 2.3 to 3.0. Analogues rated as
“suitable with interpretation” range in TotalScore from 1.7 to
2.8 with a small number of analogues overlapping others rated

both “suitable” and “not suitable”. Analogues with a TotalScore
<1.5 were rated as “not suitable”, and most with a score
between 1.5 and 2.0 are considered “not suitable” with some
overlap with “suitable with interpretation” analogues. In
general, for every case study, there is a consistent progression
of TotalScore values from “not suitable” to “suitable with
interpretation” to “suitable” analogues. Case study 10 (SOI 4-
nitrotoluene CAS 99-99-0) is an interesting example with a
“suitable” analogue with a TotalScore of 2.7 (4-ethyl-
nitrobenzene CAS 100-12-9). This rating is based on internal
“rules of thumb” which have evolved over the past 12 years of
applying the framework where the change in alkyl chain length
for the alkyl aromatic derivative results in little change in
toxicity for most compounds of this type. The SOI for case
study 12 is lauryl alcohol which is a fatty alcohol containing 12
carbon atoms. The ratings for this case study are based on the
template for rating fatty acids/fatty alcohols in Lester et al.,
2018, and are supported by the similarity scores presented
here.2 As shown in Table 1, case study chemicals represent a
50:50 mix of aliphatic and aromatic compounds. Except for
case study 13, for which there are analogues rated “suitable
with interpretation” with the same scores as those considered
“not suitable”, TotalScore can be used to distinguish “not
suitable” analogues from those considered “suitable” or
“suitable with interpretation” defined as separability which is
explored to a greater extent in Figure 5.

3.5. Results from ML Modeling Data Analysis. Results
from separability analysis of the chemical similarity data per
case study are summarized in Figure 5. The degree of
separability, Sd, ranging from 0 to 1, has been computed for
structural similarity (7 descriptor/fingerprint sets), for
individual similarity components (e.g., alert similarity, physical
chemical similarity, total metabolism similarity), and for results
from fitting the qSIM score (eq 6) to the expert-judgment-
based analogue rating scores. Sd reflects the effectiveness of
similarity scores for distinguishing “not suitable” analogues
from all other analogues. For the structural similarity scores,
the fraction of case studies with complete separation (Sd = 1)
ranged from 3/14 (ECFP4, ECFC4, and Avalon) to 7/14
(MACCS). For the individual component similarity scores, the
fraction of case studies with complete separation ranged from

Figure 3. Horizontal stacked bar plot of the TotalScore for case study
10 (4-nitrotoluene). Each bar is the sum of the following components:
total metabolism similarity (red), alert similarity (blue), and physical
chemical similarity (green). Analogue ratings correspond to S
(suitable), SI (suitable with interpretation), and NS (not suitable). Figure 4. Total similarity score (TotalScore) versus case study

analogue for all case studies with slight jittering to view overlapping
points. Marker color corresponds to analogue rating as follows: green
(suitable), orange (suitable with interpretation), and red (not
suitable).
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3/14 (alert similarity) to 2/14 (physical chemical similarity) to
9/14 (total metabolism similarity) demonstrating that
metabolism similarity is the most important attribute
contributing to the analogue rating for these 14 case studies.
All components, however, are important for the analogue
ratings determined for case study 1; both metabolism and alert
similarity are important for case study 11; physical chemical
properties dominated the prediction for case study 12; and
alert similarity is most important for case study 14.

The linear sum of the similarity components (qSIM score
with equal weights) or with weightings revealed from machine
learning exhibits a significantly higher fraction of analogues
displaying complete separability of the two analogue rating
bins: 13/14 and 14/14, respectively. The weights identified
from the classification modeling are a = 0.98, b = 0.85, and c =
2.94 for alert similarity, physical chemical similarity, and total
metabolism similarity, respectively. The calculation reveals that
metabolism similarity is approximately 3 times more important
than alert and physical chemical similarities for predicting
analogue rating.

4. DISCUSSION
Comparison of the similarity between an SOI and potential
analogue is required for justifying the use of the analogue for
read-across. Structural similarity using Tanimoto comparisons
of molecular fingerprints is not always consistent with
suitability for read-across and strongly depends on the
structural class and molecular fingerprint selected. In this
study, we demonstrate that it is more important to consider
and quantify similarity in biologically relevant attributes
including metabolism, reactivity, and physical chemical proper-
ties. Methods for calculating similarity in these biologically
relevant attributes involve a detailed tabulation of the keys
defining the fingerprints for each attribute promoting a
systematic process that will increase transparency and
consistency among experts.

