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Abstract
Targeted next-generation-sequencing (NGS) panels have largely replaced Sanger sequencing in

clinical diagnostics. They allow for the detection of copy-number variations (CNVs) in addition to

single-nucleotide variants and small insertions/deletions. However, existing computational CNV

detection methods have shortcomings regarding accuracy, quality control (QC), incidental find-

ings, and user-friendliness. We developed panelcn.MOPS, a novel pipeline for detecting CNVs in

targeted NGS panel data. Using data from 180 samples, we compared panelcn.MOPS with five

state-of-the-art methods. With panelcn.MOPS leading the field, most methods achieved compa-

rably high accuracy. panelcn.MOPS reliably detected CNVs ranging in size from part of a region of

interest (ROI), to whole genes, which may comprise all ROIs investigated in a given sample. The

latter is enabled by analyzing reads from all ROIs of the panel, but presenting results exclusively

for user-selected genes, thus avoiding incidental findings. Additionally, panelcn.MOPS offers QC

criteria not only for samples, but also for individual ROIswithin a sample, which increases the con-

fidence in called CNVs. panelcn.MOPS is freely available both as R package and standalone soft-

ware with graphical user interface that is easy to use for clinical geneticists without any program-

ming experience. panelcn.MOPS combines high sensitivity and specificity with user-friendliness

rendering it highly suitable for routine clinical diagnostics.

K EYWORDS

clinical diagnostics, copy-number variation, deletion, duplication, panel sequencing, targetednext-
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1 INTRODUCTION

For many disease genes, comprehensive mutation analysis in clini-

cal diagnostics includes the detection of (1) small sequence alter-

ations, such as substitutions, deletions, duplications, and insertions

of one or a few nucleotides, and (2) copy-number variations (CNVs),

which are often defined as deletions or duplications larger than 50

bp (Alkan, Coe, & Eichler, 2011). CNVs may affect one or more genes

of interest where either the whole gene or only one or more exons

thereof are altered. Previously, Sanger sequencing was used for rou-

tine detection of small sequence alterations. If no disease-causing

mutation was found by these means, multiplex ligation-dependent
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probe amplification (MLPA) (Schouten et al., 2002), quantitative PCR

(Charbonnier et al., 2000), or array-based techniques (Komura et al.,

2006) were applied in a second step to identify (intragenic) CNVs. Tar-

geted next-generation-sequencing (NGS) panels have now replaced

Sanger sequencing in many diagnostic laboratories. They provide sev-

eral advantages over whole-genome sequencing (WGS) and whole-

exome sequencing (WES): since only a limited number of genes is tar-

geted, data can be generated and stored on smaller machines, which

makes NGS panels more flexible as well as time- and cost-effective.

Furthermore, higher accuracy is achieved due to deeper coverage (de

Leeneer et al., 2015; Lin et al., 2012; Meder et al., 2011; Weiss et al.,

2013).
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Enrichment-based targeted NGS panels in particular allow not only

for the detection of small sequence alterations, but also of CNVs. How-

ever, as all currently available computational methods for detecting

CNVs in targeted NGS panel data have shortcomings, clinical copy-

number (CN) analysis continues to be largely based on MLPA or other

techniques. Current CNV detection methods suffer from one or more

of the following problems:

1. Compromise between sensitivity and specificity: Although the

sensitivity of CNV detection methods is improving, this is often

achieved at the expense of a high number of false-positive findings

(Pugh et al., 2016).

2. Poor quality control (QC): Variations of theDNAquality, the library

preparation, or the sequencing process itself can lead to differ-

ences in read count (RC) characteristics between samples. There-

fore, the RCs of the affected samples cannot be compared. Fur-

ther, the coverage of regions of interest (ROIs) can be low due

to high GC content or sequence characteristics that affect either

enrichment or mappability of reads. RCs and gene assignment can

also be highly variable in ROIs with a highly homologous pseudo-

gene. These issues influence the readdepthandprevent reliableCN

detection in theseROIs.QC that filters out low-quality samples and

ROIs is therefore an essential step, especially in clinical diagnostics

(Johansson et al., 2016). However, if too many samples or ROIs are

excluded, a methodmay cease to be useful.

