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Health diagnosis and recuperation
of aged Li-ion batteries with data analytics
and equivalent circuit modeling

Riko I Made,1 Jing Lin,2 Jintao Zhang,1 Yu Zhang,2 Lionel C.H. Moh,1 Zhaolin Liu,1 Ning Ding,1 Sing Yang Chiam,1

Edwin Khoo,2,* Xuesong Yin,1,4,* and Guangyuan Wesley Zheng3,*
SUMMARY

Battery health assessment and recuperation play crucial roles in the utilization of second-life Li-ion batte-
ries. However, due to ambiguous aging mechanisms, it is challenging to estimate battery health and
devise an effective strategy for cell rejuvenation. This paper presents aging and reconditioning experi-
ments of 62 commercial lithium iron phosphate cells, which allow us to usemachine learningmodels to pre-
dict cycle life and identify important indicators of recoverable capacity. An average test error of
16.84%G 1.87% (mean absolute percentage error) for cycle life prediction is achieved by gradient boost-
ing regressor. Some of the recoverable lost capacity is found to be attributed to the non-uniformity in elec-
trodes. An experimentally validated equivalent circuit model is built to demonstrate how such non-unifor-
mity can be accumulated, and how it can give rise to recoverable capacity loss. Furthermore, Shapley
additive explanations (SHAP) analysis also reveals that battery operation history significantly affects
the capacity recovery.

INTRODUCTION

Large numbers of Li-ion batteries (LIBs) are produced to meet the ever-growing demands of the electric vehicle (EV) market up to an annual

capacity of 2,500 GWh by 2030.1 These EV batteries will eventually retire and accumulate after their service due to a limited cycle life.2 The

precious and hazardous nature of LIB components necessitates materials recycling to attain a sustainable battery industry and circular econ-

omy.3–8 Meanwhile, considerable residual capacities after EV applications, normally above 70% of the initial capacities, bring about an

emerging field of repurposing and remanufacturing of retired EV batteries for less demanding applications, like low-speed vehicles or energy

storage systems.9,10 Therefore, providing a second life to retired batteries becomes an economically viablemethod to extend their service life

before materials recycling (Figure 1).

State of health (SoH), which is defined by the ratio of residual to initial capacity (SoH = Cres=Cini) and describes the aging status, is an

essential parameter to be understood before any repurposing activities.11–13 However, the ambiguous agingmechanisms of LIBsmake it chal-

lenging to estimate SoH accurately.14 Data-driven methodologies show great potential in dealing with complex systems with non-linear be-

haviors. Severson et al. (2019) collected a big dataset of 142 commercial lithium iron phosphate (LFP) cells and developed a machine learning

approach for early prediction of cycle life.15 Romanet al. (2021) explored four different machine learning algorithms and correlated the pre-

diction accuracies with charging protocols.16 Li et al. (2021) developed an online capacity estimation model with recurrent neural networks for

cells operated in real-world.17 Aitio et al. (2021) used battery data from real-world off-grid solar-battery systems to analyze health and end-of-

life failure throughmachine learning.18 Takahashi et al. (2023) presented a combination of machine learning techniques to evaluate retired EV

batteries.19 Xu et al. (2023) applied a hybrid deep learning approach to achieve early prediction of remaining useful life of EV batteries.20 In

addition to LIBs, Ma et al. (2023) reported prediction of remaining useful life for supercapacitors by improved long short-termmemory recur-

rent neural networks.21 Cell chemistries and operational conditions, such as formation, charge/discharge currents, cut-off voltages, depth of

discharge and temperature, have been considered in generating datasets.22–24 Nevertheless, the intrinsic inconsistencies in cell performance

that result from the imperfection of cell manufacturing are often overlooked by assuming the cells of the same batch or manufacturer are

identical. In practice, even batteries from the same batch will have different SoHs when used in a battery pack, because individual cells in

a pack rarely work under an ideally equivalent operational or environmental condition.25 For second-life batteries, this inconsistency problem
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Figure 1. Circular utilization of Li-ion batterieswith emphasis on state of health (SoH) assessment and capacity recuperation for second-life applications

The SoH assessment and capacity recuperation play a crucial role in sorting and making better use of retired EV batteries. Those cells with higher residual or

recovered capacities can be repurposed to make stationary energy storage systems or less rigorous e-mobilities, like two/three wheelers. For those heavily

degraded cells with less usable capacities, they can be directly subjected to recycling to extract raw materials for new cell fabrications.
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becomesmore significant when various cells with different operational histories need to be re-grouped and employed in a new system. There-

fore, cell consistency is an important factor to examine when assessing the SoH of LIBs.

