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Abstract

Collective living systems regularly achieve cooperative emergent functions that individual

organisms could not accomplish alone. The rafts of fire ants (Solenopsis invicta) are often

studied in this context for their ability to create aggregated structures comprised entirely of

their own bodies, including tether-like protrusions that facilitate exploration of and escape

from flooded environments. While similar protrusions are observed in cytoskeletons and cel-

lular aggregates, they are generally dependent on morphogens or external gradients leaving

the isolated role of local interactions poorly understood. Here we demonstrate through an

ant-inspired, agent-based numerical model how protrusions in ant rafts may emerge sponta-

neously due to local interactions. The model is comprised of a condensed structural network

of agents that represents the monolayer of interconnected worker ants, which floats on the

water and gives ant rafts their form. Experimentally, this layer perpetually contracts, which

we capture through the pairwise contraction of all neighboring structural agents at a strain

rate of _d. On top of the structural layer, we model a dispersed, on-lattice layer of motile

agents that represents free ants, which walk on top of the floating network. Experimentally,

these self-propelled free ants walk with some mean persistence length and speed that we

capture through an ant-inspired phenomenological model. Local interactions occur between

neighboring free ants within some radius of detection, R, and the persistence length of freely

active agents is tuned through a noise parameter, η as introduced by the Vicsek model.

Both R and ηwhere fixed to match the experimental trajectories of free ants. Treadmilling of

the raft occurs as agents transition between the structural and free layers in accordance

with experimental observations. Ultimately, we demonstrate how phases of exploratory pro-

trusion growth may be induced by increased ant activity as characterized by a dimension-

less parameter, A. These results provide an example in which functional morphogenesis of

a living system may emerge purely from local interactions at the constituent length scale,

thereby providing a source of inspiration for the development of decentralized, autonomous

active matter and swarm robotics.
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Author summary

Cooperative behavior in organisms often permits groups to achieve collective tasks that

are unattainable to individuals. Such is the case of fire ant workers that aggregate together

to create buoyant rafts that unify their colonies and ensure survival during floods. Under

certain conditions, these rafts undergo a process called treadmilling that allows them to

morph perpetually over the span of several hours. This morphogenesis includes the

growth of tether-like protrusions that colonies can use as land-bridges to escape water.

Employing a discrete, agent-based model, we here demonstrate how the local interactions

between ants in these systems may be sufficient to cause stochastic and spontaneous pro-

trusion emergence in the absence of external gradients, long-range interactions, or tar-

geted stimuli. Furthermore, in isolating the effects of short-range interactions, we reveal

how modulation of the activity level of freely active ants on the rafts’ surfaces may induce

phase changes between exploratory states of high raft expansion, and dormant states of

primarily raft contraction. These results uncover a simple set of rules by which a func-

tional collective behavior may be achieved and may provide inspiration in the design of

autonomous active systems such as swarm robotics.

Introduction

Cooperative living systems can achieve a wide range of complex functional tasks well beyond

the capabilities of the individuals that comprise them [1,2]. Perhaps chief amongst such organ-

isms are social insects [3–5], which can operate collectively with other members of their colo-

nies to more efficiently construct nests [6,7], thermoregulate [8,9], and forage for food [10,11].

Another fascinating example of cooperative behavior by social insects is the formation of rafts

by fire ants (Solenopsis invicta) [12,13]. During floods, fire ants condense into buoyant rafts

made entirely of worker ant bodies, thereby keeping their colonies unified and bolstering

chances of survival [12,13]. Recently, we discovered and reported that rafts can maintain the

ability to explore, even in flooded environments, through cooperative morphogenesis [14].

In our previous work [14], we observed ant rafts containing on the order of 3,000–10,000

worker ants. When introduced to water in which a vertical rod stemmed from the surface,

these ants formed dynamic raft structures comprised of a floating layer of structural ants on

top of which a layer of freely active ants walked [14]. While the structural network constituted

a single, condensed layer of ants with roughly conserved planar density, the freely active layer

was dispersed, heterogenous and transient on the timescale of seconds. Under these condi-

tions, these rafts display the ability to sprout tether-like protrusions that emerge and recede

perpetually over the span of hours [14]. The sustained emergence of these growths relies on

treadmilling dynamics in which the structural network comprising the raft continually con-

tracts, while freely active ants on the surface of the raft deposit into the structural network’s

edges and drive outwards expansion (Fig 1). The population of free ants that fuels outwards

expansion is continually replenished by unbinding or “exit” of structural ants from the bulk of

the raft and their subsequent transition into the freely active layer. We note that although the

presence and dimensions of the anchoring rod may impact the behavior of fire ants in experi-

ments, we here focus on how the experimentally measured, local behavior (e.g., trajectory

properties, local interactions, etc.) of ants drives the treadmilling and formation of dynamic

protrusions observed.

In some cases, the ants utilized protrusions as floating bridges to reach the edge of and col-

lectively escape their containers, demonstrating that they serve an adaptive advantage.
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Comparable cellular systems, such as cytoskeletal walls [15–17] and cellular aggregates [18,19],

display protrusion growth that, as in the case of fire ant rafts, facilitates motility and collective

migration. While these cellular systems are understood to utilize chemotaxis [20], durotaxis

[21] or other gradient-driven mechanisms [22] to initiate migration, it is not entirely clear

whether such external stimuli are necessary to drive protrusion growth in fire ant rafts. This

raises the question; do fire ants deliberately work to create these protrusions or do these fea-

tures emerge spontaneously in the absence of targeted signals or external gradients? Indeed,

Fig 1. Treadmilling. (A-C) A top view of the same experimental raft is illustrated at the (A) start, (B) middle, and (C)

end of a roughly 106 min duration. To visually illustrate treadmilling, a set of structural ants at the perimeter is selected

every 22 minutes. These ants are then image-tracked as they flow inwards due to network contraction and the

geometry defined by these ants is traced by a distinctly colored and numbered outline. The set of ants labeled “2” in

(B), for example, corresponds to the same set of ants labeled “2” in (A), but roughly 53 min later. The label “1”

represents the oldest set of ants while “6” represents the newest. The shrinking of these contours indicates retraction of

the raft structure, while the existence of new layers indicates outwards expansion. Periods of raft expansion and

coinciding protrusion emergence (A,C) were interrupted by interstitial spans of decreased activity and less eccentric

morphologies (B). All scale bars represent 10 ℓ where 0 mm is the approximate average body length of 1 ant. See S1

Movie for unannotated video. (D) A schematic visually illustrates the four concurrent mechanisms of treadmilling: (1)

structural raft contraction at a global rate _ε, (2) transition of structural ants to freely active ants in the bulk at a

nominal rate δ, (3) transport of the free ants on top of the raft with a mean persistence length lp, and (4) binding of free

ants back into the structural network at the edges of the raft at nominal rate α. The schematic is taken from Wagner,

et al. (2021) [14]. The freely active layer is offset from the structural layer for illustrative purposes only, as it resides

directly on top of the structural network in real ant rafts. Furthermore, note that the freely active layer, while shaded

continuously, is comprised of dispersed ants while the structural layer is relatively homogeneous and condensed.

https://doi.org/10.1371/journal.pcbi.1009869.g001
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spontaneous behaviors such as flocking of plant-animal worms [23] or ordered motion of Cali-

fornia blackworms [24] have been demonstrated in other condensed biological systems. How-

ever, the specific circumstances and adaptive advantages, under which these behaviors occur,

differ greatly from the exploratory or escape function displayed by floating fire ant rafts.

Spontaneous ordering is also well-documented in non-living active matter systems and

indicates that no agent-intent is necessary to spur comparable formations [25–27]. Perhaps

most similarly, Janus particles entrapped by lipid membranes have been shown to generate

remarkably analogous geometries to these ant rafts due solely to stochastic, synchronous

motion [28]. This occurs when a few neighboring Janus particles simultaneously apply force to

the boundary that causes an acute increase in local edge curvature and runaway tether growth.

Along these lines, in our previous work we treated freely active fire ants as decentralized self-

propelled particles in confinement. We demonstrated that the trajectory persistence length of

freely active ants is greater than the dimensions of the rafts they walk on. Under these “strongly

confined” conditions, it is known that self-propelled particles cluster near the convex edges of

their containment geometries [25,29]. Employing a coarse-grained continuum model of ants

on protrusions based on the work of Fily, et al. (2014) [25], we postulated a mechanism

through which local breaks in convex symmetry at the rafts’ edges may induce a runaway feed-

back loop whereby the locally higher curvature causes clustering of free ants, and the higher

concentration of free ants causes a higher local edge deposition rate. Yet, we also demonstrated

that a higher concentration of free ants alone does not lead to the elongated morphologies

observed in the experimental system and there must exists some mechanism that biases the

direction in which ants bind into the structural network [14]. While the hypothesized source

of this bias is a first or second-order effect of the directional motion of free ants on protrusions

[14], its true origins remain unclear and whether such protrusion may form in ant rafts due

solely to local interaction rules alone is uncertain. However, further exploration through the

continuum model is limited by smoothing assumptions that prohibit the investigation of phe-

nomena such as individual ant behavior, heterogeneities, and discrete size effects. Additionally,

exploration of this bias through experimentation is limited by factors such as small sample

sizes (since protrusions must be allowed to occur spontaneously without interference), diffi-

culty in image-tracking the position of free ants, and the inability to measure variables such as

ant self-propulsion force. For these reasons, a discrete modeling approach such as that taken

by Vutukuri, et al. (2020) [28] or other researchers in the study of ant species [30–35] is

warranted.

We here develop and employ a 2D, ant-inspired, agent-based, numerical model in which

the behavior of every single ant in the structural and freely active layer is discretely captured.

In matching the statistical behavior of agents to ants in both layers, we use this model to dem-

onstrate that a set of local interaction rules predicts the emergence of spontaneous protrusion

growth in the absence of any long-range communication or external gradients. These rules

confirm that biased motion of free agents occurs on protrusions given the condition of strong

confinement and local alignment interactions, and this directional motion facilitates the run-

away growth of said protrusions, as hypothesized previously [14]. Furthermore, we use this

model to investigate another unexplored phenomenon: oscillatory phase changes in fire ant

rafts between highly eccentric periods of outwards expansion accompanied by protrusion

growth, and recessive periods in which the rafts assume more rounded or elliptical shapes (Fig

1A–1C). Comparable cyclical changes in the mechanical properties of 3D aggregations of fire

ants have been documented and attributed to shifts in the activity level of the overall popula-

tion [36–38]. We find here that morphological phases of ant rafts may similarly be modulated

through the activity level of freely active ants on their surface as characterized by a dimension-

less activity parameter A. This parameter represents the competition between ants’ self-
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propulsion force, and their effective repulsion from the raft edge due to their dislike of water.

In the remainder of this work, we introduce the model and confirm that it replicates the tread-

milling dynamics observed experimentally. We then demonstrate that it predicts the spontane-

ous formation and runaway growth of protrusions, despite initially circular raft geometries.

Finally, we explore how modulating activity induces phase transitions between periods of out-

wards, exploratory growth, and contractile withdrawal, as seen in experiments.

