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Drug resistance and relapse are common challenges in acute myeloid leukemia (AML),

particularly in an aggressive subset bearing internal tandem duplications (ITDs) of the

FLT3 receptor (FLT3-ITD1). The tyrosine kinase inhibitor gilteritinib is approved for the

treatment of relapse/refractory AML with FLT3 mutations, yet resistance to gilteritinib

remains a clinical concern, and the underlying mechanisms remain incompletely

understood. Using transcriptomic analyses and functional validation studies, we identified

the calcium-binding proteins S100A8 and S100A9 (S100A8/A9) as contributors to gilteritinib

resistance in FLT3-ITD1 AML. Exposure of FLT3-ITD1 AML cells to gilteritinib increased

S100A8/A9 expression in vivo and in vitro and decreased free calcium levels, and genetic

manipulation of S100A9 was associated with altered sensitivity to gilteritinib. Using a tran-

scription factor screen, we identified the transcriptional corepressor BCL6, as a regulator

of S100A9 expression and found that gilteritinib decreased BCL6 binding to the S100A9

promoter, thereby increasing S100A9 expression. Furthermore, pharmacological inhibition

of BCL6 accelerated the growth rate of gilteritinib-resistant FLT3-ITD1 AML cells, suggest-

ing that S100A9 is a functional target of BCL6. These findings shed light on mechanisms of

resistance to gilteritinib through regulation of a target that can be therapeutically exploited

to enhance the antileukemic effects of gilteritinib.

Introduction

An aggressive subset of acute myeloid leukemia (AML)–bearing internal tandem duplications (ITDs) of
the FLT3 receptor (FLT3-ITD) occurs in �30% of adult patients and is associated with poor prognosis
and low overall survival.1-3 Gilteritinib, a tyrosine kinase inhibitor of FLT3, AXL, and ALK,4,5 has been
approved for the treatment of FLT3-mutated AML,6 yet drug resistance remains a clinical concern. We
sought to understand gilteritinib-resistance mechanisms in FLT3-ITD1 AML, and identified the calcium-
binding protein S100A9 as a potential therapeutic target mediating resistance.

S100A8 and S100A9 are constitutively expressed in myeloid cells and have roles in cell differentiation,
autophagy, and apoptosis.7-10 Overexpression of S100A8 in AML is associated with poor survival,11 and
altered expression of S100A8 and/or S100A9 confers resistance or reduced sensitivity to agents in
AML therapy, including venetoclax, doxorubicin, vincristine, and etoposide,12-14 but they have yet to be
studied in the context of gilteritinib resistance. Although changes in autophagy and apoptosis may play a
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Key Points

� S100A9
overexpression pro-
motes gilteritinib
resistance in FLT3-
ITD1 AML cells.

� Gilteritinib-induced
upregulation of
S100A9 is mediated
through loss of BCL6
enrichment at the
S100A9 promoter.
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role in drug response,12-14 the exact mechanisms of S100A8/A9 in
drug resistance remain poorly understood. Furthermore, the tran-
scription factors that govern S100A8/A9 expression in AML remain

unknown. We identified a connection of gilteritinib-induced S100A9
expression with BCL6, a transcriptional corepressor, to promote
drug resistance in FLT3-ITD1 AML.
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ized to the actin control, as indicated above each blot. (D) Expression of S100A8 and S100A9 by RT-PCR in FLT3-ITD1 cells treated with 10 nM gilteritinib for 24 hours
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AML cell lines treated with 10 nM gilteritinib for 24 hours (n 5 9). Cell growth assay of S100A9 overexpressed (G) or knocked down (H) in MOLM13 cells. One representa-

tive growth curve from 3 separate experiments (n 5 3). Data were normalized to vector DMSO (G) or EV DMSO (H) at 24 hours. Statistical analysis was performed between
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Methods

Xenograft mouse models were generated and treated as previously
described.15 Human FLT3-ITD1 AML cell lines (MOLM13 and
MOLM13-RES), a murine cell line (BAF3) containing human FLT3-
ITD or FLT3-ITD/D835Y, and human primary AML samples were
treated with gilteritinib, PLX51107, tasquinimod, and BI-3802, sepa-
rately or in combination, before sample collection or an assay was
performed. Details are in the supplemental Methods. All animal stud-
ies were reviewed and approved by The Ohio State University
(OSU) Institutional Animal Care and Use Committee. Deidentified,
genomically annotated human primary AML samples were obtained

after written informed consent was received under an OSU Institu-
tional Review Board–approved protocol and in accordance with the
Declaration of Helsinki.