In addition to an accurate estimation of the SoH, it is also beneficial to recuperate some lost capacity of the retired cells before a second-

life application. This task is also highly dependent on the aging mechanisms. Various and mixed degradation modes have been proposed to

understand the aging behaviors of LIBs,12,26–28 but only those involving reversible changes may contribute to a capacity recovery.

Electrolyte consumption has been considered as an aging factor, and Cui et al. (2016) reported re-filling electrolyte was able to achieve a

capacity recovery over 10%.29 Direct lithiation from an external lithium source was also proven effective to compensate lost Li inventory in the

cathode and recover some capacity byWang et al. (2011) and Taniyama et al. (2016).30,31 However, the invasive nature of thesemethods posts

challenges toward a large-scale and reliable process that can be readily adopted by industry. For non-invasive methods, thermal treatment

was proposed to break and re-build the solid-electrolyte interface (SEI) layer, whose continuous growth during cycling was believed to be the

reason for loss of active Li and increase of cell impedance.32 Waldmann et al. (2017) reported a capacity recovery behavior by resting com-

mercial cells in different temperatures.33 To partially reverse degradation attributed to a non-uniform distribution of Li ions, extreme voltage

reconditioning was proposed to re-distribute and activate the inactive Li ions by Hall et al. (2006) and Springer et al. (2020).34,35 Although

discrete trials on individual cells were reported, there lacks a comprehensive evaluation of the effectiveness of cell capacity recovery tech-

niques with a sufficient sampling quantity where the cell inconsistency is considered.

LFP batteries are a popular candidate in various energy storage applications because of its long cycle life, high safety, and low cost.36 The

relatively low value of the raw materials makes recycling of LFP batteries less profitable than that of lithium nickel manganese cobalt oxide
2 iScience 27, 109416, April 19, 2024



Figure 2. Cycle aging of LFP/graphite 18650 cells and data-driven cycle life prediction

(AI) Discharge capacities at various cycling currents (3.0 A, 2.0 A, 1.5 A, and 1.0 A). (AII) Kernel density distribution plots of cycle numbers at a cut-off discharge

capacity of 1.1 Ah (defined to be end of first life) for different cycling currents.

(B) Typical discharge and differential capacity (dQ=dV ) curves of the 10th and 50th cycles at 2.0 A and 1.0 A.

(C) Example of parity plot of cycle life for a gradient boosting regression (GBR) model that is tuned and evaluated on the first fold of the outer loop, which also

happens to give the lowest test RMSE and MAPE across all 5 outer loop folds.

(D) Contour map of the validation set RMSE during grid search hyperparameter tuning, with the optimal hyperparameters (nstart ; nendÞ = (19, 77) marked by a red

circle. Results from other splits are given in Figure S6–S8.
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(NMC) cells.37 From this aspect, it is essential that second-life applications can make better use of retired LFP cells before they are sent to

recycling.38

In this work, we collected cycling data of 62 LFP 18650 cells cycled under various operational conditions, such as current, cycle number,

etc. Data analytics and Gaussian process modeling were used to predict the cell cycle life given the cycling condition and SoH of early

cycles. The non-uniformity in battery cells, such as uneven distributions of active materials, variations of electrode thickness, and other

manufacturing imperfections, was hypothesized as a reasonable cause of recoverable performance degradation. An equivalent circuit

model (ECM) was employed to quantitatively explore the mechanisms of capacity loss and the feasibility of capacity recovery. The exper-

imental reconditioning treatments applied to the aged cells validated their effectiveness with some of the lost capacity recovered. Finally,

the importance of different operational parameters to the cell capacity recoverability was assessed by Shapley additive explanations

(SHAP) analysis,39 which suggested the significant role of SoH, residual capacity and the cycling current. In this study, we present three

key contributions. Firstly, we conducted extensive experiments on the aging and reconditioning of LFP cells on a large scale. These

experiments allow us to leverage machine learning models for predicting cycle life. Secondly, we employed an ECM, validated with exper-

imental data, to demonstrate the development of lateral lithium non-uniformity in electrodes. This non-uniformity arises from uneven in-

ternal resistance and leads to capacity loss. We also show that such capacity loss can be recovered through the application of extreme

voltage holds. Thirdly, we identified crucial parameters influencing the extent of capacity recuperation. Through the reconditioning pro-

cess, some of the lithium imbalance can be eliminated.
iScience 27, 109416, April 19, 2024 3