Results

Modeling ant rafts

Here we overview the discrete numerical model used in this work to contextualize the results

presented. Detailed derivations and implementation methods are provided, as needed, in the

Materials and Methods section. We see in our previous work that treadmilling of ant rafts is

driven by four concurring mechanisms: (1) perpetual contraction of the floating, structural ant

network, (2) exit of structural ants out of the network into the freely active layer, (3) self-pro-

pulsion of the free ants on top of the raft, and (4) deposition of free ants into the structural

layer at the raft’s edges (Fig 1D) [14]. To capture these mechanisms, the model represents ants

as discrete agents whose motions are confined to a lattice of water nodes. To represent the

two-state nature of ant rafts, the model consists of a population of structural agents represent-

ing the raft’s structural network, on top of which a population of freely active agents moves dis-

persedly. These respective populations are denoted by the colors cyan and red throughout this

text unless specified otherwise. The positions of structural agents and water nodes are updated

in continuous space to capture the mechanism of structural network contraction. However,

the movement of free agents is constrained to the lattice defined by the structural agents, thus

naturally ensuring that free agents can only occupy the spatial domain of the raft. An illustra-

tive schematic of two hypothetical free ants in continuous space is depicted in Fig 2A, while

the corresponding conception of free agents in the lattice-based model is shown in Fig 2B.

Although the respective states of structural and free ants may consist of multiple layers distrib-

uted in the z-axis (depending on the time of inspection) [12,14], we here choose to model each

as a single layer of agents based on the experimental observation that during phases of protru-

sion growth, the structural network generally spread into a monolayer (with a planar density

of 0.304 ants mm−1) and the freely active layer was–on average–dispersed with a mean packing

fraction of approximately 0.24 free ants per structural ant [14]. Fig 2C–2E depicts snapshots of

a simulated raft in which the monolayered structural network is represented by cyan lattice

sites, and the dispersed active layer on top is depicted by red free agents. While these two states

behave independently in the model, agents transition between them according to a set of ant-

inspired rules.

Modeling structural agents

Based on experimental evidence we find that raft contraction is relatively constant in time

[14]. In contrast the deposition of free ants that drives outwards raft expansion varies signifi-

cantly over hours, with some free ants clustering near the rod in an inactive state. Therefore, in

the scope of this work, our primary aim is to explore the local, free agent behavior that drives

phase changes in these systems. Naturally, the model must still replicate the global treadmilling

dynamics that are prerequisite to sustained shape change and for which global contraction is

an essential mechanism. We found previously that the structural layer contracts uniformly

throughout the network and that its density is roughly conserved even over long time frames

[14]. To capture this uniform global contraction without introducing mechanisms that would

require long-range cooperation, we introduce spatially continuous pairwise contraction
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Fig 2. Agent-based Model Schematic. (A) Two free ants of interest (red) are schematically illustrated on a structural

section of raft (shaded cyan) in continuous space. Other free ants are shaded grey. The direction of motion

(û i ¼ ½cosyi; sinyi�) of the ant far from the edge of the raft (left) is predicted entirely by the Vicsek model. In contrast,

whether the ant encountering the edge of the raft (right) moves into the water, depends not only on û i, but also on the

competition between active force Fai and the effective edge repulsion force FGi . Each of these forces is governed by the

motion of free ants and relative position of water within detection distance R of the ants. (B) A corresponding

schematic envisions how these continuous scenarios are coarse-grained into the lattice-based framework of the

numerical model. The motion of the free agents of interest (red) remains governed by the direction of travel (white

arrows) of neighboring free agents, and effective pairwise repulsion (black arrows) from neighboring water nodes

within distance R. However, free agent movement is updated by stepping the free agents to the adjacent structural

agents (cyan) or water nodes (white) whose relative direction most closely matches the preferred direction, θi. Nodes

are displayed in a hexagonal, close-packed lattice for illustrative purposes only, but are initially offset in both directions

of the horizontal plane by some amount in the rangez and are further randomized by stochastic structural unbinding

events as the simulation progresses. (C-E) The shape evolution of a simulated raft over a duration of 20 min (of virtual

time), illustrates the implementation of the lattice-based conceptualization from (B) into the numerical model. Shape

change is governed by the transition of free agents (red) into the structural network (cyan) at the raft’s edge. The raft

depicted was initiated as a circle and all scale bars represent ℓ. (F-G) Agents encountering water in regions of (F) high

and (G) low edge curvature are depicted. These respective agents experience high and low values of FΓ due to the

pairwise contributions of repulsion force from detected water nodes (black arrows). The agent in (F) has no freely

active neighbors such that the only contribution to its value of Fa is its own self-propulsion force (white arrow),

whereas the agent in (G) has many freely active neighbors moving in similar directions towards the water such that it
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between neighboring structural agents at a constant strain rate of _d ½% min� 1�. It remains

unclear if structural ants contract towards all of their nearest neighbors or if they only contract

to fill in voids originating at sites where ants recently exited the structural layer. Regardless,

that global contraction is observed mandates that there exists microstructural contraction at

some length scale, which we here enforce between all pairwise nearest neighbors for simplicity.

This ensures that the mechanisms driving global contraction could feasibly be achieved by

agents working through exclusively local interactions. Setting _d to 1.2 times the globally mea-

sured contractile strain rate ( _ε) led to good agreement between experiments and simulations

(Fig 3A–3C) [14] (see the Materials and Methods section Simulating the Structural Network

for details). The fact that _d does not equal _ε generally indicates that the local rate of contrac-

tion between nearest neighbors is higher than the emergent global rate, which is expected in a

network due to non-affine effects [39].

To avoid hindering contraction, volume exclusion between structural agents is not

enforced. However, unconstrained network contraction would lead to a ceaseless increase in

structural ant concentration, which was not observed experimentally [14]. To ensure con-

served planar network density structural agents are unbound and converted to freely active

has a high value of Fa oriented off the raft. (F-G) Insets display the vectorial sums that define the effective forces Fa

(red) and FΓ (blue) for the respective agent configurations, thus illustrating how the agent in (G) is more likely to edge-

deposit based on Inequality 2.

https://doi.org/10.1371/journal.pcbi.1009869.g002

Fig 3. Comparing Treadmilling Dynamics. (A-B) The gradient of contractile speed, _r , towards the anchor point of

the rafts (red dot) is illustrated via heat maps within defined regions of interest (ROIs) for both (A) an experimental

and (B) simulated raft. _r was computed as the component of speed moving towards the stationary reference frame (i.e.,

the acrylic rod) and was measured for every point within these 2D ROIs, then averaged over durations exceeding 13

minutes. Scale bars represent 10 ℓ. (C) _r is plotted with respect to distance from the anchor point, r, for both the

experiment (discrete red squares) and simulation (solid black curve). The slopes of the least-squares regression lines

are taken as the average contractile strain rate _ε. The experimental strain rate ( _ε ¼ 1:63� 0:01 % min� 1;R2 ¼ 0:96)

agrees with the numerical value ( _ε ¼ 1:62 % min� 1;R2 ¼ 0:99). (D-E) The growth zones of both (D) an experimental

and (E) simulated raft after roughly 50 min are shaded in cyan. Scale bars represent 15 ℓ. The bound ants that occupied

the perimeter of the raft at reference time, t0 = 0, are outlined in red and were traced through time. (F) The time-

evolution of the edge binding rate, α, and bulk unbinding rate, δ, as a percentage per unit raft area are shown for two

sets of experiments (squares for α and triangles for δ; red and black for two different experiments) along with the

averaged results of 12 simulations (continuous black curves). Note that the initial drops in both α and δ for the

simulation data occur since the raft was not initiated at steady state, whereas experimental data was only sampled at

pseudo-steady state. (A,C,D,F) Experimental results are courtesy of Wagner, et al. (2021) [14]. All simulated rafts were

initiated as circles and shape was allowed to evolve stochastically.

https://doi.org/10.1371/journal.pcbi.1009869.g003
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agents wherever their local quantity per unit area (i.e., their density) exceeds a prescribed

threshold. This allows for robust exit of structural ants throughout the bulk, as observed in

experiments [14]. To match experiments, this threshold was set to 1 agent per z2, where z2 is

the area occupied by one experimental, structural ant (z ¼ r� 0:5
r ¼ 1:81� 0:30 mm, where ρr

is the planar structural network density). Consequently, a numerical rate of structural unbind-

ing, min−1, naturally emerged and matched experimental estimates (Fig 3F) [14], suggesting

that 2% of structural agents convert to freely active agents every minute. Thus, through this

pairwise contraction, both global network contraction and flux of ants from the structural net-

work to the freely active layer were achieved. Note that the structural agents provide a continu-

ously updated lattice on which the freely active agents move, such that structural layer

contraction also induces contraction of the free layer. However, active agents walk at speeds

two orders of magnitude greater than that of the structural contraction such that the effect of

contraction is negligible on free agents.

Modeling freely active agents

While global contraction and bulk structural unbinding are essential in replenishing the popu-

lation of freely active ants, it is ultimately the deposition of these free ants into the edge of the

structural network that governs global shape evolution. This deposition is largely dependent

on the distribution of free ants at the edge, and therefore the transport of free ants on the sur-

face of the raft. To model surface traffic, we begin with the qualitative observations that free

ants are self-propelled agents whose trajectories under weak confinement are isotropic but cor-

related below the length scale of one ant body length (1 ℓ), indicating some degree of local

alignment interactions [14]. To capture this local alignment, the phenomenological Vicsek

model [26] is used to predict the preferred direction of motion of self-propelled agents as they

traverse the structural lattice. Through this model, the preferred angle of motion of free agent i
at time t+Δt is updated according to [40]:

yiðt þ DtÞ ¼ hyjðtÞii þ xiðtÞ; ð1Þ

where hθj(t)ii is the average orientation, θ, of all neighboring freely active agents (including

agent i) at time t. Neighboring agents are denoted by the index j and defined as free agents

residing within some detection distance, R, of agent i. Generally, throughout this work the

indices, i and j denote the agent of interest and its influencing neighbors, respectively, rather

indicating vector values. Vectors are instead denoted by bold text. Similarly, where used, com-

bined indices (e.g., “ij”) denote pairwise values or values from j to i, rather than second order

tensors. Note that raft agents exert no influence on active force since they reside beneath the

plane of active agents and move at considerably slower speeds. The scalar value ξi induces a

random change in agents’ directions within the uniformly distributed range [−πη, πη], thus

coarsely capturing decision-based noise in ants’ trajectories. Here η2[0,1] is the noise parame-

ter introduced by Vicsek, et al. (1995) [26] (Fig 2A), whereby if η = 0 there is no noise and if

η = 1 the movement of agents is completely random. The Vicsek model is a minimalist model

for active particle motion that may capture a full spectrum of phases from fully isotropic

motion (at low densities or high noise) to completely uniform movement (at high densities or

low noise), and which depends on just three parameters: particle density, the radius of influ-

ence (R) and noise (η) [26]. Therefore, it is favored for its versatility, simplicity and is applied

here given the experimental evidence that there exists mutual interactions between free ants,

albeit only at the contact length scale [14]. Although this model is commonly used to capture

collective motion driven by non-local interactions between self-propelled particles, it is not

exclusive to collision-avoiding particles, and we here set R such that only neighbors in contact
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may directly influence one another. In this lattice-based framework, η and R are taken as 0.2

and 0.9 ℓ, respectively, in order to replicate the experimentally measured persistence length, lp,
of free ant trajectories far from rafts’ edges [26] (see the Materials and Methods section Vicsek

Model Parameters for details).