3. Low sensitivity in the detection of small or large CNVs: Methods

perform well at detecting either small CNVs that affect only (part

of) one ROI or large CNVs that encompass all ROIs of a gene. How-

ever, in a clinical setting, both is required.

4. Risk of incidental findings: Since many gene panels are designed

to cover several different disease types at once, incidental findings

become problematic in clinical interpretation and reporting. Cur-

rent CNV detectionmethods do not provide a satisfactory solution

that limits the analysis report to genes of interest without dimin-

ishing the ability to detect largeCNVs that cover all ROIs of the one

gene to be analyzed.

5. Low user-friendliness: While commercial products usually provide

graphical user interfaces to facilitate analysis, most noncommer-

cial methods require at least some basic programming experience,

which often discourages clinical laboratories from using them.

With the aim to address all these shortcomings, we developed pan-

elcn.MOPS, a pipeline for detecting CNVs in targeted NGS panel data

that builds upon cn.MOPS (Copy Number estimation by a Mixture Of

Poissons) (Klambauer et al., 2012) (see Fig. 1). The superior perfor-

mance of cn.MOPS on WGS and WES data has already been demon-

strated (Guoet al., 2013;Klambauer et al., 2012). Specifically, cn.MOPS

has been used to detect CNVs in the Taiwanese Han and Qatari popu-

lations (Fakhro et al., 2015; Lin, Tseng, Jeng, & Sun, 2014), in individu-

als with intellectual disability (Schuurs-Hoeijmakers et al., 2013), and

in patients with early-onset neuropsychiatric disorders (Brand et al.,

2014). cn.MOPS builds a local model that captures the read charac-

teristics of each ROI. Thus, problems such as the bias induced by the

F IGURE 1 panelcn.MOPS analysis pipeline. The input to
panelcn.MOPS is a BAM file for every sample and the corresponding
BED file. The final output is a table of results and boxplots of the
normalized RCs for user-selected genes of interest

targeting procedure are circumvented making it the prime candidate

for CNV detection in targeted NGS panel data.

In this study, we present the newly developed panelcn.MOPS

pipeline and compare it against five state-of-the-art CNV detection

methods: ExomeDepth (Plagnol et al., 2012), CoNVaDING (Johansson

et al., 2016), VisCap (Pugh et al., 2016), NextGENe (Softgenetics, State

College, PA), and SeqNext (JSI Medical Systems GmbH, Kippenheim,

Germany).

2 MATERIALS AND METHODS

2.1 panelcn.MOPS pipeline

2.1.1 Input

The panelcn.MOPS pipeline uses BAM files as input. A BED file

is needed to specify the ROIs that constitute the count windows.

Alternatively, a matrix of RCs can be used directly as input to the

panelcn.mops algorithm. For our analyses, eachROI consisted of a cod-

ing exon ±31 nucleotides of flanking intronic sequences leading to

ROIs with a size between 67 and 6,636 bp. Although it was not used

for the reported results, larger exons can be split into multiple over-

lapping ROIs in order to increase the resolution of the CNV detection

algorithm.

2.1.2 Read counting

Weadapted the read counting procedure of theR package exomeCopy

(Love et al., 2011) for NGS panel data: all reads that overlap with the
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current ROI are counted with paired reads being handled separately.

A fixed read length of 150 bp was assumed throughout the analysis

because in tests on the validation set this achievedmore robust results

than the true read length for each read. However, the read length is a

parameter that needs to be set by the user according to the specifica-

tions of the data used.

2.1.3 QC

panelcn.MOPS includes several QCs: ROIs are excluded if theirmedian

RC across all samples does not exceed a user-defined threshold

(default: 30). Additionally, after control sample selection and normal-

ization, ROIs are marked as low quality if their RCs show a high varia-

tion across all remaining samples (test sample and selected controls).

