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Abstract: Background: Prostate cancer (PC) is the most frequently diagnosed cancer among
men worldwide. The poor prognosis of PC is largely due to late diagnosis of the disease
when it has progressed to advanced stages marked by androgen-independence. We interrogated
proteomic signatures that embody the transition of PC from an androgen-dependent (AD) to an
androgen-independent (AI) state. Methods: We have previously established AD and AI murine
PC cell lines, PLum-AD and PLum-AI, respectively, which recapitulate primary and progressive
PC at phenotypic and subcellular levels. We statistically surveyed global protein expression
profiles in these cell lines. Differential profiles were functionally interrogated by pathways and
protein–protein interaction network analyses. Results: Protein expression pattern analysis revealed a
total of 683 proteins, among which 99 were significantly differentially altered in PLum-AI cells as
compared to PLum-AD cells (45 increased and 54 decreased). Principal component analysis (PCA)
revealed that the two different cell lines clearly separated apart, indicating a significant proteome
expression difference between them. Four of the proteins (vimentin, catalase, EpCAM, and caspase 3)
that were differentially expressed in PLum-AI cells compared to PLum-AD cells were subjected to
biochemical validation by Western blotting. Biological process gene ontology (GO) analysis of the
differentially expressed proteins demonstrated enrichment of biological functions and pathways in
PLum-AI cells that are central to PI3 kinase and androgen receptor pathways. Besides, other relevant
biological processes that are enriched in PLum-AI cells included cell adhesion and cell migration
processes, cell and DNA damage, apoptosis, and cell cycle regulation. Conclusions: Our protein
expression analysis of a murine in vitro model of PC progression identified differential protein spots
that denote this progression and that comprise high-potential targets for early treatment of PC with a
personalized patient-specific approach. Efforts are underway to functionally assess the potential roles
of these proteins as therapeutic targets for PC progression.
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1. Introduction

Prostate cancer (PC) is the most frequently diagnosed cancer among men worldwide and the
second leading cause of male deaths from cancer globally [1]. It is an indolent tumor that grows
unhurriedly but poses significant threat to patients’ lives on the long-term [2]. Evidence showed
that during early androgen-dependent stages of the disease, tumor cells are mainly influenced by
androgen production as a major mediator for their growth and survival using several axes [3–6];
therefore, patients with primary androgen-dependent PC respond well to androgen-deprivation
therapy (ADT) [5,7,8]. However, the disease progresses over time in around one fifth of patients
to a metastatic and advanced androgen-independent stage known as castration-resistant prostate
cancer (CRPC) [9]. Upon progression, tumor cells tailor different cellular pathways and mechanisms
to survive the androgen-depleted environment [8]. Proven mechanisms of such adaptation include
androgen receptor (AR) gene amplification, AR gene mutations, involvement of AR co-regulators such
as AR-associated proteins, ligand-independent activation of the AR, and the involvement of cancer
stem cells (CSCs) [10–13].

Management of advanced PC propounds substantial challenges and various therapeutic
approaches are then considered including radical prostatectomy (RP) surgery, chemotherapy,
and radiation therapy [14]. In this regard, the success rates of the different therapeutic modalities
used for treating PC can be greatly improved if the disease is diagnosed at an early stage [15].
Currently, there are no reliable and effective biomarkers for PC that can specifically distinguish patients
from healthy individuals, and patients who need aggressive therapy to stop progression of their
disease from those who should avoid overtreatment [15,16], which paves the way to personalized
patient-specific therapy. Therefore, efforts have been made in order to identify the parameters that
accurately predict the prognosis and clinical outcome following RP, which can greatly aid in planning for
the appropriate postoperative therapy that should be used in each patient [17]. Those parameters include
clinicopathological factors, such as prostate specific antigen (PSA), Gleason score (GS), and pathological
stage, among others [18–21].

PC progression from androgen-dependence (AD) to androgen-independence (AI) is tightly
linked to dismal prognosis, warranting the need for new strategies for early detection and treatment
of progressive PC. Detecting the molecular signatures and proteomic aberrations pertaining to
this progression will greatly help in understanding the disease and shaping its management
accordingly [22,23]. In this regard, protein expression analysis enables the identification of pathways and
biological processes that are aberrantly modulated in human diseases and specific phenotypes [24–30],
thus providing a viable framework for underscoring potential biomarkers and therapeutic drug
targets [26,31]. Proteomic analysis also offers the capability to screen and uncover the expression levels
of tens and hundreds of proteins simultaneously and objectively [32].

We have recently established two murine PC cell lines that represent AD (PLum-AD) and AI
(PLum-AI) PC [12]. However, we have a poor understanding of the mechanisms underlying the clinical
progression of PC. Therefore, using proteomic analysis and a novel model which we have previously
developed signifying the development of AI, we aimed to fill these voids, first by understanding
global signaling cues in the progression of AD-to-AI PC and next by identifying from these cues
candidate biomarkers for early human PC progression. Such proteomic-based approaches will help
researchers set novel strategies to better understand PC and treat PC patients, inaugurating a new era
of “personalized medicine”.
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2. Materials and Methods

2.1. Cell Lines, Culture Conditions, and Reagents

Mouse PLum-AD (androgen-dependent) and PLum-AI (androgen-independent) PC cells, that were
established in our laboratory, were cultivated in PrEBM™ prostate epithelial cell growth basal
medium (Lonza, Switzerland; cat #CC-3165) supplemented with PrEBM™ SingleQuots™ supplements
(Lonza, Switzerland; cat #CC-4177), as previously described [12]. PLum-AD cells grew in serum-free
media while 5% of heat-inactivated fetal bovine serum (FBS; Sigma-Aldrich, St. Louis, MO, USA;
cat #F9665) was added to the culture medium of PLum-AI cells. For both cell lines, media was
supplemented with 1% penicillin/streptomycin (Biowest, Nuaillé, France; cat #L0022-100) and
Plasmocin™ prophylactic (Invivogen; cat #ant-mpp). Cells were incubated at 37 ◦C in a humidified
incubator containing 5% CO2.