Summing the component similarity scores produces a
TotalScore that can be used to support the analogue rating
assignment. In all case studies shown in Figure 4, a TotalScore
of 3 is consistent with a “suitable” analogue and easily justified,
because the analogue is expected to display the same metabolic
pathway, toxicity alerts, and physical chemical properties as the
SOI. If the TotalScore < 1.5, justification of the use of the
analogue for read-across would be difficult, and the analogue
would receive a rating of “not suitable”. There is overlap
among analogues receiving TotalScores between 1.5 and 3, but
except for case studies 8 and 13, all “not suitable” analogues
possess a lower TotalScore from the “suitable” and “suitable
with interpretation” analogues. These TotalScores facilitate
automation of the rating process, and as we apply the methods
to more SOI/analogue pairs of structures in our extensive
database, we will determine a more accurate correlation
between TotalScore and rating. As implied by the calculation
of a separability score, the most important distinction in rating
analogues for read-across is distinguishing between those
considered “not suitable” from those considered “suitable” or
“suitable with interpretation”. In fact, most of the ambiguity
among chemists rating analogues on our team occurs in
distinguishing “suitable” analogues from those considered
“suitable with interpretation”.

Quantification of similarity for each attribute transparently
reveals the origin of differences between the SOI and analogue
as shown in Figures 1, 3, and 4 for 3 of the case study
compounds. A low similarity score for metabolism exposes
differences in the biotransformation pathways between the two
compounds, or the reactive metabolism similarity uncovers
reactive metabolite formation that may occur for one
compound but not the other. A low similarity in physical
chemical properties is indicative of differences in bioavail-
ability, and differences in alert similarity are related to
differences in reactivity. The technique is particularly useful
when you have a series (or category) of analogues, and you

Figure 5. Heatmap of degree of separability (Sd) calculated for qSIM scores, individual similarity components, and structural similarities. Each row
represents data per case study as labeled on the vertical axis. Each column is a separability score as labeled on the horizontal axis. Separability
analysis was performed using two bins for analogue rating (not suitable and suitable/suitable with interpretation). Equal_weights correspond to a
qSIM score (eq 6) calculated with a = b = c = 1. ML_weights correspond to eq 6 with a = 0.98, b = 0.85, and c = 2.94 for alert similarity, physical
chemical similarity, and total metabolism similarity, respectively.
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need to differentiate among them. This may occur if there are
toxicological data for the same end point for more than one
analogue. In this case, the TotalScore is indicative of the
quality of an analogue and could be used to justify the use of
data from an analogue with a higher TotalScore from those for
a second analogue with the lower score, thus, streamlining and
simplifying the read-across process.

Analysis of the separability for the 14 case study chemicals
(Figure 5) is particularly informative demonstrating the
importance of nonstructural similarity for demonstrating
analogue suitability and providing additional evidence
supporting the insufficiency of structural similarity alone for
predicting analogue suitability. While some structural similarity
scores discriminate between “not suitable” and “suitable/
suitable with interpretation” analogues, no one structural
fingerprint distinguished between the two bins for all case
studies. Molecular fingerprints resulting in separability Sd = 1
for most case studies include the MACCS (7 case studies) and
Saagar (5 case studies) fingerprints. The relatively high
performance for MACCS fingerprints may result from the
fact that the case study chemicals are all relatively small
molecules that tend to be well characterized by the small
structural fragments in this fingerprint of only 166 structural
keys. Saagar molecular fingerprints were developed to cover
both small and large molecules for building interpretable
models or for read-across and have been shown to provide
higher scaffold similarities among analogues selected based on
activity toward the aromatic hydrocarbon receptor.22