There are also two QC criteria for samples, failure in which leads to

the exclusion of control samples and to a warning if the failing sample

is the test sample. Samples with a low total number of RCs are gener-

ally of lower quality. Therefore, samples with a median RC across all

ROIs that is lower than 0.55 times the median of all samples fail the

first step of the sampleQC. The second step is performed after control

sample selection and normalization. For each ROI, the ratio between

the normalized RCs of each sample and the median across all remain-

ing samples (test sample and selected controls) is calculated. Sam-

ples that show a high variation in these RC ratios fail the second QC

step.

2.1.4 Control sample selection

In order to limit the variance of the RC characteristics of the con-

trol samples, we use only control samples with a high correlation

of RCs to the RCs of the test sample. ROIs that are part of a gene

of interest for a specific test sample are excluded from the corre-

lation calculation. If fewer than eight control samples exceed the

correlation threshold of 0.99, the eight samples with the highest

correlation are used. If more than 25 samples exceed the thresh-

old, only the best 25 are kept. This lowers the variance further

and additionally reduces computation time. We recommend to use

at least eight high quality samples as controls samples; however, if

more control samples are used, the results typically become more

robust.

2.1.5 Normalization

Each sample’s RCs are scaled such that the total number of reads

are comparable across samples. The best performance was achieved

by normalizing to the third quartile, which is equivalent to the upper

quartile normalization (Bullard, Purdom, Hansen, &Dudoit, 2010), and

rescaling with the first quartile of the scaling factors.

2.1.6 CN detection

The raw CNV detection algorithm of the cn.mops R package is applied

to each ROI separately. In order to increase sensitivity, we adapted the

expected fold change of theCNclasses. According to our results on the

validation set (see section “TSC panel validation set”), we set the param-

eter to 0.57 for CN1 (deletion) and to 1.46 for CN3 (duplication).

2.1.7 Segmentation

We tried various segmentation algorithms. However, for the pipeline

to be able to detect CNVs that affect only a single ROI or even just part

of a ROI, omitting the segmentation step leads to better results.

2.1.8 Filtering for genes of interest

In clinical settings, the analysis of only a subset of genes covered by

the panel is frequently requested. Therefore, any results concerning

the remaining genes should be masked to avoid incidental findings.

Accordingly, we implemented a function that presents results only for

user-specified genes while using the RCs of all genes to compute the

CNs, which offers several advantages (see section “Whole-gene CNVs”).

If all genes of the panel are of interest, no filtering is performed and

results for all genes are displayed.

2.1.9 Output

In addition to a table of results, panelcn.MOPS creates boxplots of the

normalized RCs of each ROI of a user-specified gene for visual inspec-

tion (see Fig. 2).

2.1.10 Graphical user interface

We do not only offer panelcn.MOPS as an R package, but also pro-

vide a simple GUI with an easy-to-use installer. As the implementa-

tion is based on a combination of R shiny (Chang, Cheng, Allaire, Xie,

&McPherson, 2016) and R portable (Redd & Huber, 2010), it does not

require any additional programs to be installed by the user.

2.2 Samples

This study was approved by the ethics review board of the Medical

University Innsbruck (MUI). Written informed consent to analyze the

genes of interest was obtained from all participants.

Our cohort consisted of 180 samples that were analyzed with an

NGS panel in the Division of HumanGenetics of theMUI. All CNVs (17

single-exon deletions or duplications, 22 multiexon deletions or dupli-

cations, five deletions of an entire gene, and five deletions or duplica-

tions spanning only part of a ROI) have previously been assessed with

MLPAand, therefore, can be considered as confirmed (see Supp. Tables

S1 and S2 for more details).