Cells were seeded in triplicates in 75 cm2 plates at a density of 5 × 105 cells per plate and cultured
for 6–10 days until reaching 80% confluency. Cells were then washed twice with 10 mL of Dulbecco’s
phosphate buffered saline (D-PBS) (Sigma-Aldrich, St. Louis, MO, USA; cat #D8537-500ML) and
detached by 2.5 mL trypsin–ethylenediaminetetraacetic acid (EDTA) solution (Sigma-Aldrich, St. Louis,
MO, USA; cat #T4049). Then, 2.5 mL of fresh culture medium was added to neutralize trypsin.
Harvested cells were centrifuged at 900 rpm for 5 min and cell pellets were collected, washed twice
with D-PBS, and stored at −20 ◦C for proteomic analysis.

Formic acid (FA; Sigma-Aldrich, St. Louis, MO, USA; cat #F0507), 1,4-dithiothreitol (DTT; Sigma-Aldrich,
St. Louis, MO, USA; cat #D0632), iodoacetamide (IAA; Sigma-Aldrich, St. Louis, MO, USA; cat #I1149),
ammonium bicarbonate (ABC; Sigma-Aldrich, St. Louis, MO, USA; cat #09830), and sodium
deoxycholate (SDC; Sigma-Aldrich, St. Louis, MO, USA; cat #D6750) were obtained from Sigma-Aldrich
(St. Louis, MO, USA). Trypsin/Lys-C mix, mass spectrometry grade was obtained from Promega
(Madison, WI, USA; cat #V5071). High-performance liquid chromatography (HPLC) grade methanol
(Cat #A452-1), acetonitrile (Cat #A21-1), and water (Cat #W71) were obtained from Thermo Fisher
Scientific (San Jose, CA, USA).

The study with all its experimental protocols was conducted under the Institutional Review Board
(IRB) approval of the American University of Beirut (AUB) (Date: March 2020; project identification
code: WAK2020). The work described herein has been carried out in accordance with relevant
guidelines and regulations.

2.2. Protein Extraction, Denaturation, and Digestion

Three biological replicates of cells from PLum-AD and PLum-AI cell lines were suspended in
200 µL of 50 mM ABC buffer (pH 8.0) with 5% SDC and lysed using a beads beating homogenizer
(Benchmark Scientific, Edison, NJ, USA) at 4 ◦C [33]. The beads beating homogenizer was set to
4 rounds, shaking 30 s for each round with a 30 s break between each round to reduce the heat.
After beads beating, samples were sonicated using an ultrasonic bath (Thermo Fisher Scientific,
San Jose, CA, USA) for 1 h. While sonicating, ice was added into the water to keep the cold temperature
(adding ice periodically to ensure they were not completely melted). After sonication, samples were
centrifuge at 1000× g for 10 min. Supernatants were collected. Then, a 2 µL of cell lysate was taken
out to determine the protein concentration through a Micro BCA Protein Assay Kit (Thermo Fisher
Scientific, San Jose, CA, USA). The remaining samples were denatured at 90 ◦C for 15 min and reduced
by 5 mM DTT at 60 ◦C for 45 min. After reduction, samples were alkylated by IAA at 37 ◦C for
45 min in the dark. Then, another 5 mM DTT was added to the samples and incubate at 37 ◦C for
30 min to quench the alkylation reaction. Next, additional ABC buffer was added to the sample
to adjust the final concentration of SDC to 0.5%. Then, trypsin/Lys-C mix was added following a
1/25 (enzyme/protein, µg/µg) ratio, and incubated at 37 ◦C in a water bath for 18 h. After tryptic
digestion, 1% FA (final concentration) was added to the samples and vortex thoroughly to precipitate
SDC. Then, samples were centrifuged at 21,100× g for 10 min to remove SDC. Supernatants containing
digested peptides were dried and ready to be analyzed by LC-MS/MS.
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2.3. Liquid Chromatography (LC)–Mass Spectrometer (MS)/MS Analysis

Peptides samples were resuspended in 2% acetonitrile (ACN) (with 0.1% FA) solution and
centrifuged at 21,100× g for 10 min before injecting to LC-MS/MS. A Dionex Ulitimate 3000 nanoLC
system (Thermo Fisher Scientific, San Jose, CA, USA) and a Linear Trap Quadropole (LTQ) Orbitrap
Velos mass spectrometer (Thermo Fisher Scientific, San Jose, CA, USA) were utilized for the proteomic
analysis. LC was interfaced with MS via a nanoESI source. Peptides digested from 1µg of proteome were
injected for each sample. An online purification was performed using a trap column (Acclaim PepMap
100 C18, 75 µm I.D. × 2 cm, 3 µm particle sizes, 100 Å pore sizes, Thermo Scientific, San Jose, CA, USA)
to remove possible salts and trap the peptides. The separation of peptides was performed on an
Acclaim PepMap C18 column (75 µm I.D. × 15 cm, 2 µm particle sizes, 100 Å pore sizes, Thermo Fisher
Scientific, San Jose, CA, USA). A 120 min gradients was utilized to separate peptides. The column
temperature was set to 29.5 ◦C. Mobile phase A was 2% ACN in water with 0.1% FA, while mobile
phase B was 100% ACN with 0.1% FA. The gradient of mobile phase B was set as following: 0–10 min,
5% B; 10–65 min, 5–20% B; 65–90 min, 20–30% B, 90–110 min, 30–50% B; 110–111 min, 50–80% B;
111–115 min, 80% B; 115–116 min, 80–5% B, and 116–120 min, 5% B.