Results and discussion

Gilteritinib induces expression of S100A8/A9

in vitro and in vivo

We used RNA sequencing (RNA-seq) analysis to identify alternative
mechanisms of gilteritinib resistance. Two FLT3-ITD1 AML cell lines
(MOLM13 and MOLM13-RES, a resistant cell line bearing the
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FLT3 D835Y mutation) were xenografted into NSG mice and
treated with gilteritinib until leukemia progression.15,16 Leukemic
cells were isolated from the bone marrow, and gene expression
analyses indicated that S100A8 and S100A9 (S100A8/A9) were 2
of the top 25 genes upregulated after gilteritinib treatment in both
models (S100A9 ranked 11th and 5th, and S100A8 ranked 14th
and 20th in MOLM13 and MOLM13-RES xenografts, respectively;
Figure 1A). We confirmed this transcriptional upregulation by
reverse transcription-polymerase chain reaction (RT-PCR; Figure
1B), but only S100A9 protein was significantly increased in the
MOLM13-RES model (Figure 1C; supplemental Figure 1A).

Because S100A8/A9 were significantly increased after drug treat-
ment in vivo, we interrogated their response during gilteritinib treat-
ment in vitro in 4 FLT3-ITD1 cell lines: MOLM13, MOLM13-RES,
and murine BAF3 cells expressing human FLT3-ITD or FLT3-ITD
with a D835Y mutation (FLT3-ITD/D835Y). S100A8 and S100A9
transcripts were significantly upregulated in all cell lines after acute
gilteritinib exposure (Figure 1D). Furthermore, ex vivo gilteritinib
treatment of a human primary AML sample with FLT3-ITD signifi-
cantly increased both transcripts (supplemental Figure 1B), and
serial primary AML samples collected from 2 patients treated with
gilteritinib had a significant increase in S100A9 (supplemental Fig-
ure 1C). Interestingly, S100A9 protein expression was increased
after gilteritinib treatment in MOLM13 and MOLM13-RES cells in a
time-dependent manner, whereas S100A8 had minimal change
(Figure 1E). Because these small, soluble proteins can form homo-
dimers, heterodimers, and oligomers that bind and regulate cal-
cium,17,18 we used an intracellular free-calcium assay to assess the
calcium levels after gilteritinib treatment. Our results indicate that
free calcium significantly decreased after acute exposure to gilteriti-
nib (Figure 1F), presumptively because of sequestration by
S100A8/A9. This observation is consistent with reports of
decreased calcium levels or release after venetoclax (a BCL-2 inhibi-
tor) treatment in AML12 or in prednisolone-resistant MLL-rearranged
infant ALL when S100A8/A9 are overexpressed.19

Modulation of S100A9 alters sensitivity to

gilteritinib in vitro and ex vivo

Because S100A9 expression was more consistently and signifi-
cantly changed than S100A8 in our models, we focused our subse-
quent efforts on determining the functional significance of gilteritinib-
induced S100A9 expression in FLT3-ITD1 AML. We assessed cell
growth in the presence of gilteritinib after overexpression or knock-
down of S100A9 in MOLM13 cells (Figure 1G-H; supplemental
Figure 1D-G). Cells with overexpression of S100A9 were less
sensitive to gilteritinib than those expressing the control vector
(Figure 1G). Conversely, cells after knockdown of S100A9 were
more sensitive to gilteritinib than were cells with empty vector or the
non-targeting control (Figure 1H). In addition, pharmacological tar-
geting of S100A9 with tasquinimod, a quinolone-3-carboxamide
that binds and inhibits S100A9,10,20 partially sensitized MOLM13
cells to gilteritinib (supplemental Figure 1H). More recently, BET
inhibition has been shown to suppress S100A8/A9,10,21 and in line
with this observation, we found that cotreatment of the BET inhibitor
PLX51107 with gilteritinib suppressed growth of MOLM13 cells
when compared with either drug alone (Figure 1I; supplemental
Figure 1I). Furthermore, PLX51107 sensitized human primary AML
cells to gilteritinib, whereas tasquinimod did not enhance the