Onehundred seventy sampleswereprocessedusing theTruSightTM

Cancer (TSC) panel (Illumina, San Diego, CA), which targets 94 genes

associated with a predisposition towards cancer. One hundred fifty of

these samples were diagnostic cases previously analyzed at MUI. The

remaining 20 samples were provided by the Medical Genomics Lab-

oratory of the University of Alabama at Birmingham (UAB) and were

enriched for NF1 deletions/duplications. All TSC panel samples were

divided into a validation (n = 25, TSC panel validation set) and test

set (n = 145, TSC panel test set). The validation set was used to opti-

mize the parameter settings for the different methods. The test set

was used to fully evaluate the methods in terms of sensitivity, speci-

ficity, and no-call-rate as described below. A “blind” analysis was per-

formed on the test set: the true CNs were made available only after

the analyses with all programs were completed. Four samples of the
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F IGURE 2 Boxplot of normalized RCs. The normalized RCs of the test sample and all controls used are displayed as boxplots for each ROI (exons
numbered in consecutive order according to BED file) of the NF1 gene. The RCs of each control sample are symbolized by black dots, whereas the
RCs of the test sample are highlighted by red dots. The deletion of all ROIs is clearly visible by the red dots that are distinctly below the boxes and
whiskers

test set were evaluated separately because they had CNVs smaller

than one ROI (small CNVs dataset). Three samples were excluded

from further analysis because they contained de novo ALU inser-

tions (Wimmer, Callens, Wernstedt, & Messiaen, 2011). Nevertheless,

all seven samples were used as controls for the rest of the samples.

In order to extend our study to a different NGS panel, we created

a set of 10 additional cases processed on a customized panel (Nextera

Rapid Capture; Illumina) targeting 117 genes in the following referred

to as Custom Panel.

2.3 Library preparation and sequencing

Adapter-tagged libraries were prepared according to the TruSightTM

Rapid Capture workflow (Illumina) using a transposase-based method

(Nextera) (Marine et al., 2011). Sequencing was performed on aMiSeq

instrument following the Illumina 300 sequencing cycle program with

paired-end reads. For more details, see Supp.Methods.

2.4 Sequence alignment

Only the commercial tools NextGENe and SeqNext use FASTQ files

directly as input. For methods, which require BAM files as input,

sequence alignment to human reference genome build b37 with BWA

version 0.7.12 (Li & Durbin, 2009) was followed by removal of dupli-

cates and fixing of mate information with SAMtools version 0.1.19

(Li et al., 2009). Afterwards, local realignment around indels and base

quality score recalibration was performed with the Genome Analy-

sis Tool Kit (GATK) version 3.5 (McKenna et al., 2010). Supp. Table S3

shows the total number of raw andmapped reads for each sample. For

VisCap, DepthOfCoverage files were also generated with GATK ver-

sion 3.5. The BED files used throughout the analysis comprised all cod-

ing exons±31 nucleotides of flanking intronic sequences.
We performed additional tests with changes in the alignment pro-

cess to check how panelcn.MOPS depends on these settings. Omitting

the postprocessing steps ofGATKdid not affect theRCsof the genes of

interest and therefore panelcn.MOPS reported exactly the same CNs.

Using BWA-MEM (Li & Durbin, 2009) for alignment showed that the

RCs differ only slightly. Also, with BAM files produced by NextGENe,

the performance of panelcn.MOPS did not change as long as all sam-

ples were processed the same way. This indicates that the choice of

alignment algorithm does not have a large influence on the results. For

more details, see Supp.Methods.

2.5 Controls

Except for NextGENe, which can handle only 10 control samples, the

same set of controls was used, which consisted of all samples from

the validation and test sets that did not have a clinical indication that

matched or overlapped that of the test sample. This ensured that the

control samples were devoid of CNVs in the analyzed genes of interest

thatwould interferewithCNVdetection in the test sample (see section

“Controls”). For NextGENe, samples from the same sequencing run—or

at least recent runs—were used, ideally from a different indication. For

the custom panel, all control samples used for NextGENe also formed

the pool of control samples for the othermethods. Again, only samples

with a different clinical indication were used.

2.6 Evaluation criteria

In each sample, each ROI was classified as positive if it was affected

by a CNV, and as negative otherwise. ROIs marked as low quality by

a method were considered as no-call for that method and removed

prior to sensitivity and specificity calculation. For a low-quality sample,

all ROIs of the genes of interest were classified as no-call. A ROI was

classified as true positive (TP) if it contained a CNV that was detected

by the method and not classified as no-call. ROIs with no known CNV

that were detected as normal and without no-call were called true

negatives (TNs). Falsely detected CNVs and missed CNV calls were

classified as false positive (FP) and false negative (FN), respectively,

if they did not contain a no-call. Finally, sensitivity was calculated as
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#TP/(#TP+#FN) and specificity as #TN/(#TN+#FP). The no-call rate

was defined as the number of ROIs with no-call divided by the total

number of ROIs.