The resolution of full MS was set to 60,000 with the m/z range of 400–2000. Collision-induced
dissociation (CID) was performed for MS/MS scan with a normalized collision energy of 35%, Q-value of
0.25, and activation time of 10 ms. A data-dependent acquisition mode was utilized. The top 10 most
intense ions observed in the full MS scan were selected to conduct MS/MS scan. A repeat count
of 2, repeat duration of 30 s, exclusion list size of 200, and exclusion duration of 90 s was set for
dynamic exclusion.

2.4. Protein Identification and Quantification

LC-MS/MS data were first converted to a general format (*.mgf) using Proteome Discover software,
and search against a UniProt database (2014_06, Mus musculus, 16,677 entries) using Mascot software
(Matrix Science Inc., Boston, MA, USA). Carbamidomethylation of cysteine was set to be the fix
modification while oxidation of methionine was the variable modification. The m/z tolerance of full
MS was set to 6 ppm. The m/z tolerance of MS/MS was 0.8 Da. Maximum peptide miss cleavage was
set to 2. Peptides identified by Mascot were further verified and quantified using Scaffold software.
The peptide and protein identification probabilities were set to 95% and 99%, respectively. A protein
identification was accepted only when it contained more than 2 identified peptides. Spectra count was
employed as a protein quantitation method. Normalized quantitative values were used to represent
the expression levels of proteins in each sample. After Scaffold quantitation, a secondary filter was
added to keep the proteins that were detected in at least two replicates.

2.5. Bioinformatics Analysis of the Differentially Abundant Proteins

We used the Search Tool for the Retrieval of Interacting Genes/Proteins database
(STRING v11.0) [34] to construct the protein–protein interaction (PPI) network associated with the
differentially expressed proteins in PLum-AI vs. PLum-AD cells, by inputting the protein spots into the
STRING database (https://string-db.org/). We then determined the relationships among the differentially
expressed proteins in PLum-AI cells vs. PLum-AD cells via The Elsevier’s Pathway Studio version
10.0 (Ariadne Genomics, Elsevier) and the Ariadne ResNet database [35,36]. “Subnetwork Enrichment
Analysis” (SNEA) was pursued to identify the biological and functional pathways that display
statistically significant alterations in PLum-AI cells vs. PLum-AD cells.

2.6. Western Blot Analysis

Cellular protein extracts were prepared in Radio-Immunoprecipitation Assay (RIPA) lysis
buffer (Santa Cruz, CA, USA; cat #sc-24948). Protein extracts were quantified using the DC
Bio-Rad Protein Assay (Bio-Rad Laboratories, Hercules, CA, USA) according to the manufacturer’s

https://string-db.org/
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protocol. Protein samples were mixed with 10% β-mercaptoethanol and 2X Laemmli sample buffer
(Bio-Rad, CA, USA) for gel electrophoresis. An equal amount of protein lysate was separated on
10% sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS–PAGE) for 2h at 90 V then
transferred onto 0.45µm nitrocellulose membrane (Bio-Rad, CA, USA) in transfer buffer overnight
at 40 ◦C. Membranes were blocked with 5% skim milk in tris-buffered saline with 0.1% tween
20 (TBST) for 1 h and then incubated overnight at 4 ◦C with rabbit polyclonal anti-vimentin
(1:50 dilution; Santa Cruz Biotechnology, CA, USA), rabbit monoclonal anti-EpCAM (1:200 dilution;
Abcam Inc., Cambridge, MA, USA; cat #ab32392), mouse monoclonal anti-catalase (1:1000 dilution;
Sigma-Aldrich, St. Louis, MO, USA; cat #C0979), and rabbit monoclonal anti-caspase 3 (1:500 dilution,
Cell Signaling Technology, Danvers, MA, USA; cat #9662S). Membranes were then washed three
times with TBST and incubated with the diluted (1:1000) Horseradish Peroxidase (HRP)-conjugated
secondary antibody (goat anti-mouse (cat #sc-516102) and mouse anti-rabbit (Santa Cruz Biotechnology,
CA, USA; cat #sc-2357)) for 1 h at room temperature. Hybridization with glyceraldehyde 3-phosphate
dehydrogenase (GAPDH)-HRP (6C5) (1:10,000–20,000; Abnova, Taipei, Taiwan; cat #MAB5476) coupled
antibody was performed for 30 min at room temperature as housekeeping gene. Target proteins were
detected using the Enhanced Chemiluminescence (ECL) system (Bio-Rad, CA, USA). Images were
generated and quantified using ChemiDoc™ Imaging Systems (Bio-Rad, CA, USA).