antileukemic effect of gilteritinib in the patient samples (Figure 1J;
supplemental Figure 1J). Collectively, the data indicate that overex-
pression of S100A9 confers resistance to gilteritinib. It should be
noted that S100A8 has been found to enhance resistance to etopo-
side and vincristine by modulating apoptosis and autophagy path-
ways13,14 and can drive proliferation, whereas S100A9 promotes
differentiation through TLR4 in AML.22 Our present results add to
this prior knowledge and indicate an effect of S100A9 on cell
growth that promotes a gilteritinib-resistance phenotype that can be
targeted by genetic or pharmacological inhibition.

Gilteritinib-induced upregulation of S100A9 is

mediated through loss of BCL6 enrichment at the

S100A9 promoter

To identify the transcriptional regulators that govern gilteritinib-
induced upregulation of S100A8/A9, we performed a transcrip-
tion factor (TF) screen by cotransfecting HEK293 cells with
expression vectors of 1623 transcriptional regulators (supple-
mental Figure 2A) and S100A8/A9 promoter luciferase con-
structs. TFs that increased or decreased promoter activity by
greater than twofold were considered potential candidates (Fig-
ure 2A). Narrowing our focus to top TFs with overlapping
effects on both S100A8 and S100A9 promoter activity revealed
RUNX2 and BCL6 as 2 candidate transcriptional regulators
(Figure 2A). Further validation indicated that RUNX2 enrichment
at the S100A9 promoter was unchanged after gilteritinib treat-
ment (supplemental Figure 2B), whereas BCL6 overexpression
resulted in a significant reduction in both S100A8/A9 promoter
activity (Figure 2B), as well as significantly decreased BCL6
enrichment at the S100A8/A9 promoters in gilteritinib-treated
MOLM13 cells (Figure 2C; supplemental Figure 2C). Further-
more, accessibility at the S100A9 promoter significantly
increased after gilteritinib treatment in vivo (supplemental Figure
3A), whereas there was no significant change at the S100A8
promotor (supplemental Figure 3B). These results indicate that
gilteritinib decreases localization of BCL6 to the S100A9
promoter.

The BCL6 inhibitor BI-3802 promotes degradation of BCL6.23

BI-3802–mediated BCL6 degradation was not cytotoxic in MOLM13
cells at a concentration of 1 mM (Figure 2D), but increased S100A8/
A9 transcripts and S100A9 protein (Figure 2E-F). Because BCL6
binds and represses the transcriptional activation of S100A9, we
used BI-3802 to emulate the S100A9-overexpression model. Pre-
treatment followed by cotreatment of BI-3802 with gilteritinib caused
MOLM13 cells to grow at a significantly accelerated rate, compared
with gilteritinib treatment alone (Figure 2G), which may have been
due to enhanced upregulation of S100A9. Collectively, these data
indicate that BCL6 negatively regulates S100A9 expression, but
gilteritinib promotes the dissociation of BCL6 from the S100A9
promoter.

In summary, our data support a novel mechanism of gilteritinib-
induced upregulation of S100A9 that is mediated through BCL6.
Through a currently unknown mechanism, gilteritinib promotes
BCL6 dissociation from the S100A9 promoter, allowing for upregu-
lation of S100A9 that promotes cell growth and a resistance pheno-
type. Our studies provide insight into the transcriptional regulation
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of S100A9 that can be further evaluated across a range of thera-
pies and cancers and exploited for potential targeting in combinato-
rial treatment strategies to prevent or overcome drug resistance.
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