At every timestep, Eq 1 is used to define the preferred direction of motion for each free

agent. However, since free agents are constrained to the lattice of structural agents, Eq 1 is not

used to step their positions continuously. Instead, each agent is assigned (at most) 18 move-

ment degrees of freedom (DOF) that may consist of either structural agents or water nodes,

but which must exist within some distance RDOF of agent i (see the Materials and Methods

section Stepping Free Agent Movement for selection of RDOF). Note that RDOF naturally con-

strains the maximum speed of free agents to vmax = RDOF/Δt, and defines some mean distance,

hdi, between agent i and its neighboring DOF. Indeed, this permits that the time step be set to

according to Δt�hdi/v0, where v0 is the experimentally measured mean free ant speed, thereby

calibrating the timescale of this model. Once θi is computed, agent i is then stepped to the posi-

tion of the “eligible” DOF whose relative orientation most closely matches θi (see the Materials

and Methods section Stepping Free Agent Movement for details). Eligibility is defined by a

set of ant-inspired criteria. Firstly, structural DOF are ineligible if they are already occupied by

a free agent. This mimics volume exclusion interactions between free ants (i.e., that two ants

cannot occupy the same space) and naturally enforces that the freely active agents occupy a

monolayer and remain relatively dispersed as in experiments [14]. Secondly, eligible DOF

must exist within the confines of some turning limit (±π/2 radians) with respect to θi. This

turning limit was included due to the observation that it takes free ants greater than Δt to turn

more than approximately π/2 radians, thereby limiting the turning rate of agents using an

approach similar to that of Couzin and Franks (2003) in their investigation of army ants (Eci-
ton burchelli) [35]. Finally, if the preferred DOF is a water node then an additional rule of edge

deposition must be satisfied to allow movement, as discussed in the following section. If a free

agent has no eligible movement DOF, it pauses before re-evaluating its preferred direction of

motion according to the algorithm described in the Materials and Methods section Pausing

Surface Traffic.

The rule of edge deposition

To properly model edge deposition, we again begin with experimental observations. Active

ants appear to “encounter” the raft’s edge when they walk directly towards it and contact the

water. These ants avoid binding into the raft’s edge (which requires moving into the water)

unless pressured by neighboring active ants and adequately surrounded by structural ants

upon deposition into the network. Together, these observations indicate competition between

some effective active force Fai due to a free ant’s self-propulsion combined with that of its near-

est neighbors, and some effective edge repulsion force FGi that occurs at the perimeter of the

raft. Here, FGi is not a physical force, but rather an embodiment of ants’ motivation to stay on

dry substrates and is akin to the "social forces" employed by Helbing and Molnár (1995) [41].

Whether or not it is due to free ants’ affinity to the raft, aversion to water, or both is not imme-

diately clear or relevant. Nevertheless, there is a clear observational tendency for individual

ants to avoid moving into the water under their own volition.

To mimic these experimental observations, we define an edge encounter as occurring

when a free agents’ preferred movement DOF is a water node. We then compute Fai and FGi ,

and simply define an edge deposition event as occurring when the magnitude of active force

driving the agent off the raft is greater than the magnitude of effective edge force repelling it

from the water, in the direction of agent motion (û i ¼ ½cosyi; sinyi�). Mathematically, this is

PLOS COMPUTATIONAL BIOLOGY Computational exploration of treadmilling and protrusion growth observed in fire ant rafts

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009869 February 17, 2022 9 / 32

https://doi.org/10.1371/journal.pcbi.1009869


given by:

ðFai þ FGi Þ � û i > 0: ð2Þ

To compute Fai we coarsely assume that self-propulsion forces are fully transmitted between

in-contact free agents such that:

Fai ¼ Nf
aφsi ; ð3Þ

where fa is the magnitude of a single agent’s self-propulsion force and N is the number of

neighboring free agents (σ2[1,N], inclusive of i) residing within the contact radius R. Here, φsi
is the local order vector in free agent motion defined by φsi ¼ N

� 1
PN

s
ûs where ûs is the direc-

tion of motion (ûs ¼ ½cosys; sinys�) of neighboring free agent σ. The local order vector is 1

when all local free agents are moving in the same direction, and approaches 0 when the local

movement is completely disordered [42]. Therefore, Fai scales with the degree of local synchro-

nization (or cooperation) between free agent motion through φai , and is bound by the number

of locally detected neighbors, N.

To compute FΓ we consider that there exists some effective pairwise repulsive force, f Gio, act-

ing on agent i due to each of its N adjacent water neighbors (ω2[1,N]) within distance R.

Treating this force as the negative gradient in potential energy between the positions of node ω
and agent i (i.e., f Gio ¼ � rrU), assuming the simplest case of a linear energy gradient between

these sites, and recognizing that detection distance R is the contact length scale (i.e., R/ℓ~1)

then we may take the magnitude of f Gio as a constant, fΓ (see the Materials and Methods sec-

tion Effective Edge Repulsion for details). Assuming a linear superposition of the pairwise

forces then the net repulsive force on imay be computed as the sum of discrete contributions

[43] from all N water neighbors as:

FGi ¼ � Nf
Gφoi ; ð4Þ

where φoi is a local order vector (φoi 2 ½0; 1�) indicating the relative position of water nodes

with respect to i. Mathematically, φoi ¼ N
� 1
PN

o
r̂ io where r̂ io ¼ ðXo � XiÞ=jXo � Xij is the

direction vector from the position of i (Xi) to the position of ω (Xω), which points towards the

average location of detected water nodes. The magnitude of φoi increases as the relative orien-

tation of these water nodes becomes more tightly grouped with respect to i (e.g., if all detected

water nodes are approximately in-line with and on one side of i, then φoi ! 1). As a result, FGi
scales proportionately to the amount of water detected through N and acts approximately in

the direction normal to (and inwards from) the raft’s boundary through � φoi .

Substituting Eqs 3 and 4 into Inequality 2 provides a normalized condition for edge depo-

sition:

f a

f G
Nsφs

Noφo

� �

> 1, Deposit; ð5Þ

where φs ¼ φsi � û i; φ
o ¼ φoi � û i, and we have distinctly labeled the number of neighboring

free agents and water nodes as Nσ and Nω, respectively. Scalars Nσφσ and Nωφω are numerically

measured values that characterize the respective magnitudes of the active and repulsive forces

in the direction of motion, and which depend only on the local configuration of the discrete

system as illustrated through examples in Fig 2F–2G. Therefore, the only parameter intro-

duced through this edge deposition rule is the dimensionless ratio A ¼ f a=f G, which charac-

terizes the competition between a free agent’s self-propulsion force and its effective repulsion

from water. As such, A is the parameter that mediates global expansion and shape change of
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the rafts. Supposing that an ant’s aversion to water is relatively consistent (i.e., that fΓ is con-

stant), then A is representative of the active force or “activity” of free ants, where high activity

is synonymous with high fa. Increasing A results in an increase in the left-hand side of

Inequality 5, thereby escalating the overall edge deposition rate per free agent. With the edge

deposition rule implemented, a mean expansion (or edge binding) rate of α~2% min−1 natu-

rally emerged for the overall rafts and automatically matched the experimentally measured val-

ues once pseudo-steady state treadmilling occurred (α�δ) (Fig 3D–3F). This rate may be

interpreted as the percentage of structural agents that are newly added to the network’s edge

each minute.

Protrusions emerge spontaneously

To model experiments, we ran simulations with 2,250 agents for up to 4.5 hours of simulation

time, letting the rafts reach quasi-steady state treadmilling (defined by α�δ). To roughly

mimic the dense, spheroidal shapes of the experimental ant aggregations when initially placed

into water and to assure that protrusions form stochastically, all simulated rafts were origi-

nated as circles with a free agent packing fraction of ϕ = 1 freely active agent per structural

agent. To provide a still reference frame and mimic the anchored boundary conditions of

experimental rafts, a permanent structural agent was located at the center of the domain and

fixed in place. With both the pairwise contraction rate ( _d ¼ 1:9 % min� 1) and Vicsek model

parameters (R = 0.9 ℓ and η = 0.2) independently calibrated to match experimental treadmill-

ing and free ant trajectories, respectively, ant activity (A) remained the only free parameter

driving freely active agent behavior and global shape evolution. To display ant traffic and tran-

sitions between the two layers, S2 and S3 Movies present a simulated raft with structural and

freely active agents depicted as light and dark grey particles, respectively, while transition

events to and from the structural layer are depicted by cyan and red points, respectively.

Despite the initially circular shape of each raft, when A was on the order of 1.25 to 1.47 the

model consistently predicted the unstable growth of protrusions. For the purposes of this

work, we define a protrusion as any elongated region of structural network branching from

the raft whose width is less than half of the mean ant persistence length (0.5×lp�10 ℓ), and

whose length is greater than or equal to its width (i.e., aspect ratio�1). In contrast, bulk sec-

tions of raft are defined as continuous regions of structural network whose dimensions exceed

lp in all directions, and which exists at least a distance of 2 ℓ from the raft’s boundary to

account for the correlated trajectory length scale of free ants (~1 ℓ). To determine if the pre-

dicted protrusions had the same characteristic length scale and dynamics as experimental pro-

trusions, we measured their average widths,W, and growth rates, V, over time. The widths of

simulated protrusions ranged from roughly 2 to 9 ℓ, with a mean value of 5.95±0.05 ℓ that

agrees with the experimental value of 5.85±0.06 ℓ (Fig 4A) [14]. Similarly, the tip-growth rates

of the model-predicted protrusions ranged from roughly -1 to 3 ℓ min−1, with a mean value of

0.46±0.02 ℓ min−1 (Fig 4B). While not exactly matching the experimental mean of 0.74±0.05 ℓ
min−1 [14], these growth rates are on the same order and are adjustable through A. The model

also allowed us to easily quantify the distinct behaviors of freely active agents, enabling us to

confirm the factors leading to spontaneous protrusion initiation and runaway growth.

We confirmed that protrusion initiation is driven by stochastic nucleation of transient ant

clusters, which occurred frequently near the rafts’ convex edges, and are primarily attributed

to wall-accumulation effects [25,29,40,44–47]. These clusters often caused concentrated edge-

deposition of freely active ants resulting in local regions of high edge curvature that served as

proto-protrusions. Following this, the model predicted directional flow of freely active ants

along protrusions’ lengths consistent with what was observed previously in experiments and
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which is largely attributed to the strong confinement of particles in these regions wherein their

persistence lengths exceed that of the protrusions’ confining widths [14,25,29]. While similar

clustering is predicted by the continuum model previously adapted and modified [14] from

Fily et al. (2014) [25], several limitations exists for said model, such that the causes of clustering

and directional motion in the case of ant rafts are likely better captured by this discrete

approach. First, the continuum approach requires a smoothly differentiable raft boundary and

predicts that particles will “slide” directly along the edge of confinement until they reach a

local minimum in the convex radius of curvature or hit a concave region of edge curvature (at

which point they will “jump” tangentially across the domain and back to the opposite bound-

ary) [29]. This smoothing prohibits the study of edge defects whose sizes are on the order of

single ants (e.g., vacancies or small protuberances of just a few ants), as the continuum model

would predict that these defects simply interrupt sliding along the edge. However, in this

coarse-grained lattice model, the raft’s edge defects naturally occur at the length scale of an

agent. These defects sometimes interrupted free agent motion along the edge given the move-

ment and edge deposition rules implemented here, causing agents to pause temporarily and

Fig 4. Comparing Protrusion Dynamics. (A-B) Probability mass functions are shown for (A) the average protrusion

widths,W, and (B) growths rates, V of more than 400 experimental observations (grey) and numerical observations

(light red) each. Here, R = 0.9 ℓ, η = 0.2 and A 2 ½1:25; 1:47�. (C-D) The direction of motion of free ants on

experimental sections of (C) a protrusion and (D) the bulk of a raft are visually illustrated with the color of a free agent

representing its direction of travel during one frame-to-frame observation. (E-F) The same visual analysis is made for

sections of (E) a protrusion and (F) the bulk of a simulated raft, where the direction of travel is measured between one

timestep. (C-F) Colors are assigned according to orientation based on the color wheel depicted in (E). (G-J) 2D

velocity distributions are shown, courtesy of Wagner, et al. (2021) [14]. (G-H) correspond to (C-D), respectively, while

(I-J) are the ensembled results from 11 in silico protrusions and on the order of 100,000 discrete velocity observations,

each. A simulated protrusion at the start (K) and end (L) of a roughly 21 min duration exhibits how directional motion

on protrusions culminates in clustering of freely active agents (black circles) at the tip and rapid, anisotropic growth.