2.7. Statistical Analysis

One-way ANOVA was employed to investigate the statistical differences between PLum-AD and
PLum-AI cell groups (n = 3) using IBM Statistical Package for the Social Sciences (SPSS) Statistics
ver. 20.0 (IBM Co., Armonk, NY, USA). Protein expressions were considered altered when p-values
were less than 0.05. Fisher’s test was used for SNEA to look for nonrandom associations between
the two categorical variables. Data significance in the Western blot experiments was determined
using Student’s t-test. p-values of p < 0.05 (*) and p < 0.01 (**) were labeled significant and highly
significant, respectively.

3. Results

3.1. Protein Expression Profiles of PLum-AI vs. PLum-AD Cell Lines

LC-MS/MS-based bottom-up proteomics was performed for each cell line. A total of 683 proteins
were identified. Proteins that identified in only one replicate were filtered out, and the remaining
proteins were utilized for the differential expression analysis. One-way ANOVA was employed
to estimate the statistical significance of the differences between PLum-AI and PLum-AD cell lines.
Any proteins with p < 0.05 were considered to have the expression change. Overall, 99 proteins exhibited
the expression changes between PLum-AI and Plum-AD cell lines (Table 1, Supporting Information
Table S1). Figure 1 depicts the expression discrepancy of these proteins.

Table 1. Altered differential protein spots in the PLum-AI cells vs. PLum-AD cells. A total of 99 altered
differential protein spots were identified in PLum-AI cells as compared to PLum-AD cells under
significance less than 0.05. (45 increased and 54 decreased, PLum-AI cells vs. PLum-AD cells).

Protein Accession
Number Identified Protein Gene Name Molecular Weight

(Daltons) LogFC p-Value

P29477 Nitric oxide synthase, inducible Nos2 130,575 Infinity 0.0421

Q4KMM3 Oxidation resistance protein 1 Oxr1 95,912 Infinity 0.0062

Q8BH04 Phosphoenolpyruvate carboxykinase (PEPCK),
mitochondrial Pck2 70,528 Infinity 0.0211

Q60760 Growth factor receptor-bound protein 10 Grb10 70,585 Infinity 0.0005

P24270 Catalase Cat 59,795 Infinity 0.0370

Q64669 NAD(P)H dehydrogenase (quinone) 1 Nqo1 30,960 Infinity 0.0007

O88587 Catechol O-methyltransferase Comt 29,486 Infinity 0.0139
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Table 1. Cont.

Protein Accession
Number Identified Protein Gene Name Molecular Weight

(Daltons) LogFC p-Value

P62281 40S ribosomal protein S11 Rps11 18,431 Infinity 0.0244

P21981 Protein-glutamine gamma-glutamyltransferase 2 Tgm2 77,061 4.4671 0.0039

Q9D1A2 Cytosolic non-specific dipeptidase Cndp2 52,767 3.6410 0.0159

Q9DCX2 ATP synthase subunit d, mitochondrial Atp5h 18,749 3.1880 0.0049

P28063 Proteasome subunit beta type-8 Psmb8 30,260 3.1819 0.0287

P35282 Ras-related protein Rab-21 Rab21 24,106 3.0182 0.0095

P47738 Aldehyde dehydrogenase, mitochondrial Aldh2 56,538 2.3290 0.0005

Q9JMH6 Full = Thioredoxin reductase 1 Txnrd1 67,084 2.2227 0.0183

Q99NB9 Splicing factor 3B subunit 1 Sf3b1 145,816 2.1813 0.0045

P47758 Signal recognition particle receptor subunit beta Srprb 29,579 2.1686 0.0301

Q62351 Transferrin receptor protein 1 Tfrc 85,731 2.0240 0.0258

Q64378 Peptidyl-prolyl cis-trans isomerase FKBP5 Fkbp5 50,966 1.8587 0.0311

Q8VDN2 Full = Sodium/potassium-transporting ATPase
subunit alpha-1 Atp1a1 112,982 1.8237 0.0261

Q8R180 ERO1-like protein alpha Ero1a 54,084 1.7824 0.0028

P26443 Glutamate dehydrogenase 1, mitochondrial Glud1 61,337 1.7622 0.0313

Q8VDM4 26S proteasome non-ATPase regulatory subunit 2 Psmd2 100,203 1.3712 0.0190

Q9CYA0 Cysteine-rich with EGF-like domain protein 2 Creld2 38,220 1.2856 0.0364

P67778 Prohibitin Phb 29,820 1.2844 0.0187

Q9R0P3 S-formylglutathione hydrolase Esd 31,320 1.2832 0.0021

Q9DCT8 Cysteine-rich protein 2 Crip2 22,727 1.2703 0.0017

O88342 WD repeat-containing protein 1 Wdr1 66,407 1.2169 0.0318

P14131 Full = 40S ribosomal protein S16 Rps16 16,445 1.1228 0.0228

Q61553 Fascin Fscn1 54,508 1.0726 0.0476

P20152 Vimentin Vim 53,688 1.0105 0.0004

Q64727 Vinculin Vcl 116,717 0.9370 0.0304

P80317 T-complex protein 1 subunit zeta Cct6a 58,004 0.9272 0.0335

P17182 Alpha-enolase Eno1 47,141 0.8210 0.0364

P60335 Poly (rC)-binding protein 1 Pcbp1 37,498 0.8126 0.0037

P70670 (+1) Nascent polypeptide-associated complex subunit
alpha, muscle-specific form Naca 220,499 0.8122 0.0194