Table 1. Summary of the average RMSE andMAPE values for battery cycle life prediction obtained by evaluating the tuned models on the 5-fold cross-

validation (CV) sets, with the average and their standard deviation given as the first, and second number in the cell, respectively

Models

Mean of 5-fold CV RMSE (cycles) Mean of 5-fold CV MAPE (%)

Train-validation Test Train-validation Test

LR model 155 G 7 173 G 26 54.18 G 2.29 65.07 G 18.46

GPR model 109 G 12 145 G 48 23.77 G 1.64 39.39 G 15.80

GBR model 13 G 1 140 G 42 5.08 G 0.45 16.84 G 1.87
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RESULT AND DISCUSSION

Cycling and SoH assessment

Figure 2AI illustrates the decay curves of discharge capacity concerning cycle number under various currents. The cycle life, defined as the

point where cell capacity reaches 1.1 Ah at the end of the first life, corresponding to approximately 73% SoH, reveals intriguing insights.

Notably, there exist discernible connections between the discharge capacity distribution and the cycling currents applied. Our investigation

unveils an interesting observation: the distribution of battery cycle life, under the same cycling current, approximates a Gaussian distribution

with symmetrical spreads, as depicted in Figure 2AII.

Furthermore, when considering discharge capacity, a higher current is associated with a lower mean cycle life and a more tightly clustered

distribution. In contrast, a lower current corresponds to a higher mean cycle life and a broader spread. To illustrate, at a cycling current of 3.0

A, the mean cycle life is approximately 100 cycles, with a range spanning from 50 to 200 cycles. Conversely, under a 1.0 A cycling current, the

mean cycle life extends to around 900 cycles, encompassing a broader range from 600 to 1,400 cycles.

Typical discharge curves and the corresponding relationships of differential capacity (dQ=dV ) with respect to cell voltage at 2.0 A

and 1.0 A are plotted in Figure 2B. A larger capacity drop between the 10th and 50th cycles is observed in the cell cycled at a

higher current. There are distinctive features in the dQ=dV curves in terms of peak positions and intensities at different currents

and cycles. These features provide additional information about degradation compared to the features reported in high-power

LFP cells.15 In addition, Figure S4 presents the capacity decay and features of charge-discharge curves at different SoHs for a

cell cycled at 1.0 A.

We used data-driven approaches to predict cycle life with both the linear model (LR) and the non-linear models (Gaussian process regres-

sor [GPR] and gradient boosting regressor [GBR]). In line with Severson et al.’s study,15 we adopted root-mean-square error (RMSE) andmean

absolute percentage error (MAPE) to assess model performance and generalizability. All the models take as a feature the log variance of the

discharge curve difference between cycles nstart and nend , represented as varðDQnstart �nend ðUÞÞ (Figure S5). Severson et al.’s study15 has high-

lighted the predictive power of this variance, alongside the current and the capacity difference, ðDQnstart �nend Þ, between the two cycles. The

cycle number set ðnstart ;nendÞ is regarded as hyperparameters. While the dataset of 62 cells is relatively large in the academic battery com-

munity, it is still relatively small for model fitting and as a result, our data-driven models are prone to overfitting. To reduce overfitting, we

implemented nested CV where model generalizability is evaluated in the outer loop while hyperparameter tuning is performed in the inner

loop (Figure S3).

Table 1 shows the average RMSE and MAPE values for battery cycle life prediction obtained by evaluating the tuned models on the 5

train-validation/test sets followed by averaging the RMSE and MAPE values obtained; the standard deviation of each average RMSE or

MAPE is also indicated in the table. The LR model reports an average test RMSE of 173 and an average test MAPE of 65.07% across the

5 test sets. These linear models generally perform poorer than the nonlinear models (more details can be found in Figure S6). Besides

linear models, we also explored nonlinear models such as GPR and GBR for cycle life forecasting. Both GPR and GBR models prove to

be a better fit for our dataset than the LR models are. The average test RMSEs for the GPR and GBR stand at 145 and 140, respectively

(Figures S7 and S8). In terms of test MAPE, the GBR performs the best with an average test MAPE as low as 16.84% across the 5

test sets.