(A-B,C-D,G-H) Experimental results are courtesy of Wagner, et al. (2021) [14]. Scale bars in (C,E,K,L) represent 10 ℓ.
All simulated rafts were initiated as circles such that the in silico protrusion growths depicted (and from which data

were collected) occurred stochastically.

https://doi.org/10.1371/journal.pcbi.1009869.g004
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then reorient. Despite these defects, the discrete model still predicted directional alignment

(Fig 4C–4F) and tip clustering (Fig 4K–4L) on protrusions, exemplifying robustness in these

features, as seen in physical experiments [14]. One possible explanation is that, on protrusions,

agents jammed at edge defect sites, were influenced, and frequently realigned with the motion

of uninterrupted agents nearby on the bulk such that directional motion resumed. Thus, the

effects of volume exclusion, alignment interactions, and bulk movement–none of which could

be examined through the continuum approach–propagated the effects of strong confinement

inwards (away from the rafts’ edges) and facilitated directional motion.

Visually, directional motion on a protrusion is represented in Fig 4C–4F wherein the tra-

jectories of free ants or agents are depicted in regions of interest both on protrusions (Fig 4C

and 4E) and bulk sections far from the rafts’ edges (Fig 4D and 4F). The direction of motion is

represented by a spectrum of colors per the color wheel in Fig 4E, which is oriented such that

leftwards movement is depicted by shades of orange. For both experiments and the model, a

bias in directional travel is clearly illustrated on protrusions from their bases to their tips, as

indicated by the prevailing orange hues of trajectories (here entailing leftwards motion). In

contrast, on the bulk it is more difficult to assign a single predominant hue, indicative of more

isotropic movement. However, clusters of synchronous motion still appear to occur in all

regions of interest on the order of 1 ℓ (consistent with the findings of Wagner, et al. (2021)

[14]), making an objective visual analysis difficult. To instead quantify differences in direc-

tional motion, we compared the normalized velocity order parameter of free ants and agents

(members) on protrusions, defined by φ = hv(t)iN/h|v(t)|iN where v is the velocity of a particle

and hiN denotes taking the ensemble average over all Nmembers [42]. This parameter is zero

when motion is completely isotropic but approaches 1 when movement is perfectly unidirec-

tional. We found that in both experiments and simulations, φ was on average higher for freely

active members on protrusions than on the bulk of the raft. For the experimental raft depicted

in Fig 4C–4D, φ = 0.65±0.02 on the protrusion versus φ = 0.57±0.02 on the bulk [14]. Simi-

larly, for the simulated raft depicted in Fig 4E–4F, φ = 0.64±0.12 on the protrusion versus φ =

0.33±0.06 on the bulk. In both cases, comparably sized domains were used to compute φ and

the relatively larger values of φ on protrusions confirms that the confinement of protrusions

induces higher directional motion than that observed on the bulk. However, φ does not indi-

cate the orientation or sense of said directional motion.

To further examine in which orientation freely active members preferentially traveled, we

also investigated their velocity distributions on and off protrusions, from both experiments

(Fig 4G–4H) [14] and an ensemble of 11 in silico protrusions (Fig 4I–4J). The elongation of

velocity distributions along the length of protrusions confirms that traffic moves primarily

along these structures’ longitudinal axes, whereas the velocity distributions on the bulk (Fig

4H and 4J) appear uniform, indicating isotropic motion, thus supporting the interpretations

of Fig 4C–4F. Furthermore, the biased sense of motion is also exemplified by the velocity dis-

tributions on protrusions, which are slightly skewed left for both experiments (Fig 4G) and

simulations (Fig 4I), implying motion from the bases-to-tips of protrusions. When directional

traffic occurred towards the tips of protrusions, it induced jamming of freely active agents at

their ends (Fig 4K–4L) and high magnitudes of Fa, similar to the locally high pressures exerted

by confined Active Brownian Particles on highly convex regions of confinement curvature

[25,48]. This locally high active force accentuated edge binding and tip growth. Ultimately,

runaway protrusions result from a positive feedback loop wherein cluster formations initiate

protrusions that in turn promote directional traffic, spurring further tip clustering and growth.

Indefinite growth of protrusions is checked by both the perpetual raft contraction and finite

population of freely active agents, such that within an appropriately large domain the protru-

sions did not reach the simulation’s boundaries.
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Activity level modulates shape

Having confirmed that local-level agent interactions can lead to spontaneous instabilities, we

then sought to understand the local behavioral changes that could lead to long-term variation

in experimentally observed raft shapes by exploring the effects of A over the range of 0.81 to

3.23 (see S4–S7 Movies for samples in this range). Results are summarized in Figs 5 and 6A

where we visually present the effects of activity on the raft configurations during and after 1.5

hours of simulated time, respectively. From Fig 5, we see that no protrusions emerged when

A ¼ 1:08, whereas protrusions emerged within the first 30 min and 2 min when A ¼ 1:80

and 2.31, respectively. Similarly, while there are numerous protrusions stemming from the

rafts in Fig 6A when A � 1:47, there were no distinct protrusions on the rafts when

A � 1:16, based on the definition provided earlier (i.e., width�10 ℓ and length� width).

This is illustrated in Fig 6B by samples of the local edge curvature, each of which displays

roughly the smallest geometric edge feature of its respective raft. Generally, these results indi-

cate that higher A promotes higher edge deposition rates that induced more frequent protru-

sion growth and more eccentric global shapes.

To quantitatively characterize global shape, we introduce a dimensionless parameter called

surface excess defined by S ¼ C=ð2
ffiffiffiffiffiffi
Ap
p

Þ, where C and A are a raft’s perimeter length and

area, respectively. S = 1 for a circle and increases with a shape’s eccentricity, thus higher S indi-

cates the presence of more numerous or more elongated protrusions. Maximum surface excess

and mean surface packing fractions of model results are presented in Fig 6C. Maximum (as

opposed to mean) surface excess is presented to transparently indicate the peak degree of

eccentricity achieved by the raft and exclude the inherently low surface excess of the initially

circular rafts. Moving from left to right in Fig 6C there is a continuous phase transition in the

activity range of A ¼ 0:95 to 2.02 indicated by the smooth curve of surface excess from low

(S�1.2) to high (S�2.8). Likewise, there is a smooth transition of free active agent packing

fraction from high (ϕ�1 implying almost no edge binding, whatsoever) to low (ϕ�0.06,

Fig 5. Dynamic Effects of Activity Level. Snapshots of modelled rafts at different simulation times (t) and activity

levels (A) are depicted to illustrate the effect of A on raft development. The raft on the far left depicts the initial

conditions which were the same for each simulation throughout this work (a circular raft with ϕ = 1). On the right

each row depicts a single raft as it evolves in time (moving from left to right along the horizontal axis). For all

simulations shown, η = 0.2 and R = 0.9 ℓ. Structural agents are depicted in cyan, while dispersed free agents are

depicted in red. The scale bar in the top right is universal to all snapshots and represents 14 ℓ.

https://doi.org/10.1371/journal.pcbi.1009869.g005
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indicating relatively high edge binding rates) as A increases. These phases are analogous to

those observed in Fig 1A and 1B, respectively.

Besides dictating the global presence of protrusions, A also impacts the local shape of these

tethers. Specifically, higher A diminishes the characteristic widths and tip radii of growths as

illustrated in Fig 6B. To quantify this, the mean protrusion tip radius, hRκi, (or convex edge

radius for rafts in which no protrusions emerged) is plotted with respect to A in Fig 6D.

Examining Fig 6D, A � 0:95 distinguishes a region in which hRκi�10 ℓ, which is approxi-

mately the same as the initial raft radius and is exemplary of the lack of growth at low activities.

However, for A > 0:95; hRki decreases monotonically, indicating that regions of lower con-

vex edge radius (or higher curvature, k � R� 1
k

) begin to emerge as activity is increased. How-

ever, Fig 6D confirms that when A�1.16, the edge radii of growths were typically greater than

5 ℓ, suggestive of widths greater than 10 ℓ and mandating that growths such as those depicted

in Fig 6B for A � 1:16 are not classifiable as protrusions given our prescribed definition. In

Fig 6. Ant Activity Phases. (A) Snapshots of initially circular, simulated rafts are shown after 1.5 hours of simulation time. Here, η
= 0.2, R = 0.9 ℓ and A 2 ½0:81; 3:23�. (B) Snapshots of protrusions, each representing the minimum observed radius of tip

curvature from its raft at final simulation time, are depicted for each of the respective values of A. The black line cropping each

snapshot at its bottom is an open border to the remainder of the raft. The values of A yielding each morphology for (A-B) are

denoted beneath each snapshot in (B). (C) Mean freely active agent packing fraction, hϕi, (blue) and maximum surface excess,

Smax, (red) are plotted with respect to A, and averaged over 5 simulations at each value of A, with error bars presenting standard

error of the mean. Horizontal dotted lines in (C) represent the experimentally measured values of ϕ = 0.24 and Smax�1.8. The

bounds of the parameter space that matches experiments are marked where these respective lines intersect the numerical data (see

“Exp. Match Zone” between A ¼ 1:25 and 1.47). There exists a zone between roughly A ¼ 1:0 and 2.0 of continuous phase

transition between rafts with minimal-to-no growth whatsoever (ϕ�1 and S~1.2) at low activity levels and frequent protrusion

growth (low ϕ and S>2) at high activity levels. (D) Mean protrusion tip radius (Rκ) is plotted with respect to A. Anywhere from

four (in the case of no growth) to forty-one observations were ensemble averaged depending on protrusion frequency. Where no

protrusions were available (A � 1:16) the mean convex edge radius is reported instead. The top dotted line represents the initial

raft diameter of 10 ℓ, while the bottom dotted line represents the limit of Rκ!0.5 ℓ, corresponding to the radius of one agent.