Q922B2 Aspartate–tRNA ligase, cytoplasmic Dars 57,147 0.8096 0.0454

Q60605 Myosin light polypeptide 6 Myl6 16,930 0.7325 0.0474

P48678 Prelamin-A/C Lmna 74,238 0.7302 0.0132

Q08288 Full = Cell growth-regulating nucleolar protein Lyar 43,736 0.7127 0.0244

P05064 Fructose-bisphosphate aldolase A Aldoa 39,356 0.6559 0.0180

Q9CZ13 Cytochrome b-c1 complex subunit 1, mitochondrial Uqcrc1 52,852 0.6106 0.0408

P52480 Full = Pyruvate kinase PKM Pkm 57,845 0.5844 0.0461

Q8VDD5 Myosin-9 Myh9 226,372 0.4277 0.0164

P97384 Annexin A11 Anxa11 54,079 0.3144 0.0315

P68254 14-3-3 protein theta Ywhaq 27,778 −0.1887 0.0445

P68372 Tubulin beta-4B chain Tubb4b 49,831 −0.2529 0.0332

Q02053 Ubiquitin-like modifier-activating enzyme 1 Uba1 117,809 −0.4917 0.0040

Q8R1B4 Eukaryotic translation initiation factor 3 subunit C Eif3c 105,531 −0.6056 0.0123

P50543 Protein S100-A11 S100a11 11,083 −0.6181 0.0341

Q9D819 Inorganic pyrophosphatase Ppa1 32,667 −0.6647 0.0186

P18760 Cofilin-1 Cfl1 18,560 −0.7070 0.0359

P27546 Microtubule-associated protein 4 Map4 117,429 −0.8789 0.0044

Q8C1B7 Septin-11 Sept11 49,695 −0.8938 0.0365

P30416 Peptidyl-prolyl cis-trans isomerase FKBP4 Fkbp4 51,572 −0.9705 0.0146

Q99MN1 Lysine–tRNA ligase Kars 67,840 −1.0337 0.0008

P48962 ADP/ATP translocase 1 Slc25a4 32,904 −1.0449 0.0264

P10107 Annexin A1 Anxa1 38,734 −1.0643 0.0202
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Table 1. Cont.

Protein Accession
Number Identified Protein Gene Name Molecular Weight

(Daltons) LogFC p-Value

P13020 Gelsolin Gsn 85,942 −1.0647 0.0162

Q60932 Voltage-dependent anion-selective channel
protein 1 Vdac1 32,351 −1.2973 0.0009

Q60864 Stress-induced-phosphoprotein 1 Stip1 62,582 −1.3133 0.0021

P62827 GTP-binding nuclear protein Ran Ran 24,423 −1.3401 0.0325

P62830 60S ribosomal protein L23 Rpl23 14,865 −1.3537 0.0023

Q76MZ3 Serine/threonine-protein phosphatase 2A 65 kDa
regulatory subunit A alpha isoform Ppp2r1a 65,323 −1.3762 0.0235

P17879 Heat shock 70 kDa protein 1B Hspa1b 70,176 -1.3879 0.0209

O55131 Septin-7 Sept7 50,550 −1.4336 0.0409

Q8BGQ7 Alanine–tRNA ligase, cytoplasmic Aars 106,909 −1.4824 0.0113

Q99K85 Phosphoserine aminotransferase Psat1 40,473 −1.4994 0.0014

Q6IRU2 Tropomyosin alpha-4 chain Tpm4 28,468 −1.5363 0.0019

P62814 V-type proton ATPase subunit B, brain isoform Atp6v1b2 56,551 −1.5772 0.0284

P99029 Peroxiredoxin-5, mitochondrial Prdx5 21,897 −1.7034 0.0397

Q9Z110 Delta-1-pyrroline-5-carboxylate synthase Aldh18a1 87,266 −1.7114 0.0488

O70400 PDZ and LIM domain protein 1 Pdlim1 35,774 −1.7682 0.0055

P08003 Protein disulfide-isomerase A4 Pdia4 71,982 −1.7998 0.0218

Q78PY7 Staphylococcal nuclease domain-containing
protein 1 Snd1 102,088 −1.9226 0.0089

Q3THE2 (+1) Myosin regulatory light chain 12B Myl12b 19,779 −1.9663 0.0019

Q9DAW9 Calponin-3 Cnn3 36,429 −1.9714 0.0138

P47226 Testin Tes 47,983 −2.1001 0.0061

P19096 Fatty acid synthase Fasn 272,428 −2.1356 0.0143

Q8VH51 RNA-binding protein 39 Rbm39 59,407 −2.1700 0.0432

P16546 Spectrin alpha chain, non-erythrocytic 1 Sptan1 284,597 −2.1906 0.0004

O55023 Inositol monophosphatase 1 Impa1 30,436 −2.2878 0.0041

P34022 Ran-specific GTPase-activating protein Ranbp1 23,596 −2.3426 0.0192

Q9CZY3 Ubiquitin-conjugating enzyme E2 variant 1 Ube2v1 16,355 −2.5164 0.0385

Q9JKF1 Ras GTPase-activating-like protein IQGAP1 Iqgap1 188,742 −2.5447 0.0001

Q9EQH3 Vacuolar protein sorting-associated protein 35 Vps35 91,713 −2.6401 0.0140