The grid search for hyperparameters ðnstart ;nendÞ in the inner loop using CV for all models is detailed in Figures S6–S8. The GBR models

display some variability in hyperparameters across the inner loop grid search. Figure 2C presents an example of the parity plot of cycle life in

which the GBR model is tuned and evaluated on the first fold of the outer loop (fold index = 0), which also happens to have the lowest RMSE

and MAPE across all 5 outer loop folds. Figure 2D provides an example of the contour plot of the validation set RMSE during grid search

hyperparameter tuning; in this case, the optimal ðnstart ; nendÞ was found to be (19, 77). Despite the variability in hyperparameters across

different CV partitions, the GBR model’s low test MAPE suggests that data-driven early prediction of the LFP cell’s cycle life is feasible

with our dataset, agreeing with the conclusion of Severson et al.’s prior study.15
Non-uniformity and aging

It is hardly possible to realize perfect uniformities during battery cell manufacturing. As illustrated in Figure 3A, either non-uniformmaterials dis-

tributions or uneven stacking of electrodes will lead to non-uniform ion transport and current density variations across the electrodes. Upon

cycling, electrode materials may experience different volume changes due to the bias current/voltage. The side electrochemical reactions,
4 iScience 27, 109416, April 19, 2024



Figure 3. Non-uniformities in battery electrodes before and after cycling

(A) Illustration of non-uniformities of electrodes and variations of localized ion transfer in LFP/graphite cells.

(B) Optical images of graphite anode and separator before cycle aging.

(C) Optical images of graphite anode and separator after cycle aging.

(D) Top view SEM images (i and I) and elemental mappings of carbon (C) and fluorine (F), and cross-sectional view SEM images (ii and II) of graphite electrodes

before cycle aging. (E) Top view SEM images (i and I) and elemental mappings of carbon (C) and fluorine (F), and cross-sectional view SEM images (ii and II) of

graphite electrodes after cycle aging.
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e.g., SEI formation or Li plating, would be localized at different places on the electrodes as well. Compared with the intact anode and clean

separator before cycling (Figure 3B), the photos after cycling (Figure 3C) show detached areas and white materials on the anode. Some dark

strips of residual materials are also observed on the separator. It clearly demonstrates regionalized materials degradation and side reactions

during the cell operation.

To have a closer examination, top view and cross-sectional view SEM images and elemental mappings of the anode before and after

cycling are shown in Figures 3D and 3E. Before cycling, the elemental distributions of carbon (C) and fluorine (F) on the surface (Fig-

ure 3D-i) are relatively uniform. The anode layers (�50 mm in thickness) are attached to the current collector well (Figure 3Dii). In contrast,

the C and F distributions on the surface after cycling (Figure 3E-I) indicate that certain F-rich materials form at some areas. The anode layer in

Figure 3E-II also becomes thicker (�58 mm) and its adhesion with the current collector becomes much worse. The observations of electrode

materials at various magnifications confirm that the chemical and structural changes during cycling are uneven. Concurrently, the electric/

electrochemical behaviors across the electrode will change differently. During cycling, some places will accumulate a higher potential for

electric transport or electrochemical reaction as shown in Figures 4AI and 4AII. The electric potential changes are dynamic during battery

operation. Although the high potential differences may decrease after resting (Figure 4AIII), especially for high current operations, an elec-

trical reconditioning step is recommended to further redistribute the Li ions, re-homogenize the electric potential differences and recover

usable capacity (Figure 4AIV).

Using the ECM simulation (Figure 4B), we can track the amount of lithium in each sub-cell during cycling (Figure 4C), and reconditioning

(Figure 4D), with experiment-extracted model parameters presented in Table 2. More details of the fitting process are provided in the ‘‘ECM

Fitting Procedure’’ section in Tables S2–S4.

We can clearly see that the lithium in the two sub-cells diverge substantially from each other upon cycling and eventually settle to some

steady level (Figure 4C), with sub-cell 1 losing lithium, and sub-cell 2 gaining lithium. These divergences would illustrate the lithium inhomo-

geneity built up during cycling, by lithium movement across the bridge resistor Re.
iScience 27, 109416, April 19, 2024 5



Figure 4. Equivalent circuit modeling of non-uniform lithium distribution during aging and reconditioning

(A) Schematic demonstration of non-uniform electric potential distribution before (I) and after (II) cycling and corresponding to resting (III) and reconditioning (IV).

(B) Diagram of the equivalent circuit model (ECM).