2.7 Methods compared

Wecomparedpanelcn.MOPSagainst the followingfive state-of-theart

methods for CNV detection in NGS panel data: ExomeDepth version

1.1.8, CoNVaDING version 1.1.6, VisCap, NextGENe version 2.4.1.1,

and SeqNext version 4.3.0. Details about the methods, including the

parameters that were optimized on the validation set, can be found in

Supp.Methods.

2.8 Restriction to genes of interest

To avoid incidental findings, we automatically filtered the results for

ROIs of genes of interest. Thiswas done through computational scripts

that processed the result files of the different methods and only made

results for genes of interest available. Since the commercial tools

NextGENe and SeqNext do not support the filtering of results before

they are displayed, we restricted thewhole analysis with these tools to

the genes of interest.

2.9 Availability of code andmaterials

panelcn.MOPS is freely available as an R package at https://github.

com/bioinf-jku/panelcn.mops. The standalone software with GUI and

Windows installer can be obtained from http://www.bioinf.jku.at/

software/panelcnmops/.

Sequence data have been deposited at the European Genome-

phenomeArchive (EGA, http://www.ebi.ac.uk/ega/), which is hosted by

the EBI, under ENA accession number PRJEB18961.

3 RESULTS

3.1 TSC panel validation set

The parameter settings of all methods were optimized on the 25 sam-

ples of the validation set. The aim was to find an optimal trade-off

between highest sensitivity and a low number of FPs as well as good

QC settings. One sample (IBK42) was labeled as low quality by all

methods. Other samples were marked as low quality by only one or

two methods (see Supp. Table S1). For panelcn.MOPS and CoNVaD-

ING, we were able to adjust the parameters such that both methods

achieved100%sensitivity and specificity. panelcn.MOPSreportedonly

IBK42 as low quality, whereas CoNVaDING excluded one-fifth of the

samples. ExomeDepth reported one false positive deletion in exon 15

of the PMS2 gene (IBK47) and no additional low-quality samples. Even

with optimized parameters, VisCap performed relatively poorly on the

validation set, since it missed parts of multiexon deletions and duplica-

tions in several samples and marked three of 25 samples as low qual-

ity. panelcn.MOPS, ExomeDepth, CoNVaDING, and VisCap could be

optimized to detect an 80-bp deletion that affected only part of a ROI

(IBK9).

An inherent weakness of the tested version of NextGENe and

SeqNext is the failure to report deletions of all ROIs of a single gene

of interest, for example, the deletion of the whole NF1 gene in three

samples where NF1was the only gene analyzed. Furthermore, neither

CNVdetection programwas able to detect the above-mentioned small

deletion (IBK9). Additionally, we were unable to define parameters for

NextGENe that avoided one false positive duplication (IBK25) without

creating FNs, and hence losing sensitivity.

3.2 TSC panel test set

Using the best parameters as determined on the validation set (see

Supp. Methods), we evaluated the performance of all six methods on

a test set of 138 samples as described in the section “Evaluation cri-

teria.” Table 1 shows the sensitivities, specificities, and no-call rates

of all methods. panelcn.MOPS achieved 100% sensitivity and speci-

ficity while the no-call rate was 0.04. This means that 4% of ROIs were

marked as low quality because either the whole sample or the ROIwas

of lowquality. BothCoNVaDINGandSeqNextmissedonly a single pos-

itive ROI with CoNVaDING additionally reporting one FP (see Supp.

Table S1). Both had no-call rates similar to that of panelcn.MOPS. As

ExomeDepth lacks a QC criterion for ROIs, it did not flag any ROI as

low quality. Consequently, ExomeDepth had a high number of FPs, and

thus low specificity. Also, NextGENe achieved a low no-call rate at the

expense of low specificity. VisCap exhibited low specificity, although it

had the highest no-call rate.