(C-D) share a horizontal axis. (E-G) Three chronological snapshots of an experimental ant raft exhibiting different phases of

protrusion growth are compared to (H-J) three chronological snapshots of a simulated raft when A was modulated between 1.1

and 1.6. (K) The time evolution of surface excess as measured from one experiment (red circles) and ensemble averaged over 28

numerical simulations (black curve with a negligible shaded region representing standard error of the mean) are displayed. Note

that the simulations start close to S = 1 given the initially circular raft shape. Time, t�, is normalized by the experiment duration for

a more direct comparison. Structural agents are depicted in cyan, while dispersed free agents are depicted in red. All scale bars

represent 10 ℓ. All simulated rafts displayed were initiated as circles such that protrusions emerged stochastically.

https://doi.org/10.1371/journal.pcbi.1009869.g006
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the region defined by A > 1:16; hRki appears to approach and eventually reach the limit

hRκi!0.5 ℓ, which represents a protrusion tip whose width is just one agent (~1 ℓ) and is

therefore the limit in this discrete system.

Mlot, et al. (2011) [12] estimated the capillary length of ant rafts on the order of 10 ℓ. How-

ever, from these results we see that raft edge curvature is dependent on activity, and therefore

relatable to the length scale, L ¼ ‘=A. When A is low (L is high), we see smoother raft geome-

tries (higher capillary length) with lower surface excess and edge curvature. In contrast, when

A is increased, L diminishes permitting the emergence of more, but narrower, protrusions. In

essence, higher free agent activity reduces effective surface tension of the overall rafts, warrant-

ing a comparison of A to temperature [49] in non-active materials whose surface tensions gen-

erally diminish as temperature increases [50]. Worth noting is that when A is sufficiently

large, the rate and azimuthal homogeneity of edge binding are high enough that expansion

appears to approach an isotropic state. This is reflected by the reduction in the number and

size of protrusions displayed by the raft in Fig 6A when A ¼ 3:23. It is likely that as A
increases, the propulsion force of a single agent fa eventually becomes sufficient to cause edge

binding anywhere along the raft’s edge, reducing the relative significance of local raft geometry

and cooperative force Fa. Significantly, this suggests that there is, in fact, an optimal surface

activity level for inducing an exploratory phase in systems that obey this model, which occurs

when 1:16 < A < 3:23.

To demonstrate how A may alter the phases of protrusion growth and non-growth, we

modulated A within a given model experiment to a value above (A ¼ 1:6) and below

(A ¼ 1:1) the phase transition threshold (see Fig 6E–6K and S8 Movie). Indeed, this effec-

tively toggled the raft between exploratory phases of high surface excess (e.g., Fig 6H and 6J)

and low surface excess wherein no protrusions were present (e.g., Fig 6I), comparable to what

was observed in experiments when free ants ceased activity. Worth noting is that the second

phase of experimental protrusion growth (Fig 6G) did not reach the same magnitude of sur-

face excess as the initial phase (Fig 6E), suggesting that either the activity level did not fully

recover to its original state or not enough time was spent in this more active state to resume

S�2. Consequently, surface excess of the second simulated phase of protrusion growth (Fig

6J), exceeds that of the experimental surface excess. It is reasonable to assume that A evolves

roughly continuously for a real ant raft of thousands of individuals, however A in the model

was modulated via a binary step function, thus likely contributing to the abrupt resumption of

high S. Regardless, activity level’s effect on raft shape is made clear.

Discussion

Our results indicate that fire ant rafts may exhibit spontaneous protrusion growth in the

absence of external gradients or long-range interactions. While cueing factors such as phero-

mones have not been ruled out and should be tested for in future experimental studies, this

model generally poses local mechanisms through which fire ants may achieve treadmilling and

protrusion growth without centralized control or purposeful intent. Nevertheless, protrusions

may sometimes serve the adaptive purpose of helping fire ants escape flooded environments,

perhaps illustrating an example in which spontaneous cooperative behavior benefits a collec-

tive organism. Through the model, we find that the global shape of these rafts and their display

of protrusions is highly dependent on the activity parameter A, which characterizes the com-

petition between an ant’s self-propulsion and its aversion to water. Supposing free ants’ aver-

sion to water does not vary significantly, then A may be interpreted as the normalized force

with which free ants self-propel. Inversely, if self-propulsion force is conserved, then increased

A may be thought of as a reduced inhibition to structural edge deposition by ants. In either
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case, the model suggests that a behavioral change by solely the freely active ants may signifi-

cantly impact the size and shape of ant rafts observed. Tennenbaum and Fernandez-Nieves

(2020) demonstrated that temporal activity cycles in fire ants on the order of hours also impact

the rheological properties of 3D aggregations. Based on our model, we suspect that this same

oscillation of ant behavior between inactive and active states is responsible for the morphologi-

cal variation in ant rafts. Indeed, in our previous work, we experimentally observed that the

clustering of inactive, yet free ants near the centers of their rafts preceded the overall reduction

in raft area and reduction in surface excess [14]. During this time, the contraction of the struc-

tural layer remained relatively constant.

This model also offers an explanation regarding the directional bias in edge deposition that

our previous work indicated is necessary for the evolution of elongated protrusions [14]. We

see that strong confinement of active agents on protrusions promotes their directional motion

towards the protrusions’ tips, whereas active agent motion is isotropic on the rafts’ bulk sec-

tions. Since we enforce that freely active agents deposit into the water in a direction that is cor-

related with their movement and that of their nearest neighbors (as determined by the local

active force, Fa), this directional motion then promotes local edge growth that is aligned with

the longitudinal axis of the protrusions. Through this rule, the shapes and growth rates of

model-predicted protrusions are in good agreement with those of experiments, thereby sup-

porting the hypothesis that confinement-induced directional motion is a contributing second-

order cause of runaway protrusion growth in ant rafts. Ultimately, these results do not nullify

the potential influence of biological stimuli (e.g., morphogens or pheromones), rather they

support the notion that physics-driven mechanisms may aid or provided a redundant pathway

for emergent protrusion growth in ant rafts.

While this discrete model helps interpret potential causes of protrusion growth in ant rafts,

there exists several limitations that could influence the accurate representation of free ants by

free agent trajectories and therefore global raft evolution. First, free agent movement is

restricted to a lattice defined by structural agents and water nodes, which simplifies the model

in several ways. For example, it alleviates the need to interpolate a continuous raft boundary,

and free agents’ encounters with the water are discretely defined as instances when their pre-

ferred movement DOF is a water node. It also renders interpolation of the energy landscape

unnecessary at the location of free agents (when computing FΓ) since each free agent is already

located on a structural agent. Additionally, it permits easy mimicry of volume exclusion

between neighboring free agents, by prohibiting two free agents from occupying the same

structural site. Finally, it eliminates the need for explicit constrains on agents’ speeds (e.g., fric-

tional forces or inertia) since the agents can move, at most, a distance of RDOF within a given

timestep. However, this lattice naturally introduces a degree of error between the continuously

predicted direction of motion from Eq 1 and the actual direction of discrete movement. This

could potentially influence the global raft evolution since it impacts the direction of structural

deposition for agents at the raft’s edge. Another discrepancy that could potentially influence

the predicted raft evolution is that we opt to treat the ants as particles whose orientational

DOF is in-line with their direction of motion. Coupling the translational DOF with the rota-

tional DOF significantly reduces model complexity, yet it effectively surmises that the time-

scale of alignment is considerably smaller than a discrete timestep. To preserve finite

alignment and turning times, we instead restricted the maximum turning angle of an agent

within a given step and introduced a pause time in the event that an agent is limited to move-

ments outside this angular range. Additionally, we assume radial symmetry or that that the

agents have an aspect ratio of one. In reality, fire ants have an aspect ratio on the order of 3:1

[51,52] and it is well-documented that aspect ratios can introduce alignment effects in self-pro-

pelled particles [53]. Indeed, in our previous work [14], we saw evidence of non-negligible ant-
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to-ant interactions that caused short-range correlation between the motion of nearest neigh-

bors. However, to capture local alignment we opted to employ the relatively simple and

phenomenological Vicsek model rather than explicitly modeling an aspect ratio and repulsive

interactions. A final limitation that may impact free agent trajectories is that agents were not

allowed to walk over one another despite such behavior being regularly observed in freely

active ants. This may have exaggerated the effects of volume exclusion between ants and conse-

quently exacerbated any local alignment in velocity by limiting free agents’ local movement

degrees of freedom.

Despite these limitations and their potential effects on free agent trajectories, we found that

the model sufficiently approximated continuous space when 18 DOF were given to each free

agent and the lattice was stochastically updated due to unbinding events and contraction. This

is demonstrated by the isotropic distribution of the agent velocities in Fig 4J and a general lack

in any preferential direction for protrusion growths throughout this work. Furthermore, the

mean persistence length of free agents’ trajectories (on the bulk of the modeled rafts), as well

as the degree of directional motion (on both bulk sections of the rafts and protrusions) (Fig

4E–4F) were both reasonably matched to experiments. However, one ant trajectory feature

that remained uncaptured by the model is the frequent jamming of free ants far from the edges

of the rafts, as indicated by the peak of the velocity distribution at v�[0,0] ℓ s−1 in Fig 4H.

While free agents in the model were prompted to move at every timestep unless they had no

unoccupied DOF, free ants were regularly observed stopping to clean themselves or interact

with other ants, regardless of whether their movement was inhibited by obstacles. This discrep-

ancy also appears in the velocity distributions of free ants (Fig 4G) versus agents (Fig 4I) on

protrusions, with simulated free agents generally displaying a much more homogenous distri-

bution of velocities. It is likely that this heightened motility of free agents exaggerates their dif-

fusivity over their ant counterparts; however, the instantaneous distributions of free

members–which more directly influence raft evolution–were in good agreement between

experiments and simulations.

Another limitation of this model is that it does not currently accommodate inclusion of

local cues or external gradients. Such stimuli could enhance the degree of order in the system

and if they were introduced by the fire ants themselves (e.g., pheromone trails [30–33,35];

memory over second timescales and centimeter length scales; or collective memory through

propagated short range social interactions [54]) they would effectively serve as long-range

interaction potentials. Indeed, a precursory study reveals high sensitivity to the pairwise influ-

ence length scale R, which if set slightly higher (R = 1.23 ℓ) leads to the prediction of longer,

more ordered protrusion growth at low activities (A ¼ 0:81), as depicted in the top right cor-

ner of S6A Fig (see the Materials and Methods section Extended Parameter Sweep for

details). Moreover, the emergent structural network contraction and unbinding events were

simply reproduced here via a homogenized, phenomenological model. Yet the underlying

behavioral rules, mechanisms, and the sequence in which they occur are likely far more com-

plex for raft contraction and will be investigated in future work. For both states of ants, there is

likely more than one set of rules that results in treadmilling and protrusion growth. Here we

have merely investigated a distilled set of local interactions which reproduced the observed raft

evolutions, thereby reducing the number of variable considerations and isolating the effects of

local ant activity level on global shape. Nevertheless, phenomena such as local pheromones or

external temperature gradients, could be easily included in future iterations for the study of

not only fire ants but also other constituents. Therefore, although this numerical implementa-

tion was inspired by fire ant rafts, we also expect that in future work it may be adapted or inspi-

ration for the in silico investigation of other biological or synthetic systems driven by transport

and binding reactions. Additionally, this model permits the investigation of emergent
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phenomena and global characteristics outside the biologically observed parametric space, as

occurred here for the purposes of fitting R and η (see S5 and S6 Figs), and then investigating

the effects of A (see Figs 6 and S7). Thus, this model may permit extrapolation of properties

and potentially serve as a source of inspiration for the predictive design of engineered systems

such as active gels or swarm robotics.