(C) Plots of time evolution of the amount of lithium in each sub-cell during cycling.

(D) Lithium re-homogenization by holding the cell at constant voltage of 3.6 V (left) and 2.0 V (right). Re-homogenization by open circuit resting is shown by the

dashed lines.
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Capacity recuperation

Upon reconditioning, where the cell was held at a constant voltage (3.6 V or 2.0 V), the lithium ions in the two sub-cells are gradually equalized

as shown in Figure 4D. These results suggest that the capacity recovery observed experimentally was contributed by the re-homogenization

of Li ions. In addition, the capacity check of the cell at open-circuit restingwas also conducted before and after the reconditioning in Figure S9.

There is a relaxation process during transit time, i.e., after cycling and before constant voltage reconditioning. This relaxation recovers some

of the cell’s capacity, which saturates after a period. The constant voltage reconditioning brings back more capacity and the recovered ca-

pacity is stable during the following cycles as shown in Figure S9. This observation reflects the scenario of capacity recovery during open circuit

resting and constant voltage reconditioning presented in Figure 4D.

Electric reconditioning treatments were carried out on the aged LFP cells as described in the experimental section. Various ca-

pacities together with recovery rates are defined and demonstrated in Figure 5A. The ECM can reasonably replicate the charge and
6 iScience 27, 109416, April 19, 2024



Table 2. Parameters for the used ECM

Parameter Value

RG
1 149.85 m U

RG
2 88.15 m U

Re 44514.26 m U

R0 = ð2k =ðk + 1ÞÞRG
2 111 m U

k = RG
1 = RG

2 1.7

ke = Re= RG
2 505

U�
OCP;1=2ðz�1=2Þ Graphite (MCMB) open circuit potential from

Plett (2015).40

2.4 V–4.6 V for z� from 1 to 0.

U+
OCP;1=2ðz+1=2Þ LFP open circuit potential from Plett (2015).40

0.0 V–3.0 V for z+ from 1 to 0.

Q�
max 1.227 Ah

rN=P = Q�
max= Q+

max 1.064

z�1 ðt0Þ 0.001

z+1 ðt0Þ 0.752

z�2 ðt0Þ 0.104

z+2 ðt0Þ 0.983

There are 9 unknown parameters in the ECM (Figure 4B) with their prior ranges list in Table S4. Following the protocols listed in Table S2, the simulation results are

obtained by applying the global optimization algorithm of differential evolution implemented in the SciPy library.
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discharge curves before and after reconditioning (Figure 5B), with experimentally extracted parameters given in Table 2. The fitting

yields Re = 44 U, which is two orders of magnitude larger than R1 = 0:15 U and R2 = 0:088 U. Tracking the sub-cell lithium content

with those parameters, the simulated Li inhomogeneity built-up during cycling is less than experimentally observed (Figures 4C and

4D). This implies that there might be driving forces other than non-uniform resistance that promote the lateral lithium inhomoge-

neity, which the current ECM model had not considered yet. The ECM model does not incorporate any non-recoverable degrada-

tion mechanism which accounts for the substantial capacity fade from the nominal 1.5 Ah to about 1.0 Ah upon cycling. The elec-

trode capacities obtained by parameter fitting also indicate significant loss of active materials and loss of lithium inventory, which

may not be laterally uniform, and could also contribute to the observed lithium inhomogeneity. Despite these limitations, this sim-

ple ECM demonstrates the possibility of lithium non-uniformity build-up due to resistance difference and provides a mechanistic

explanation for how inhomogeneous lithium can reduce the apparent capacity and how such capacity loss can be recovered by

extreme voltage hold.

Reconditioning recovered between 0.02 Ah and 0.21 Ah, which translates to 3–34% recovery of the loss capacity (Figures 5CI and

5CII). There is a negative correlation between the residual capacity Cres and the recovered capacity Crec (Figure 5CI), as higher cycling

rates seems to recover more (i.e., 2.0 A and 3.0 A) than those that cycled with lower rates (i.e., 1.0 A and 1.5 A). In general, the recovery

metrics (Crec , r1) increase with loss in capacity (lower residual capacity Cres) (Figure 5C). This is more prominent with r1, which has a nega-

tive linear correlation with Cres. On the other hand, the relationship between Cres and r2 is complex. There is a negative correlation for

cells that are cycled with 1.0–2.0 A current, but a positive correlation for cells that are cycled with 3.0 A current. Cycling with 3.0 A (�2C)

current can be considered harsh, so we would expect it to decrease the recoverable capacity. However, some cells from the high cycling

rate showed relatively high r2 recovery rates (Figure 5CIII).