3.3 Small CNVs

In order to explore the limits of the methods compared, we tested

whether CNVs smaller than a ROI could be detected (see Supp. Table

S1). Although CNVs are often defined as deletions or duplications

larger than 50 bp, we also consider smaller ones. Since we only used

RCs of whole ROIs, CNVs smaller than a ROI were reported as dele-

tions or duplications of the whole ROI. None of the methods was able

to detect the small duplication of 21 bp (NF1 c.31_51dup) encom-

passing approximately 17% of the ROI. However, panelcn.MOPS,

ExomeDepth, CoNVaDING, and VisCap detected the 20-bp deletion

(APC c.856_875del) encompassing only 12.5% of the ROI and the dele-

tion of 80 bp of which only 37 bp overlap with the ROI of 142 bp (NF1

c.1642-73_1648del). CoNVaDING, VisCap, and NextGENe correctly

reported the 64-bp deletion (NF1 c.1225_1260+29del) at the end of

a ROI of 137 bp that was missed by the other methods. The sample

with the 63-bp duplication (APC c.532-13_581dup) was flagged as low

quality by panelcn.MOPS, CoNVaDING, and VisCap. The other meth-

ods missed this duplication that affected approximately 36% of the

ROI. The CNV detection tool of SeqNext did not find any of the small

CNVs, but all of them were identified by the variant calling algorithm

of SeqNext. Similarly, the variant calling algorithm of NextGENe iden-

tified all CNVs that were missed by the CNV detection tool except for

the 80-bp deletion.

3.4 Custom panel

The methods’ performance results on the custom panel agree with

those on the TSC panel. CoNVaDING and VisCap flagged three out

of 10 samples as low quality, whereas panelcn.MOPS excluded one

https://github.com/bioinf-jku/panelcn.mops
https://github.com/bioinf-jku/panelcn.mops
http://www.bioinf.jku.at/software/panelcnmops/
http://www.bioinf.jku.at/software/panelcnmops/
http://www.ebi.ac.uk/ega/
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TABLE 1 Sensitivity, specificity, and no-call rate for eachmethod analyzed

panelcn.MOPS ExomeDepth CoNVaDING VisCap NextGENe SeqNext Optimal

TP 91 90 90 91 91 90 91

TN 7,889 8,203 7,705 7,279 8,141 7,954 8,222

FP 0 19 1 12 19 0 0

FN 0 1 1 0 0 1 0

No-call 333 0 516 931 62 268 0

Total 8,313 8,313 8,313 8,313 8,313 8,313 8,313

Sensitivity 1.0000 0.9890 0.9890 1.0000 1.0000 0.9890 1.0000

Specificity 1.0000 0.9977 0.9999 0.9984 0.9977 1.0000 1.0000

No-call rate 0.0401 0.0000 0.0621 0.1120 0.0075 0.0322 0.0000

TP: true positive; TN: true negative; FP: false positive; FN: false negative.

sample and the other methods excluded none. ExomeDepth called a

false positive CNV in CYP21A2 (sample IH7), which is known to have

a highly homologous pseudogene. NextGENe and ExomeDepth both

missed part of the deletion in sample IH6. Additionally, NextGENe

reported one false positive CNV (IH4). panelcn.MOPS, CoNVaD-

ING, and SeqNext achieved 100% sensitivity and specificity, but only

SeqNext and panelcn.MOPS had a reasonably low no-call rate (see

Supp. Table S1).

3.5 Runtime

The runtimes of the different programs were determined by running

the CNV detection algorithm itself five times on all 170 TSC panel

samples and calculating the median. The time for creating BAM files

or calculating RCs was not considered since these procedures must

be performed only once for each file. Subsequently, the precalculated

RCs can be used directly by the programs. The runtime calculations

were performed on an Intel i5-4300U CPU with 8 GB of RAM. The

median runtime of panelcn.MOPSwas less than 9min, followed closely

by ExomeDepthwith 13min, whereas VisCapwas considerably slower

with 2.5 hr. CoNVaDINGwas by far the slowest with amedian runtime

of 7 hr and 50 min. Since NextGENe and SeqNext can only be used via

theGUI, calculating the runtime is not straightforward.NextGENecan-

not handlemore than one sample at a time; however, since the analysis

of a single sample takes more than 1 min, analyzing 170 samples takes

several hours. As SeqNext performs variant calling and CNV detection

in a single run, it is not possible to determine the runtime of the CNV

detection algorithm alone. However, the whole analysis takes several

hours.