Materials and methods

Here we provide further details on the numerical implementation of the model, including the

algorithmic design and detailed derivations (as necessary), as well as a summary of the model’s

parameters, the method by which they were calibrated and extended parameter sweeps of η, R
and A. Finally, methods for computing surface excess and edge curvature are described. All

codes and data used to produce this manuscript are deposited in the Dryad repository: https://

doi.org/10.5061/dryad.4f4qrfjb3 [55].

Dryad DOI

https://doi.org/10.5061/dryad.4f4qrfjb3

General description

Domain description. The numerical framework is carried out using MATLAB R2019b. It

is a 2D planar, discrete model comprised of distinct nodes defined by some unique index num-

ber, i2[1,1), and unique Cartesian coordinates, Xi = [xi, yi]. We locate the nodes inside of a

square domain whose center is at position [0,0]. The nodes are initially positioned in a close-

packed hexagonal lattice with unit length spacing between nearest neighbors. Each node posi-

tion is then offset by some random amount in the range [−1/6,1/6] z in both directions. At ini-

tial time, t = 0, each node is classified as either a structural agent (shown as cyan circles in S1

Fig), or water node (shown as black dots in S1 Fig). Structural agents represent structural ants,

whereas water nodes represent vacant locations into which free agents may eventually park

during edge deposition. To mimic initial experimental conditions, the initial shape of all simu-

lated rafts is a circle with center [0,0] and some prescribed radius (Fig 5). Every node within

this circular boundary is initially defined as a structural agent. This ensures that any protru-

sions predicted by the model emerge due to spontaneous symmetry breaking as opposed to

through user-enforced asymmetries. Freely active agents are introduced to represent freely

active ants (shown as red circles in S1 Fig). The initial surface packing fraction is set to 1 free

agent per structural agent, although the packing fraction naturally decreases in time as free

agents bind into the structural network and a steady state flux of agents to and from each layer

is reached. To simulate the movement of free ants on top of the raft, we require that free agents

only occupy sites already designated as raft nodes. Additionally, to simplify the model, we

enforce volume exclusion between freely active agents so that two free agents cannot occupy

the same structural raft site simultaneously.

Length scales. Two length scales are referenced in this work. The first is that of the mean

ant body length, taken as 1 ℓ = 2.93 mm. Results are generally presented in this length scale for

ease of comprehension and comparison to experimental results. However, the numerical

model is normalized by a second length scale defined as 1 z = 1.81 mm. 1 z2 is defined as the

area a single ant in the structural raft network occupies (i.e., 1z ¼ r� 0:5
r , where ρr = 0.304 ants

mm−2 is the planar density of structural ants). This normalization enforces that the density of

structural agents is maintained at 1 node per unit area (z2), and the nominal separation

between nodes is on the order of 1 unit length (z).
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Time scale. We normalize the timescale by taking the average distance a freely active

agent travels in one iteration, hdi, divided by the average experimentally measured free ant

speed, v0 (i.e., Δt = hdi/v0).

Simulating the structural network

The algorithmic chronology used to step the positions of structural agents, implement unbind-

ing events, and update the close-packed positions of water nodes is summarized in S2 Fig. In

the remainder of this section these processes are described in greater detail.

Structural network contraction. Given the experimentally measured contraction rate _ε,

we apply a pairwise strain rate, _d, between connected neighbors within the raft. We do so by

updating the pairwise separation vector, dij, between all structural agents and their adjacent

neighbors residing within some prescribed radius, Rr, about the node of interest. We conserva-

tively set to Rr 1.5 ℓ to capture the bridging of raft voids that often occurs between structural

ants. Rr = 1.5 ℓ corresponds to roughly 4.5 mm or half the body length of some of the largest

fire ants. To implement raft contraction, we update dij at time t+Δt according to the forward

Euler, exponential decay function:

dijðt þ DtÞ ¼ dijðtÞexp½� _dDt�: ð6Þ

Taking dij(t+Δt) as the targeted equilibrium separation at time, t+Δt, we then employ an

overdamped approach to iteratively step the position of the nodes. The updated pairwise sepa-

ration vector between neighbors i and j at iteration k is denoted by dkij ¼ Xk
i � Xk

j , where d1

ij ¼

dijðtÞ represents the initial separation at the start of the timestep. The iterative change in posi-

tion is then given by:

Ddkþ1

ij ¼ dkij � dijðt þ DtÞ: ð7Þ

The position of each structural agent is then updated according to:

Xkþ1

i ¼ Xk
i þ n

� 1
P

jDd
kþ1

ij ; ð8Þ

where ν2[1,1) is simply a pseudo-viscosity or over-damping scalar used for computational

stability and
P

jDd
kþ1
ij is the net displacement due to all pairwise neighbors. The over-damping

scalar was set such that residual displacements through
P

jDd
kþ1
ij converged towards zero.

Given the updated coordinates Xk
i , we then re-calculate dkij for each neighbor, and iterate Eq 7

and 8 until the residuals dip below some prescribed threshold. Here we define the residuals

and their thresholds as max½Ddkþ1

ij � � 5� 10� 5 z and mean½Ddkþ1

ij � � 1� 10� 5 z.

Close-packing water nodes. Since the rafts’ structural networks contract in time, we need

to ensure that water nodes remain closely packed to their perimeters so that binding events of

freely active agents remain possible at the edge. To do this, we apply a radial linear velocity gra-

dient to all water nodes that moves them towards the center of the domain, [0,0], at the rate of

_d, according to Ddiðt þ DtÞ ¼ diðtÞf1 � exp½� _dDt�g, where di is the separation vector of each

water node with respect to [0,0]. To evenly space water nodes from each other, as well as the

rafts’ edges, we introduce Gaussian, pair-wise repulsive forces, Frij, between water nodes and

their nearest structural agent or water node neighbors of the form:

Frij ¼ k
d̂ ij

s
ffiffiffiffiffiffi
2p
p exp �

ðdij � mÞ
2

2s2

" #

; ð9Þ
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where σ is the standard deviation of the curve, μ = 0 z is the mean, and κ is a scaling factor in

units of pseudo-force. We use these values to step the positions of water nodes according to:

Xi t þ Dtð Þ ¼ Xi tð Þ þ
Dt
n

P
jF
r
ij; ð10Þ

where ν2[1,1) is simply another pseudo-viscosity for computational stability, and
P

jF
r
ij is

the net repulsive force due to all pairwise neighbors. Again, the pseudo-viscosity was set such

that residual forces through
P

jF
r
ij converged towards zero. We found that σ = 0.5 z and κ/ν =

0.02 provided a stable computational domain in which water nodes remained close-packed in

an evenly distributed point field (as displayed in S1 Fig), thus offering ample water DOF, for

freely active agents on the edge of the raft to deposit into. Note that the repulsive interactions

between water nodes and their raft neighbors were one-way such that the structural agents

could displace water nodes, but water nodes could not displace structural agents. This was

done because the close packing of water nodes is a numerical method implemented to homog-

enize the domain (rather than any physical phenomena) and should not influence the position

of structural agents in the model.

Unbinding to maintain structural density. Recall that we normalize the domain’s unit

length by z such that the domain’s nominal density, ρd, is approximately 1 node z−2. Since we

observed that structural network density remains roughly constant, we enforce unbinding

events in simulations when the domain density exceeds 1 node z−2. To ensure that nodes are

removed from the densest locations with precision, we subdivide the domain into a square

grid whose unit cell lengths, Lg, are�1z. The number of permissible nodes, Np, within each

grid cell becomes Np ¼ rdL2
g . For our purposes, we found that Lg = 2z and Np = 4 nodes pro-

vided sufficient regional discretion to maintain a homogeneous domain (as seen in S1 Fig).

After contraction but prior to the stepping of free agents, we conduct a count of the number

of nodes occupying each grid site and if it exceeds Np, we initiate a node deletion event. To

introduce further specificity in which nodes to remove we calculate the pair-wise distance, dij,
between each node in the pertinent grid space. If both nodes i and j belonging to the smallest

value of dij occupy the grid space, one of the two is randomly selected for deletion. In the case

that the removed node is a water node, we simply delete it. Stochastic deletion is counteracted

by the enforced close-packing described in the previous section and together these practices

ensure that the density of water nodes is equivalent to that of the structural raft. New water

nodes are seeded at the edge of the domain as needed to conserve their population. However,

if the removed node is occupied by a structural agent, we convert it to a free agent positioned

at the coordinates of the nearest empty structural node. This introduces unbinding of struc-

tural agents into the freely active layer wherever the local network density is high, consistent

with what was observed experimentally [14]. By counting the number of unbinding events, Nu,
at each time step and normalizing by the total number of structural ants, Nr, we can calculate

the unbinding rate according to δ = Nu/(NrΔt).

Simulating the freely active ants

The algorithmic chronology used for determining movement of freely active agent i is summa-

rized in S3 Fig. As illustrated in S3 Fig, the movement of free agents is updated after the con-

traction and unbinding outlined in S2 Fig. In the remainder of this subsection, we detail the

rules by which free agent motion is stepped, and then derive Eq 5 for the effective pairwise

edge repulsion felt by an agent due to a water node.

Stepping free agent movement. Mirroring the methods of Couzin and Franks (2003)

[35] or Baumgartner and Ryan (2020) [34], we assign each free agent a preferred angle of
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movement, θi, (as measured from the positive horizontal axis) prior to stepping its position.

Here, this is achieved through the Vicsek model (Eq 1) to capture experimentally observed

local alignment effects [14]. Note that the directions of motion of free agents are dependent on

those of the previous time step. Therefore, to initiate the movement of free agents at the start

of the simulation (or whenever a structural agent transitions to a free agent) we assign each

agent a random, instantaneous orientation, θi2[0,2π] radians.

With the preferred angle of motion predicted, we assign every agent in the domain 18 DOF,

which–in an equidistant hexagonal lattice–corresponds to two layers of nearest neighbors

(here spanning 2 z). We opted to provide each node with 18 DOF based on three consider-

ations: (1) the experimental observation that free ants frequently walk over one another, effec-

tively passing 2 z in one unit time; (2) the experimental observation that freely active ants may

walk over voids in the raft of comparable dimensions to their own body length, effectively

passing greater than 1 z in one unit time; and (3) the realization that modeling free agents with

18 rotational DOF is roughly a threefold improvement in approximating the continuous space

real ants occupy, over the 6 DOF offered by looking at only one layer of immediate node

neighbors spanning 1 z. The 18 DOF for each node are assigned in rank-order by distance to

neighboring nodes. To be a DOF, the neighboring node must reside within the distance,

RDOF2(0,2.5] z, of the node of interest. To consistently achieve 18 DOF despite noise in the

node distribution, the upper bound of this range was set 1.25 × greater than the distance

needed to reach 18 nearest neighbors in a close-packed hexagonal lattice.