The results for other parameters, like the initial capacity Cinit = Cres +Cl , SoH and cycle number (#), are provided in Figure S10.

Furthermore, the capacity decay curves display knee points, indicating a rapid decline in capacity in subsequent cycles. To investigate

the relationship between recovery capacity and knee points, we extracted cycle numbers around these knee points and plotted them

against recovery capacity (Crec) and recovery rates (r1 and r2) for cells cycled at 2.0 A (Figure S11). The cycle numbers at knee points

are determined by ‘‘Tangent ratio’’ method.12 Our analysis revealed that the associations between cycle numbers at knee points and

recovery capacities/rates are highly varied, suggesting that the occurrence of knee points is less predictable based on recovery

capacities.

Overall cell capacity recoverability can be well predicted from the cycling parameters (current and number of cycles) and states of the cells

(Cinit , SoH, Cres). Here, a linear regression model performs very well in predicting the cell’s recoverability in terms of the recovery rate r1 (Fig-

ure 5D). Prediction of other recovery indicators Crec , and r2 also works well with a linear regression model (Figure S12). In Figure 5E, SHAP39

analysis showed that SoH is themost important parameter to affectCrec , r1 and r2. More details of their correlations are given in Figure S13. In
iScience 27, 109416, April 19, 2024 7
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Figure 5. Capacity recovery of aged LFP cells and statistical analyses

(A) Illustration of various capacities and recovery rates during cell cycling and recuperation operation.

(B) Experimental and simulated voltage profiles of capacity check before and after reconditioning.

(C) Correlation of residual capacity (Cres) with respect to recovered capacity (Crec ) and recovery rates (r1 and r2).

(D) Parity plot of observed and predicted recovery rates r1 using a linear regression model.

(E) Bar graph showing the importance of different parameters (SoH, Cres, Cinit , Cycle # and Current) for predicting the capacity recovery effects.
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the case where the history of cycling is unknown, r1 seems to be the best metric to estimate the cell’s capacity recoverability. r1 correlates well

linearly with SoH (Figure S10) and is reasonably less sensitive to cycling rates.

Conclusions

Data-driven health estimation and statistical analysis of capacity recovery of aged LIBs play significant roles in their second-life applications.

Machine learning modeling on our cycling dataset of 62 LFP/graphite 18650 cells showed that it is possible to make early prediction of cell

cycle life. A gradient boosting regression model is used to demonstrate the feasibility of early prediction of battery cycle life with a test RMSE

of 140G 42 cycles and test MAPE of 16.84%G 1.87%, using data from the first 80 cycles. Non-uniformities are detected in battery cells, which

are proposed as a reason for performance degradation and capacity loss. The ECM simulation suggests lateral lithium inhomogeneity can

build up upon cycling due to uneven internal resistance, while such inhomogeneity contributes to apparent capacity loss. The simulation

also indicates that extreme voltage hold can be effective in re-homogenizing lithium and recovering the portion of lost capacity caused

by lithium inhomogeneity. Recuperation effectiveness is validated by reconditioning experiments with considerable capacity recovery rates

at different conditions. Further data analysis reveals the importance of SoH in determining the capacity recovery of aged LFP batteries. This

study demonstrates the promising applications of data-driven methods and equivalent circuit modeling in battery diagnostics and highlights

their significance in the emerging field of second-life batteries.

Limitations of the study

In this study, a singular type of LFP cells were utilized, whichmay limit the generalizability of themodels. Future works should aim to enhance the

robustnessof thedata-drivenmodels, by validating themwithother typesof cells that includeLFPcellswithdifferentenergydensities/form factors

and other types of chemistries, such as high-Ni NMC/NCA cells and sodium ion cells. Incorporating data from practical applications, such as cell

aging upon EV driving cycles and renewable energy storage/usage scenario, will help to refine and validate the models toward real-world

implementations.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Battery cycling dataset This work https://github.com/rikoimade/battery-recovery

Software and algorithms

Python version 3.9 Python Software Foundation https://www.python.org

scipy Virtanen et al.41 https://scipy.org/

scikit-learn python library Pedregosa et al.42 https://scikit-learn.org/stable/

scikit-optimize python library Scikit Optimize https://scikit-optimize.github.io/stable/

Jupyter Project Jupyter https://jupyter.org

Matplotlib: Visualization with Python Hunter et al.43 https://matplotlib.org/

SHapley Additive exPlanations (SHAP) analysis Lundberg et al.39 https://shap.readthedocs.io/en/latest/

pandas - Python Data Analysis Library Pandas https://pandas.pydata.org/

Machine Learning Modeling scripts This work https://github.com/rikoimade/battery-recovery

Machine Learning Modeling scripts This work https://doi.org/10.5281/zenodo.10681798
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Yin Xuesong

(yinxs@imre.a-star.edu.sg).