4 DISCUSSION

Nearly all methods yielded similarly high sensitivity and specificity, but

panelcn.MOPS led the field. However, the following aspects are also

important (see Fig. 3).

4.1 QC

Differences in quality and amount of DNA, or measurement noise may

render the RCs of affected samples incomparable and can lead to FPs.

Sequence characteristics like a high GC content interfere with enrich-

ment or mappability of reads and, consequently, lead to low and/or

uneven coverage of certain ROIs. Additionally, RCs can be highly vari-

able in ROIs with a highly homologous pseudogene sequence. These

influences on the RCs prevent reliable CN calls in the affected ROIs

and increase the risk for FPs and FNs. Particularly, in a clinical setting,

it is crucial to find a good balance between (1) excluding samples/ROIs

that are indeed of low quality and, therefore, bear a risk of false CN

calls and (2) avoiding unnecessary exclusion of toomany samples/ROIs

because low-quality samples need to be resequenced, and low-quality

ROIs often require additional tests.

While all programs have QCs for samples, only CoNVaDING,

SeqNext, and panelcn.MOPS have additional QCs for ROIs. With a

no-call rate of more than 10% for validation and test set, VisCap

excluded numerous samples that were correctly called by all other

methods.Also,CoNVaDINGflaggedmany samples as lowquality, espe-

cially on the validation set and on the custom panel. ExomeDepth,

NextGENe, and VisCap have no QC for ROIs, which gives rise to

FPs, especially in ROIs that have highly homologous sequences in

the genome or a high variation in RCs due to other reasons men-

tioned above. In most cases, the false positive calls affected PMS2

exons 12–15 known to be problematic due to the highly homolo-

gous pseudogene PMS2L (Ganster et al., 2010; van der Klift et al.,

2010; Vaughn, Baker, Samowitz, & Swensen, 2013). For the cus-

tom panel, most FPs were caused by CYP21A2 and its pseudo-

gene CYP21A1P (New & Wilson, 1999). These FPs are avoided by

panelcn.MOPS, CoNVaDING, and SeqNext since the ROIs are rec-

ognized as low quality. Overall, the methods with the best balance

between low no-call rate and sufficient QC were panelcn.MOPS and

SeqNext. All othermethods either lackedQC for ROIs and/or excluded

too many samples, which resulted in a low specificity and/or a high no-

call rate.

4.2 Small CNVs

We were interested in the methods’ limitations for CNVs smaller

than one ROI. Remarkably, most of the methods identified a dele-

tion of only 20 bp, which would technically not be considered a CNV.