With the pool of DOF defined, we then calculate the relative angle, ϑij, of each jth DOF with

respect to the position of node i as measured with respect to the positive horizontal axis

according to:

Wij ¼
atan2ðXj � XiÞ; yj � yi
2pþ atan2ðXj � XiÞ; yj < yi

; ð11Þ

(

where Xj is the position of each DOF, Xi is position of the freely active agent, and yi denotes

the y-axis component of Xi. We then calculate the absolute difference between θi and ϑj:

Dyij ¼
jWij � yij; jWjj � yij < p

2p � jWij � yij; jWij � yij � p
; ð12Þ

(

and take the minimum value to indicate which neighboring raft or water node the freely active

agent would preferentially move to. The pool of DOF are then rank-ordered from smallest to

largest Δθij and sequentially checked for eligibility of movement. All eligible DOF must reside

within the turning limit ϑj2[−π/2, π/2] as discussed earlier. Structural DOF are only eligible if

they are unoccupied by other free agents. Water DOF are eligible only if the edge deposition

condition (Inequality 5) is satisfied. The free agent is stepped to the first DOF in the rank-

ordered pool that proves eligible. In the case that no DOF are eligible, the agent pauses accord-

ing to the following section. To eliminate bias and ensure randomization, the order in which

the free agents’ motions are updated is randomly determined at every timestep.

Pausing surface traffic. While updating the positions of a freely active agent, we run into

cases where the pool of potential movement DOF is exhausted, and movement is interrupted.

This occurs when all the DOF within the turning limit (ϑij2[−π/2, π/2]) are either occupied

structural agents, or water nodes that do not satisfy the edge deposition condition (Inequality

5). We generally observe that real ants whose trajectories are interrupted tend to pause and sta-

tionarily explore the environment in front of them for approximately 1 to 10 s before turning

around (i.e., turning greater than π/2 radians) to explore elsewhere. Therefore, in cases where
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no DOF meet the set of eligibility criteria and the free agent’s motion is interrupted, the agent

is paused for some random time, tp, in the range of [2,4]Δt. After this time has elapsed, the free

agent’s orientation is randomly redefined according to the process used at particle initiation

and the agent is permitted to resume motion in an uncorrelated direction. This mechanism

generates traffic jams in confined regions, such as areas with higher local free agent densities

and those confined by the rafts’ edges (e.g., the tips of protrusions). Yet this also ensures that

these traffic jams (or clusters) are not permanent features in the simulations. Instead, they dis-

sipate at time scales correlating to both tp and the cluster or traffic jam size, thus ensuring that

clusters occur as they do in experiments.

Effective repulsion at the edge. A freely active agent is defined as encountering the edge

of the raft when its preferred DOF is a water node. This is tantamount to it encountering the

water head-on, and amounts to an initial perception cone [31,35] of roughly ±15˚ given the 18

movement DOF in this framework. However, once a water node is detected as the preferred

movement DOF, the full 360˚ environment within detection radius R is considered. This treat-

ment serves to capture two experimentally observed tendencies of free ants: (1) that free ants

moving tangent to but directly near the raft’s perimeter seem unperturbed by the water’s pres-

ence to their left or right, and (2) free ants whose movement is halted by encountering water

head-on tend to reach out and probe their environment each direction before making a move-

ment decision. In any case, the local change in substrate at the edge of the raft results in some

effective edge repulsion for those free agents which detect it. To model this edge force, we

define some energetic potential at the site of every structural agent (Uρ), and a another at the

site of every water node (Uω). These potentials will map the energy landscape whose local gra-

dient (−rrU) represents the edge repulsion force FΓ.

To gauge this landscape, we first consider the 1D pairwise energy gradient between a freely

active agent at node i and its jth detected neighbor (reference S4 Fig). Applying the simplest

assumption that the gradient between each pairwise set of nodes evolves linearly, then the

magnitude of the local pairwise force occurring on a free agent at node i because of node j is

given as fij = −ΔUij/rij where ΔUij is the step in energy from nodes i to j and rij is the distance

between their centers. We make the distinction between structural and water neighbors by

replacing the index j with ρ and ω to represent structural and water nodes, respectively, such

that two separate types of forces emerge: forces due to adjacent water nodes, fiω = −ΔUiω/riω,

and forces due to adjacent structural nodes, fiρ = −ΔUiρ/riρ. Note that a freely active agent

always occupies a structural site, such that the local energy is Uρ. Therefore, ΔUiω = Uω−Uρ,
which we denote as Γ throughout this work (S4A Fig). This also means that ΔUiρ = Uρ−Uρ = 0

and no effective force emerges due to neighboring structural sites (S4B Fig). In 2D, we con-

sider that a freely active agent detects all neighboring nodes within detection distance R so that

the effective edge repulsion experienced is approximately equal to the sum of all pairwise con-

tributions from nearby water nodes, or:

FΓ
i ¼ � rrU � � G

P
o
r� 1

io r̂ io; ð13Þ

where r̂ io is the direction of the pairwise separation vector riω. In the numerical framework,

wherein R is on the order of the contact length scale (i.e., R/ℓ~1, as determined experimentally

[14]) we recognize that the separation distances, are all given by riω�R. Thus, we may take Γ/

riω as a constant, fΓ = Γ/R and rewrite Eq 13 as:

FΓ
i ¼ � f

G
P

o
r̂ io: ð14Þ
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Model parameters

A summary of experimental and numerical values used throughout this work is provided in

Table 1. Experimental values of Table 1 were taken from Wagner, et al. (2021) [14].

A summary of the model’s free parameters is provided in Table 2. The structural agent

model contains just one free parameter, the contraction rate between nearest neighbors ( _d).

However, this value was fixed to reproduce the global contraction rate, _ε, of experimentally

observed rafts [14]. The freely active agent model has three free parameters: (1) the radius of

mutual influence between an agent and its nearest neighbors (R); (2) activity (A); and (3) the

noise parameter (η). However, R and η were fixed to match the walking characteristics of

experimental ants (See the Model Calibration section, below).

Model calibration

Pairwise strain. The numerical contractile strain rate was controlled using the parameter,

_d, employed according to Eq 5. We calibrated _d by matching the global contractile strain and

numerical exit rates ( _ε and δ, respectively) to those of the experiments. Global decay was mea-

sured experimentally using particle image velocimetry on a rectilinear region of interest over a

duration of 13 minutes and calculating the radial component of contractile speed, _r , towards

the still reference frame (i.e., the stationary acrylic rod). A linear gradient in _r was found with

Table 1. Commonly referenced values.

Symbol Definition Value Units Purpose

ρr Planar density of structural ants. 0.30 ants mm-

1
Used to define normalized length scale of model z.

z Occupancy length scale of one structural ant,

z ¼ r� 0:5
r .

1.8 mm Defines model length scale.

ℓ Average body length of one ant 2.9 mm Used to normalize length scale of results.

_ε Contractile strain rate of the structural ant network. 1.6 % min-1
Used to calibrate the pairwise contraction rate, _d .

δ Exit rate of structural ants into the freely active layer. ~2−3 % min-1 Matched between model and experiments to validate choice of _ε and exit

threshold density ρthresh.
lp Walking persistence length of free ants. ~20 ℓ Used to calibrate noise parameter, η.

v0 Mean free ant speed. 0.97 z s-1 Used to define timescale of model, Δt.
hdi Average distance traveled by free agent in one time

step.

1.67 z Estimated as mean distance between adjacent movement DOF. Used to define Δt.

Δt Discrete time step size, Δt = hdi/v0. 0.6 s Defines model time scale.

α Deposition rate of free ants into the structural layer at

the edge.

~2−3 % min-1 Used to identify when simulated rafts reached steady state treadmilling (when

α�δ).

https://doi.org/10.1371/journal.pcbi.1009869.t001

Table 2. Free parameters of model.

Phase Parameter Type Definition Value Units Calibration

Structural

State

_d Fixed Pairwise contraction rate between structural

agents.

1.9 %

min-1
Fixed to reproduce experimental global

contraction rate.

Freely Active

State

R Fixed Radius of mutual influence of surface agents. �1 ℓ Experimentally estimated as contact length

scale between neighboring ants.

η Fixed Noise parameter 2[0,1] 0.2 N/A Fixed to reproduce experimental free ant

trajectory persistence length.

L (of A) Swept Length scale defined by L = Γ/fa. Controls

activity parameter through A ¼ ‘=L.

L2[0.5,2],

A 2 ½3:2; 0:8�
ℓ Swept

https://doi.org/10.1371/journal.pcbi.1009869.t002
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respect to distance away from the stationary acrylic rod, r, suggesting a spatially constant _ε
[14] (Fig 3A and 3C). For a given experiment, _ε was also found to be roughly constant in

time, and isotropic [14]. The combination of spatially constant _ε and isotropic contraction

indicates that the mechanism of contraction occurs locally and homogenously throughout the

bulk of the raft, rather than at a specific location such as the interface between the raft and the

rod [14], hence the use of a locally applied pairwise contractile strain rate between neighboring

structural agents. For the numerical results, _ε was also computed as the gradient in contractile

speed towards the stationary raft point with respect to distance from said point (Fig 3B and

3C). We found that _ε matched between the model and experiments when _d was set to

1.2 × the desired global strain rate, likely due to affine effects within the network structure

[39]. Note that the results presented in Fig 3C of both experimental and simulated raft con-

traction represent the full data of 2D regions of interest but are projected onto one dimension

(which is radial distance from the still reference point, r).

Vicsek model parameters

The effects of altering R and η are illustrated through the phase table in S5 Fig, wherein the

surface traffic of freely active agents’ in 2D domains with periodic boundary conditions is

depicted at various values of these parameters. Note that to correctly mimic the conditions of

the lattice model used in the raft framework, the agents are here also restricted to motion on a

lattice, whose positions are set in a hexagonal close-packed configuration and then randomly

offset by some amount 2[−1/6,1/6] z in each direction, as described above in the section titled,

Domain Description. Agent motion is also restricted to 18 DOF at every timestep and gov-

erned by the rules described in the section titled Simulating the Freely Active Ants. Moving

from left to right, we see that the effect of decreasing η (or decreasing the rotational noise, ξi in

Eq 1) is to induce collective motion and directional flow. Likewise, moving from top to bot-

tom, we see that increasing R (or increasing the range over which freely active agents are influ-

enced by their neighbors) has a similar effect.

From our previous work [14], we are aware that R is on the order of 1 ℓ, which gives us an

estimation of the initial length-scale for the numerical value. Additionally, we found that the

free ant trajectory persistence length, lp, on the bulk of the raft is roughly 15−20 ℓ. Employing

the method used in Wagner, et al. (2021) [14], we also calculate lp for of simulated freely active

agents in the parameter space given from S5 Fig, yielding the heat map illustrated in S6 Fig.

Matching R and lp to the approximate experimental values of 0.9 ℓ and 15 ℓ, respectively, we

find that η�0.2.