Q69ZN7 Myoferlin Myof 233,324 −2.7480 0.0041

Q00PI9 Heterogeneous nuclear ribonucleoprotein U-like
protein 2 Hnrnpul2 84,940 −infinity 0.0466

Q6P1B1 Xaa-Pro aminopeptidase 1 Xpnpep1 69,591 −infinity 0.0029

Q8JZK9 Hydroxymethylglutaryl-CoA synthase,
cytoplasmic Hmgcs1 57,569 −infinity 0.0493

Q8VI94 2′-5′-oligoadenylate synthase-like protein 1 Oasl1 59,088 −infinity 0.0024

Q64282 Interferon-induced protein with tetratricopeptide
repeats 1 Ifit1 53,737 −infinity 0.0054

Q8CAY6 Acetyl-CoA acetyltransferase, cytosolic Acat2 41,298 −infinity 0.0406

Q920E5 Farnesyl pyrophosphate synthase Fdps 40,582 −infinity 0.0080

Q99JW5 Epithelial cell adhesion molecule Epcam 35,019 −infinity 0.0027

P70677 Caspase-3 Casp3 31,475 −infinity 0.0054

Q62393 Tumor protein D52 Tpd52 24,313 −infinity 0.0036

P61967 AP-1 complex subunit sigma-1A Ap1s1 18,733 −infinity 0.0498

Q9CR51 V-type proton ATPase subunit G 1 Atp6v1g1 13,724 −infinity 0.0430
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Compared to PLum-AD cells, 45 proteins were upregulated in PLum-AI cells while 54 proteins
were downregulated. Among them, 8 proteins (Nos2, Oxr1, Pck2, Grb10, Cat, Nqo1, Comt, and Rps11)
were only identified in PLum-AI cells (and not in PLum-AD cells) while 12 proteins (Hnrnpul2, Xpnpep1,
Hmgcs1, Oasl1, Ifit1, Acat2, Fdps, Epcam, Casp3, Tpd52, Ap1s1, and Atp6v1g1) were exclusively
identified in PLum-AD cells (and not in PLum-AI cells).

3.2. Unsupervised Principal Component Analysis (PCA)

PCA is a mathematical method that decreases the dimensions of a complex dataset which contains
a series of related independent variables. It can convert the data to a set of principal components
through an orthogonal transformation to display the similarity of data groups by plotting points
on a map [37]. Figure 2 depicts the PCA analysis of the two cell lines, including their triplicates.
Plots having the same color and shape represent the same cell line. The difference between each sample
can be observed via primary principal component (PC1) and secondary principal component (PC2).
Three triplicates of the same cell line are clustered together, suggesting a satisfactory reproducibility of
LC-MS/MS based proteomic analysis in this study. Two different cell lines are clearly separated apart,
indicating a significant proteome expression difference between these two cell lines.
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Figure 2. Principle component analysis (PCA) of protein profiles. PCA projection of protein profiles of
PLum-AI and PLum-AD cells obtained from three independent biological samples for each cell line.

3.3. Validation of Some of the Differentially Expressed Proteins in PLum-AI vs. PLum-AD Cells

Four of the proteins that were differentially expressed in PLum-AI cells compared to PLum-AD
cells were subjected to biochemical validation by Western blotting. We selected two proteins that
were found to be highly upregulated (catalase and vimentin) and two proteins that were highly
downregulated (EpCAM and caspase 3) in PLum-AI cells. Selection of those four proteins depended
on the availability of their antibodies, literature relevance, and their levels of differential expression.
Western blotting results were consistent with the proteomics data where analyses revealed a statistically
significant increase in protein expression of catalase and vimentin (p < 0.05; student’s t-test) and a
decrease in expression of caspase 3 and EpCAM (p < 0.05; student’s t-test) in PLum-AI cell samples
when compared to PLum-AD cells (Figure 3). The densitometry readings/intensity ratio of each band
in addition to whole blot (uncropped blots) are included in Supporting Information Figure S1.
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Figure 3. Western blot validation of four proteins identified by mass spectrometry to be differentially
expressed in PLum-AI relative to PLum-AD cells (n = 3). (A) Western blot validation of vimentin and
caspase 3 proteins. (B) Western blot validation of catalase and EpCAM proteins. Bands were detected by
enhanced chemiluminescence (ECL) using the ChemiDoc MP Imaging System. Protein expression was
quantified using Image Lab software, relative to the expression of glyceraldehyde 3-phosphate
dehydrogenase (GAPDH), a housekeeping gene equally expressed in treated and non-treated
cells/spheres. Results are expressed as relative ratio to control. Data represent an average of three
independent experiments. The data are reported as mean ± SEM. (* p < 0.05, ** p < 0.01; PLum-AI cells
compared to PLum-AD cells, student independent t-test).

3.4. Construction of the Protein–Protein Interaction (PPI) Network Associated with the Differentially Expressed
Proteins in PLum-AI vs. PLum-AD Cells

Using the Search Tool for the Retrieval of Interacting Genes/Proteins database (STRING v11.0) [34],
we constructed the protein–protein interaction (PPI) network associated with the differentially expressed
proteins in PLum-AI vs. PLum-AD cells. We inserted the list of 99 differentially expressed protein spots
as input and allowed the STRING database (https://string-db.org/) to search for neighbor interactors
and proteins that possess interactions with the inputted proteins. The PPI network was then built
involving all proteins and interactions between them (Figure 4).