Analysis of the separability of the individual similarity
components for metabolism, alerts, and physical chemical
properties shown in Figure 5 demonstrates that total
metabolism similarity is the most important attribute for
predicting suitability for most case studies. For case study 1
there are only 4 analogues, and all three similarity components
are shown to contribute to the separability with contributions
presented in Figure 1. Alert similarity and metabolism
similarity are important for case study 6 for which the SOI is
dimethyl terephthalate (CAS 120-61-6). For this case study,
the alert similarity reflects the potential for DART toxicity
associated with dialkyl orthophthalates, and total metabolism
similarity reflects differences in metabolism associated with
analogues possessing alcohol groups with longer straight chain
or branched alkyl chains (Supporting Information). Because
the SOI for case study 11 is 2-nitroaniline (CAS 88-74-4), alert
similarity and total metabolism similarity both produce low
similarity scores for analogues lacking the aromatic amine
group. Physical chemical similarity is the most important
attribute for determining analogue suitability for case study 12
for which the SOI is lauryl alcohol, and the analogues consist
of straight-chain alcohols with chain lengths raging from C5 to
C22 which populate several different ΔLogP and MW bins.
Case study 14 corresponds to 4,4′-diamino-2,2′-stilbenedisul-
fonic acid (CAS 81-11-8) with only three analogues selected.
Alert similarity is most important for this class of compounds
because the presence of the sulfonate groups for the SOI
removes the alerts present for not suitable analogue 4,4′-
diaminostilbene (CAS 621-96-5), and the presence of a
different scaffold for not suitable analogue 1,1′-benzidinedi-
sulfonic acid (CAS 117-61-3) results in a different DART alert
from that for the SOI.

Figure 5 displays the calculated separability when the qSIM
score (eq 6) is computed using an equal weighting of each of
the similarity components a = b = c = 1 or a = 0.98, b = 0.85,

and c = 2.94 which are derived from machine learning. Except
for case study 13, equal weighting of each similarity
component performs well providing accurate prediction of
analogue rating with a separability (Sd = 1) for 13 out of 14
case studies while the coefficients from the ML treatment of
the data performed slightly better (Sd = 1) for 14 out of 14 case
studies. Since the ML weights were derived from the limited
number of case studies considered here, we will continue to
use an equal weighting of the similarity components in eq 6
resulting in calculation of the TotalScore (eq 5). However, the
ML-derived coefficients illustrate the importance of metabo-
lism for determining analogue suitability where metabolism
similarity was found to be approximately 3 times more
important than alert or physical chemical similarities. Selection
of fingerprint keys for metabolism and reactive metabolism
requires searching the literature for metabolism data for the
SOI and analogues or for data on compounds possessing the
same functional groups in similar scaffolds when metabolism
data are missing to identify relevant biotransformation keys.
Calculation of such a metabolism similarity score is not new;
however, some implementations rely on in silico prediction of
pathways which often select all possible transformations for the
structural features present, thus diluting the biological
relevance of the attribute.8 Another approach for assessing
similarity in metabolism controls the propagation of in silico
predicted metabolites with metabolic data and expert judgment
and involves a side-by-side comparison of metabolic maps for
SOI/analogue pairs of structures.11

Next steps for this work involve the development of a
database to house the fingerprints for each compound
considered. Metabolism is the most labor-intensive similarity
metric involving some expert judgment and literature review to
select the most relevant biotransformation keys. A metabolism
database has been developed and will be populated with
metabolism fingerprints for all compounds in the repository so
the metabolism similarity of any pair of compounds may be
considered. As the approach is applied to more internal SAR-
based toxicological assessments, a database of TotalScores with
analogue ratings will be compiled providing a large data set for
modeling permitting the reduction of the reliance on expert
judgment for the analogue rating process. The approach also
neglects to account for differences in the rate and extent of
biotransformations. Determining how best to include these
data into a metabolism fingerprint also will be explored.

While we share the fingerprints and similarity scores
generated for all 14 case study chemicals in the Supporting
Information, we are automating this quantitative similarity
approach using open-source programming languages and plan
to include these tools in later publications.

5. CONCLUSIONS
These data contribute to evidence supporting the insufficiency
of structural similarity for justifying a read-across prediction
demonstrating that biologically and toxicologically relevant
information must be included.5,35 It is unfortunate that many
of the tools for assisting a read-across assessment select
analogues using only structural similarity potentially missing
many suitable analogue data sources and choosing others that
would be considered not suitable. As the P&G read-across
framework has evolved, analogue selection relies predom-
inantly on the use of an MMP approach followed by
justification of suitability by assessing similarity in metabolism,
reactivity (alerts), and physical chemical properties.4 In this
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paper, a systematic process for defining fingerprints for
metabolism, reactivity, and physical chemical properties is
presented. Incorporation of these biologically and toxicolog-
ically relevant comparisons into a total similarity score that is
concordant with suitability for a read-across prediction greatly
enhances transparency and increases consistency among
experts. The information provided will facilitate implementa-
tion by others ultimately increasing chances for regulatory
acceptance.
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