Extended parameter sweep

With η set to 0.2, A was swept over the range [0.81,3.24]. The results presented in this manu-

script were produced by fixing R at 0.9 ℓ to mimic experimental systems and examine the

effects of local interactions only. However, R was supplementarily swept over the range of

[0.62,1.23] ℓ to elucidate its effects on overall raft shape. Note that R2[0.62,1.23] ℓ corresponds

to R2[0.5,2] z and A 2 ½3:24; 0:81� corresponds to L2[2,05] z, hence the respective choices for

R and A in this work. The extended phase table and heat maps of free agent packing fraction,

ϕ, and peak surface excess, Smax, are depicted in S7A, S7C and S7D Figs, respectively. S7B Fig

depicts the combinations of R and A that result in matching of Smax (red curve) and ϕ (black

curve) to those values from the experiments. While the two curves never intersect in the

parameter space, this may be attributed to several factors including error in the numerical

measurement of surface excess and isotropic detection of neighboring agents within detection

radius R.
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Measuring surface excess

Recall that surface excess is calculated according to the relation S ¼ C=ð2
ffiffiffiffiffiffi
pA
p

Þ, where C is the

raft’s perimeter length and A is the raft’s area. The way in which C is measured may signifi-

cantly impact the estimated value of S due to the fractal nature of ant rafts’ edges. Specifically,

if the contour length is measured with resolution better than the length scale of the constitu-

ents’ size, then C captures the surface roughness of the raft edge and is overestimated in accor-

dance with the coastline paradox [56]. As such, a manual method of measuring C by tracing

the perimeter of the raft in each frame using ImageJ [57–59] was preferred, as it allowed user

discretion in capturing edge defects. This method was used for the experimental dotted line

presented in Fig 6C, which coarsely estimates the maximum experimental surface excess on

the order of 1.8.

Surface excess of numerical results was estimated by taking C as the number of structural

agents on the perimeter and A as the total number of structural agents. This estimation of A is

acceptable since the domain density is maintained at 1 node z−2, meaning each structural

agent occupies a space of 1 square unit length. Similarly, this estimation of C relies on the fact

that the nominal spacing between nodes is ~1 z, such that adjacent structural agents in the

perimeter may be assumed approximately 1 unit length apart. Perimeter structural agents were

defined as agents with neighboring water nodes that reside within the threshold distance of

nearest neighbors (i.e., are�1 ℓ or�1.6 z away). This method was used for expediency as it

could be automated during simulation post-processing for the ensemble average presented in

Fig 6C. However, the assumption of unit spacing (1 z) between adjacent edge agents may

introduce error in the calculation of C.

To directly compare surface excess between experimental and model results, as done in Fig

6K, an alternative and controlled method was used. Both experimental and numerical videos

of the raft evolution were imported into ImageJ and converted to binary images with the raft

black and the background white. All black pixels that were not part of the raft were removed

such that the raft was the only object in the image. Each image was then eroded twelve times to

reduce surface roughness at the length scale of individual ants or agents, and then dilated

twelve times to revert the rafts back to their original size. The image was then analyzed to mea-

sure A and C and calculate surface excess. Using this method for both the experimental and

numerical results permits a more direct comparison between the two image sources.

It should be noted that regardless of the method employed, the fractal nature of ant rafts’

“coasts” ensures that surface excess is strongly impacted by the resolution with which C is mea-

sured [14]. While surface excess quantifies shape to some extent, it is here used to interpret

qualitative and relative changes in global raft shape rather than draw absolute or quantitative

conclusions.

Measuring Tip Radii

To measure the radii of curvature of in silico rafts’ convex edges, the final frames of simulated

rafts (for A 2 ½0:81; 3:23�) were uploaded into ImageJ [57–59]. Convex regions of edge curva-

ture were visually identified, and the positions of each structural agent in the local vicinity

were tracked using ImageJ’s “point tool”. Convex regions were mathematically delineated

from their adjacent concave regions by inflection points in the local curvature with a moving

average interval of (1 ℓ). Data outside the nearest inflection points was cropped. A circle was

then fit to the remaining convex point data using the Pratt method [60,61]. The radius of this

circle was taken as the local radius of curvature, Rκ. If only one or two points remained within

the dataset after cropping between inflection points (in which case the Pratt method would not

work), then these regions were confirmed to contain just one or two agents and the
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corresponding radius was set to 0.5 ℓ or 1 ℓ, respectively. Once computed for every observa-

tion, the mean of all observations (hRκi) and standard error of the mean were calculated and

reported in Fig 6D.

Supporting information

S1 Fig. Domain Depiction. A snapshot of the discrete numerical domain is shown with water

nodes plotted as black dots, condensed structural agents plotted as cyan circles, and dispersed

freely active agents plotted as red circles.

(TIF)

S2 Fig. Algorithmic Chronology of Structural Agents and Water Nodes. A flow chart details

the algorithmic order in which positions of structural agents and water nodes are updated. The

point at which unbinding events occur is also displayed.

(TIF)

S3 Fig. Algorithmic Chronology of Freely Active Agents. A flow chart details the algorithm

by which movement is determined for each freely active agent, in each time step.

(TIF)

S4 Fig. Pairwise Repulsive Force. (A) The origins of the pairwise repulsive force acting at the

position of structural node i due to the proximity of water node ω is illustrated in 1D. The

force is taken as the gradient in energy landscape from ω to i. (B) Similarly, the lack of any

pairwise repulsive force acting at the positions between structural node i and structural node ρ
is visually illustrated by the lack of a gradient in the local energy.

(TIF)

S5 Fig. Vicsek Model Phase Diagrams. Snapshots of the surface traffic of freely active agents

in the numerical model are illustrated at a packing fraction of ϕ = 0.24. The (A) full traffic, as

well as (B) streamlines of just 10% of modeled agents composited from 10 time steps, are

shown to illustrate the presence of clustering and directional motion, respectively. From top to

bottom R is swept over the range R2[0.62,2.47] ℓ and from left to right, η is swept over the

range η = [1.00,0] in increments of 0.25. The regional range that roughly matches experiments

is outlined in red for each table. Although the agents’ motions are confined to a lattice of

nodes, the lattice is not depicted here for visual clarity.

(TIF)

S6 Fig. Persistence Length Phase Diagram. An interpolated, 2D heat map illustrates how lp
evolves over the parameter space defined by R2[0.62,2.47] ℓ and η2[0,1] in the numerical

model. The point that matches the experimental data is plotted as a white dot.

(TIF)

S7 Fig. Extended Parameter Sweeps and Phase Diagrams. (A) A phase table depicts the mor-

phology of simulated rafts for different values of R and A after approximately 1 hour of simu-

lated time. (B) Interpolated curves with respect to R and A depict the phase space in which the

maximum surface excess Smax (red) and packing fraction ϕ (black) matched those of the exper-

iments (~1.8 and ~0.24, respectively) to within 0.25%. (C) A heat map of ϕ with respect to R
and A is shown with the white curve corresponding to the black curve from (B). (D) A heat

map of Smax is shown with respect to R and A with the white curve corresponding to the red

curve from (B).

(TIF)
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S1 Movie. Experimental Treadmilling presents raw, time-lapsed video footage of an experi-

mental ant raft to visually demonstrate the treadmilling and protrusion growth that takes

place. The scale bar represents 10 ℓ and a timestamp is included in the top right.

(MP4)

S2 Movie. State Transitions depicts a simulated ant raft comprised of 2,250 agents over a

span of 175 simulation minutes at approximately 360x speed to clearly illustrate the transition

events between the free active layer and structural layer. Within each frame, transitions from

the freely active layer to structural layer are denoted by cyan circles, while transitions from the

structural layer to the freely active layer are denoted by red circles. Non-transitioning struc-

tural agents are denoted by light and dark grey particles, respectively. Freely active agents are

not depicted to reduce noise and improve visual clarity. The raft was initiated as a circle.

(MP4)

S3 Movie. Surface Traffic displays a snippet of S2 Movie to that spans 70 simulation minutes

at approximately 60x speed in order to clearly display the movement of freely active agents. As

with S2 Movie, transitions from the freely active layer to structural layer are denoted by cyan

circles, and transitions from the structural layer to the freely active layer are denoted by red cir-

cles. Non-transitioning structural and freely active agents are denoted by light and dark grey

particles, respectively.

(MP4)

S4 Movie. Illustrates simulated ant rafts comprised of up to 2,250 agents over a span of 4.5

simulation hours. All rafts were initiated as circles and simulated until pseudo-steady state

treadmilling occurred (wherein α�δ). In all simulations, R = 0.9 ℓ and η = 0.2. A was set to

1.08, 1.42, 1.80, and 3.24 for S4–S7 Movies, respectively. Note that a finer separation in A
between videos is provided in the range 1:35 � A � 1:59 since this is the approximate range

of continuous phase change identified. All scale bars represent 40 mm or ~14 ℓ. The rafts were

initiated as circles. Note that these videos are displayed over long durations at approximately

1500x speed. Therefore, the individual transition of agents from one state to another, as well as

the motion of freely active agents (red) are not immediately distinguishable.

(MP4)

S5 Movie. Illustrates simulated ant rafts comprised of up to 2,250 agents over a span of 4.5

simulation hours. All rafts were initiated as circles and simulated until pseudo-steady state

treadmilling occurred (wherein α�δ). In all simulations, R = 0.9 ℓ and η = 0.2. A was set to

1.08, 1.42, 1.80, and 3.24 for S4–S7 Movies, respectively. Note that a finer separation in A
between videos is provided in the range 1:35 � A � 1:59 since this is the approximate range

of continuous phase change identified. All scale bars represent 40 mm or ~14 ℓ. The rafts were

initiated as circles. Note that these videos are displayed over long durations at approximately

1500x speed. Therefore, the individual transition of agents from one state to another, as well as

the motion of freely active agents (red) are not immediately distinguishable.

(MP4)

S6 Movie. Illustrates simulated ant rafts comprised of up to 2,250 agents over a span of 4.5

simulation hours. All rafts were initiated as circles and simulated until pseudo-steady state

treadmilling occurred (wherein α�δ). In all simulations, R = 0.9 ℓ and η = 0.2. A was set to

1.08, 1.42, 1.80, and 3.24 for S4–S7 Movies, respectively. Note that a finer separation in A
between videos is provided in the range 1:35 � A � 1:59 since this is the approximate range

of continuous phase change identified. All scale bars represent 40 mm or ~14 ℓ. The rafts were

initiated as circles. Note that these videos are displayed over long durations at approximately
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1500x speed. Therefore, the individual transition of agents from one state to another, as well as

the motion of freely active agents (red) are not immediately distinguishable.

(MP4)

S7 Movie. Illustrates simulated ant rafts comprised of up to 2,250 agents over a span of 4.5

simulation hours. All rafts were initiated as circles and simulated until pseudo-steady state

treadmilling occurred (wherein α�δ). In all simulations, R = 0.9 ℓ and η = 0.2. A was set to

1.08, 1.42, 1.80, and 3.24 for S4–S7 Movies, respectively. Note that a finer separation in A
between videos is provided in the range 1:35 � A � 1:59 since this is the approximate range

of continuous phase change identified. All scale bars represent 40 mm or ~14 ℓ. The rafts were

initiated as circles. Note that these videos are displayed over long durations at approximately

1500x speed. Therefore, the individual transition of agents from one state to another, as well as

the motion of freely active agents (red) are not immediately distinguishable.

(MP4)

S8 Movie. Modulated Activity illustrates simulated ant raft comprised of 2,250 agents over a

span of 5.5 simulation hours when activity was stepped twice between A ¼ 1:1 and A ¼ 1:6

to demonstrate how activity can toggle a raft between exploratory and inactive phases of pro-

trusion growth and non-growth, respectively. Instantaneous activity level is indicated at the

bottom of the video. The raft was initiated as a circle. R = 0.9 ℓ and η = 0.2. The scale bar repre-

sents 40 mm or ~14 ℓ.
(MP4)
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