Materials availability

This study did not generate new materials.

Data and code availability

All original code has been deposited at Zenodo and is publicly available as of the date of publication. DOIs are listed in the key resources

table.

Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

METHOD DETAILS

Battery cycling

Commercially available LFP/graphite 18650 cells with a nominal capacity of �1.5 Ah (high-energy type) were used in this study. This type of

cells has a higher capacity but shorter cycle life in contrast to the LFP 18650 cells used in a previous study (high-power type) by Severson

et al. Even for the same LFP chemistry, more comprehensive data from diverse cells are helpful for developing robust data-driven meth-

odologies and understanding cell inconsistencies. Constant current charge and constant current discharge cycling with a voltage window

from 2.5 V to 4.0 V was applied to perform cell aging. The charge-discharge current was varied at 1.0 A, 1.5 A, 2.0 A and 3.0 A to inves-

tigate its effects on cell aging and recovery. The testing was carried out on a 16-channel battery tester (Maccor, Model-4200) in ambient

environment (Figure S1).

Capacity recuperation

The accumulated non-uniform distribution of lithium ions upon cycling is believed to be one of the causes of the capacity fade. The non-

uniform Li distributions would result in significant potential gradients, when the voltage of a cell has a big slope. A reconditioning process

with an applied potential across the electrodes could drive and re-distribute the ions more uniformly. For LFP/Graphite cells, large voltage

gradients appear around fully charged (100% SoC) and fully discharged (0% SoC). Accordingly, the voltage values at 100% SoC (3.6 V) and

0% SoC (2.0 V) are chosen as applied potentials for the reconditioning treatments. A previous study also shows a reconditioning period of

72 h (3 days) is able to reach a relatively stable state for LFP cells,35 so the holding time is kept at 72 h in this work. This procedure was

applied to all the cells with different aging histories. The cell capacities before and after the treatments were checked by cycles of a con-

stant current charge and a constant current discharge at a small current of 0.3 A. Typical voltage and current curves of the recuperation and
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capacity check processes are shown in the Figure S2. The recovery rates were calculated as the ratio of recovered capacity to both the

residual and lost capacity.
QUANTIFICATION AND STATISTICAL ANALYSIS

Data-driven assessment of battery states

The discharge capacity data were batch processed to build the distributions of the cycle life. We set the discharge capacity of 1.1 Ah as the

cutoff value at end of first life to define the cycle life for an acceptable SoH around 73% (1.1 Ah/1.5 Ah) for the cells (Figure 2A). We consider

several combinations of features to build a model to predict cycle life, which are the number of cycles to reach a discharge capacity of 1.1 Ah,

the cycling current, two early discharge capacities at ‘start’ cycle number nstart and ‘end’ cycle number nend , and variance of discharge curve

difference between two cycles varðDQðUÞÞ.15
We employed three regression models—linear regressor (LR), Gaussian process regressor (GPR), and gradient boosting regressor

(GBR)42 —to forecast the cycle life across our dataset comprising 62 cells. Although this dataset size is relatively substantial within the aca-

demic battery community, it is deemed small for effectively fitting machine learning models, making them susceptible to overfitting. To miti-

gate overfitting, a common issue in data-driven models trained on limited datasets, we conducted nested cross-validation (CV). This process

involves an outer loop for assessing test errors and an inner loop for hyperparameter tuning, illustrated in Figure S3. The outer CV loop divides

the data into five sets of train-validation and test sets, indexed from 0 to 4 (see Figure S3). Simultaneously, the inner CV loop further divides

each train-validation set into five sets of train and validation sets, utilized for hyperparameter tuning.