3.5. Subnetwork Analyses of Pathways Associated with the Differentially Expressed Proteins in PLum-AI vs.
PLum-AD Cells

Global subnetwork analyses of PLum-AI cells in comparison to PLum-AD cells showed
differences in the involvement of protein pathways relevant to PC progression (Figures 5 and 6).
Indeed, biologically statistically significant protein interaction analysis showed enrichment of
biological functions and pathways in PLum-AI cells that are central to cell migration, cell cycle
regulation, cell damage, cell survival, DNA damage, and cell adhesion (Figure 5A and Supporting
Information Table S2). Targeted analysis of PC interactome in PLum-AI cells vs. PLum-AD cells revealed
dysregulation of proteins involved in cell differentiation, cell proliferation, cell cycle, and apoptosis
(Figure 5B and Supporting Information Table S3). In addition, biological process gene ontology (GO)
enrichment analysis of the differentially expressed proteins demonstrated enrichment of biological
functions in PLum-AI cells that are central to PI3 kinase (Figure 6A) and androgen receptor (Figure 6B)
pathways (Supporting Information Tables S4 and S5, respectively).

https://string-db.org/
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Figure 5. Systems biology analysis. (A) Biologically statistically significant protein interaction
map showing enrichment of biological functions and pathways in PLum-AI cells that are central
to cell migration, cell cycle regulation, cell damage, cell survival, DNA damage, and cell
adhesion (Supporting Information Table S2). (B) Targeted analysis of prostate cancer interactome in
PLum-AI cells vs. PLum-AD cells revealed dysregulation of proteins involved in cell differentiation,
cell proliferation, cell cycle, and apoptosis (Supporting Information Table S3). Relationships among the
differentially expressed proteins in PLum-AI cells vs. PLum-AD cells were determined using Elsevier’s
Pathway Studio version 10.0 (Ariadne Genomics, Elsevier) and the Ariadne ResNet database [35,36].
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Figure 6. Global subnetwork analyses. Biological process gene ontology (GO) enrichment analysis of
the differentially expressed proteins demonstrated enrichment of biological functions in PLum-AI cells
that are central to PI3 kinase (A) and androgen receptor (B) pathways (Supporting Information
Tables S4 and S5, respectively). Relationships among the differentially expressed proteins in
PLum-AI cells vs. PLum-AD cells were determined using Elsevier’s Pathway Studio version 10.0
(Ariadne Genomics, Elsevier) and the Ariadne ResNet database [35,36].
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4. Discussion

This work involves the use of LC-MS/MS-based bottom-up proteomics analysis of two murine PC
cell lines that represent the sequence of AD-to-AI PC progression, to identify evolutionarily conserved
expression changes in PC progression that could serve as potential biomarkers and therapeutic drug
targets. We used our previously developed murine PC cell line models (PLum-AD and PLum-AI cells)
that signify the development of androgen independence [12] and harbor the same genetic background
(Pten−/−TP53−/−) [38,39]. Our results identified a total of 683 gene products that were differentially
expressed between PLum-AI and PLum-AD cells. Among those, 99 were significantly differentially
expressed. Global subnetwork analyses revealed differences in the involvement of protein pathways
relevant to PC progression and enrichment of biological functions and pathways in PLum-AI cells that
are central to cell migration, cell cycle regulation, cell damage, and cell adhesion among other.

Two major hypotheses have been postulated to decipher the mechanisms underlying progression
of PC to CRPC: the adaptive mechanism and the selective mechanism [40]. On one hand, the former
suggests that this progression might be highly attributed to gene mutations in PC cells, including AR
gene amplifications and mutations, dysregulation of gene expression, and involvement of AR
co-regulators such as AR-associated proteins [40]. The androgen receptor (AR) is not only important
for normal prostate development, but also promotes PC initiation and growth. Investigating its role
in the advancement of PC shows that during the androgen-dependent stage, PC cells rely on AR
for growth and survival using several axes [3,4]. Later, and upon the progression of cancer to an
androgen-independent stage, affected cells tend to tailor different cellular pathways and mechanisms to
survive the androgen-depleted environment. In our study, biological process GO enrichment analysis
of the differentially expressed proteins in PLum-AI cells relative to PLum-AD cells revealed enrichment
of biological functions that are central to the AR pathway (Figure 6B), supporting the “adaptation”
model hypothesis. Indeed, this model proposes that castration-resistant cells originate from genetic
mutations of previously androgen-dependent cells during conditions of androgen deprivation [41].