For hyperparameter tuning, a grid search was conducted within the inner loop over the (nstart , nend ) hyperparameters to reduce the mean

square error (MSE) on the validation set. An optimal set of (nstart , nend ) from this inner loop hyperparameter tuning is selected such that it gives

the lowest average MSE on the 5 inner loop validation sets. Using this optimal set of (nstart , nend ), the model is finally retrained on the train-

validation set. At the end of the entire nested CV campaign, we had 5 tuned models that correspond to the 5 train-validation/test sets in the

outer loop. The final model performance is quantified by the average of the 5 root mean square errors (RMSEs) and the average of 5 mean

absolute percentage errors (MAPEs) evaluated on the train-validation and test sets. These test error metrics provide an estimate of the gener-

alization performance of the model in predicting cycle life.
Simulation of capacity loss and recovery using equivalent circuit modeling

Lateral electrode inhomogeneity of lithium-ion cells has beenwidely studied in literature to better understand its causes and characteristics.35

Such inhomogeneity has been attributed to manufacturing variations and defects, certain cell form factors, and tab locations, which in turn

give rise to a non-uniform current density and hence uneven lithium ion distribution. Some efforts have also focused on simulating the for-

mation of such a inhomogeneity using physics-based and circuit-based models,44 by dividing a cell laterally into multiple local mini-cells and

accounting for the internal resistance associated with the interconnection among these mini-cells. However, there is little work that studies

how such inhomogeneity affects the usable capacity, and how capacity loss due to inhomogeneity may be recovered by homogenizing the

cell using certain operations.

Spingler and coworkers35 proposed that shallow cycling around the mid state-of-charge (SOC) range with shallow electrode open circuit

voltage (OCV) curves can significantly encourage inhomogeneity to develop and reduce usable capacity within a voltage window. They also

showed experimentally that capacity loss can be recovered by holding the cell for several days at extreme voltage at which the electrodeOCV

curves are much steeper. They proposed that such a phenomenon might be captured by an ECM but have not implemented and tested this

idea. In this work, we implement a simple ECM to simulate the recoverable capacity loss due to lithium inhomogeneity and its recovery under

extreme voltage reconditioning, and we compare the simulation results to experimental measurements.

To demonstrate the formation of lithium inhomogeneity and the effects of electric reconditioning on the capacity recovery of aged LFP

batteries, an ECM simulation is carried out. We divide the cell laterally into two parallel sub-cells of equal capacity. For each sub-cell, we

model the anode and cathode open circuit potential separately (UOCV ;1, UOCV ;2). This contrasts with the monolithic full-cell OCV used by

most ECMs in literature. Moreover, we associate an internal resistance (R1, R2) with each electrode and add a bridge connecting the two

sub-cells that accounts for the electrolyte resistance (Re), which lithium ions need to overcome to transport laterally across different sub-cells.

This bridge Re is what enables the lithium distribution to become uneven when one sub-cell somehow has lower resistance (RG
2 < RG

1 ), so

lithium ionsmay prefer to be cycledwithin that branch, driving the lateral transport through the bridge. Since the electrodes aremanufactured

to be thin but with a large cross-section to minimize internal resistance while maintaining substantial capacity, the lateral resistance Re at the

bridge is typically much larger than the thickness-wise resistances (RG
1 and RG

2 ). This ECM is the most parsimonious model that can simulate

the effects of lateral lithium inhomogeneity.

To find suitable values for the ECM parameters (R1, R2 and Re), we fit the ECM to the experimental cell terminal voltage curves for the last

few cycles and the whole recuperation process, including capacity checkup steps. We solve this nonlinear least squares problem using the

differential evolution algorithm as implemented in the Python library SciPy.41
Capacity recovery statistics

In this section we are interested in quantifying the recoverable capacity, as well as the factors that contribute to the cell’s capacity recover-

ability. We define several metrics to quantify the recovery rate, namely residual capacity (Cres), lost capacity (Cl), capacity after reconditioning
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ll
OPEN ACCESS

iScience
Article
(Caft ) and recovered capacity (Crec ). Here, we take the capacity value after cycling for Cres, which is slightly different from the capacity prior to

reconditioning. In this case,Crec has accounted for capacity increase during the transition timebetween the endof cycling and reconditioning.

Furthermore, we also define two different parameters to quantify the capacity recovery rate, r1 = Crec

Cres
3100 and r2 = Crec

Cl
3 100. r1 would

quantify the effect of residual capacity Cres on the recoverable capacity. In contrast, r2 quantifies the portion of lost capacity that is recovered.

We used SHAP analysis39 to quantify the importance of recovery parameters.
14 iScience 27, 109416, April 19, 2024
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