On the other hand, the selective mechanism suggests that pre-existing castration-resistant
subclones in primary PC tissues and CSC selection dominate CRPC development [40]. This “clonal
selection” model suggests that castration resistance emerges from a previously quiescent population
of rare castration-resistant cells, such as CSCs that are AR negative, and therefore insensitive to
androgen deprivation [41]. This subpopulation of androgen-independent CSCs resides within the
tumor bulk and has been associated with PC recurrence [8,10–12,42]. Interestingly, our results
demonstrated upregulation of a number of proteins in PLum-AI cells that are associated with CSCs,
suggesting involvement of these cells with CRPC development. For instance, aldehyde dehydrogenase
(ALDH)-2 and phosphoenolpyruvate carboxykinase isoform 2 (PCK2) were upregulated in PLum-AI
cells compared to PLum-AD cells. Review of the literature reveals that high expression levels of PCK2
are crucial for the metabolic switch and the maintenance of CSCs in PC [43]. Furthermore, ALDHs have
been shown to play an important role in the maintenance and survival of CSCs via promoting
chemoresistance [44]. ALDH is commonly known to oxidize acetaldehyde to acetate in the pathway
of ethanol metabolism. Several stem cells population were shown to exhibit high ALDH activity,
including PC stem cells [44]. High ALDH activity was associated with increased expression of
putative PC stem cell markers CD44 and integrin α2β1 and was found to be positively correlated
with Gleason score and pathologic stage, and inversely associated with patient survival [45,46].
In this context, biological process GO enrichment analysis of the differentially expressed proteins in
PLum-AI cells also demonstrated enrichment of biological functions related to the PI3K pathway,
which is critical for PC stem-like cell maintenance as previously illustrated by Dubrovska et al. [47].
Importantly, biological functions central to androgen receptor pathways were also enriched in PLum-AI
cells, an example of which is the peptidyl-prolyl cis-trans isomerase (FKBP5), a major player in the
androgen signaling pathway in PC [48]. Other proteins that have been found to be significantly highly
expressed in PLum-AI relative to PLum-AD cells included Comt. Comt is an enzyme responsible
for inactivation of endogenous catecholamines and catechol drugs. Comt enzyme activity has been
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found to be reduced by 4-fold upon substitution of valine (Val) by methionine (Met) at codon 158,
hence contributing to the accumulation of mutagenic catechol compounds leading to PC [49,50].

A critical mechanism that embodies development of metastatic CRPC is epithelial-to-mesenchymal
transition (EMT) [17,51,52]. This process marks a key step in the invasion and malignant progression of
PC and plays a substantial role in therapeutic resistance to antiandrogens and radiotherapy. During EMT,
epithelial cells lose their adhesion molecules and gain a motile mesenchymal phenotype [53].
Particularly, EMT is characterized by loss of E-cadherin and decreased expression of cytokeratins
and tight junctions, such as zona occludens and occludin, complemented with an increase in
mesenchymal markers such as vimentin and N-cadherin [54], rendering cells capable of invading
the extracellular matrix (ECM) and metastasize [55,56]. The role of EMT in PC metastasis has been
studied [17,56], revealing significant interplay between EMT-related genes and alterations in signaling
pathways involved in prostate organogenesis, such as transforming growth factor-beta (TGF-β) [57],
epidermal growth factor receptor (EGFR) [58], IL-6 [59,60], AR variants [61,62], fibroblast growth
factor (FGF) [63], and Wnt/β-catenin [64,65]. In our study, biologically statistically significant protein
interaction analysis of PLum-AI cells showed enrichment of biological functions and pathways that are
central to the EMT process. Indeed, we found upregulation of vimentin (mesenchymal marker) and
downregulation of epithelial cell adhesion molecule (EpCAM) (epithelial marker) proteins in PLum-AI
cells at the proteomics level and validated them using Western blotting analysis. Fascin, another
marker expressed widely in mesenchymal tissues and associated with aggressive PC, was upregulated
in PLum-AI cells at the proteomics level [66]. Taken together, these results signify activation of the
EMT process in PLum-AI cells that represent advanced CRPC.

5. Conclusions

Decoding the molecular networks underlying the progression of the disease from a primary stage
to an advanced one is highly warranted to better comprehend the pathobiology of CRPC and unveil its
aggressive characteristics. This will ultimately prompt the identification of new potential biomarkers
and pave the way for tailored and targeted treatments that are patient-specific [67,68]. It is becoming
apparent that this new emerging bioinformatics technology is vital in deciphering mechanistic changes
underlying PC and identifying new biomarkers for early diagnosis and predicting patient prognosis of
this cancer. Through assessing the proteomic profiles of our previously established PLum-AD and
PLum-AI cell lines that represent primary and advanced stages of PC, respectively, and performing a
detailed functional proteomics analysis, our results pave the way for understanding the mechanisms
exploited in AD-to-AI PC progression. New expression biomarkers and therapeutic targets have been
recognized in our study that might help to improve the processes of diagnosing, managing, or even
curing the disease. Future studies warrant further validation of these biomarkers at the transcript and
protein level.

Supplementary Materials: The following are available online at http://www.mdpi.com/2075-4426/10/3/83/s1,
Figure S1: Densitometry readings/intensity ratio of each band in addition to whole blot (uncropped blots) in
PLum-AI vs. PLum-AD cell samples; Table S1: Altered differential protein spots in the PLum-AI cells vs. PLum-AD
cells. A total of 99 altered differential protein spots were identified in PLum-AI cells as compared to PLum-AD
cells under significance less than 0.05. (45 increased and 54 decreased, PLum-AI cells vs. PLum-AD cells); Table S2:
Biologically statistically significant protein interaction analysis in PLum-AI cells vs. PLum-AD cells; Table S3:
Targeted analysis of prostate cancer interactome in PLum-AI cells vs. PLum-AD cells, Table S4: Biological process
gene ontology (GO) enrichment analysis of the differentially expressed proteins in PLum-AI cells vs. PLum-AD
cells demonstrated enrichment of biological functions in PLum-AI cells that are central to PI3 kinase pathway;
Table S5: Biological process gene ontology (GO) enrichment analysis of the differentially expressed proteins in
PLum-AI cells vs. PLum-AD cells demonstrated enrichment of biological functions in PLum-AI cells that are
central to the androgen receptor (AR) pathway.
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