However, duplications are harder to identify and so not all of the

small CNVs were detected. Our tests have shown that a sensitive
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F IGURE 3 Strengths and weaknesses of all methods analyzed. In general, “+++” indicates the best possible performance, whereas “++” means
the method is close to the best, “+” is acceptable, but not very good, and “−” signals failure or missing feature. For the two detection performance
measures (i.e., sensitivity and specificity), 100% is indicated by “+++.” A single FN or FP is indicated by “++” in the corresponding sensitivity or
specificity row. More than one false classification but an overall sensitivity or specificity greater than 95% is indicated by “+.” “No-call rate” stands
for the fraction of ROIs classified as low quality (see the section “Evaluation criteria”). “+++” means no-call rate of 0, “++” means less than 0.01, “+”
means less than 0.1, and “−” means no-call rate larger than 0.1. Programs with QC for samples and ROIs are marked as “+++,” whereas programs
with QC only for samples are marked as “+.” For “CNVs <1 ROI,” each plus sign symbolizes one successful detection of a CNV that affected only
part of a ROI (see the section “Small CNVs”). The row “Whole-gene CNVs” especially concerns CNVs that affect all ROIs that are within the gene of
interest for a patient. “+++” indicates that all of themweredetected,whereas “++” indicates that someof themweredetected andothers classified
as low quality. If the CNVs affecting the entire gene of interest are not fully detected, this is indicated by “+,” whereas “−” means that these CNVs
can only be detected while risking incidental findings. While “+” in the row “Incidental findings” indicates that incidental findings can be avoided,
but only at the risk of missing CNVs that affect all ROIs analyzed, “+++” means that the method avoids incidental findings without loss of power.
“−” reflects that the CNV tool offers no option to filter the results for genes of interest and, therefore, for avoiding incidental findings. The row
“Runtime” indicates the runtime of the CNV detection algorithm measured as described in the section “Runtime.” The thresholds for “+++,” “++,”
“+,” and “−” are less than 10 min, less than 1 hr, less than 6 hr, and more than 6 hr, respectively. Classes for the row “GUI” are: “+++” if there is an
easy-to-use graphical user interface (GUI), “++” if the GUI is not easy to use, and “−” if there is no GUI at all. Since only two of the programs are
commercial, they weremarked “−” in the corresponding row, whereas all others have “+++”

variant calling program such as that of SeqNext is able to detect

the CNVs smaller than one ROI, and in contrast to CNV detection

methods can also define the exact breakpoints. Therefore, the CNV

detection methods should be rather used as an additional confir-

mation tool and not as a primary identification tool for these small

CNVs.

4.3 Whole-gene CNVs

Some of the methods analyzed have problems with the detection of

CNVs that extend over a whole gene. As NextGENe and SeqNext

restrict their entire analysis to the gene(s) of interest, whole-gene

CNVs cannot be detected if only a single gene is analyzed, since the dif-

ference in RCs vanishes after normalization. The low/high RCs caused

by a whole-gene deletion or duplication are considered as normal

(CN2) since theyaffect themajorityofROIs analyzedandconsequently

all RCs for this sample are rescaled. However, analyzing more genes

than required bears the risk of incidental findings as discussed below.

CoNVaDING flagged two samples with a whole-gene deletion of NF1

as low quality. VisCap flagged only one of the two samples as low qual-

ity and missed many of the deleted ROIs in the other (see Supp. Table

S1). Only panelcn.MOPS and ExomeDepth (with our additional filter

for genes of interest) were able to find all whole-gene deletions with-

out risking incidental findings.

4.4 Incidental findings

Many gene panels contain genes that are relevant for different dis-

eases. For each patient, only a specific set of these genes is of interest

and no information concerning other genes should be reported.

ExomeDepth, CoNVaDING, and VisCap do not provide an option for

restricting the analysis to a specific set of genes.Writing a software for

filtering the results like we did is an easy task for someone with pro-

gramming experience, but not trivial for most clinical geneticists. For

NextGENe and SeqNext, the user can provide a list of ROIs that should

be analyzed. However, the whole CNV detection including normaliza-

tion is then restricted to these ROIs. Consequently, bothmethods have

problemswhen only a single gene is of interest, as discussed in the sec-

tion “Whole-gene CNVs.” panelcn.MOPS is the onlymethod that uses all

targeted ROIs for determining the correct CNs, but shows results only

for the genes of interest for each sample.

4.5 Controls

Some of the methods compared are highly dependent on the controls.

Since NextGENe accepts a maximum of only 10 controls, the devel-

opers suggest using samples of the same sequencing run as they are

likely to show the same sequencing characteristics. However, the con-

trols have to be chosen carefully, such that they donot harbor the same

CNV as the test sample since that would conceal the CNV. This poses
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a challenge if most samples analyzed in a run have the same clinical

indication. Additionally, the small number of control samples can be a

source of false positive calls if the RC variation within these 10 sam-

ples is relatively high. For CoNVaDING, in contrast, at least 20 con-

trol samples are needed. Even then, samples are likely to fail one of

the QC criteria if not enough control samples with RC characteristics

similar to those of the test sample are provided. The control selection

of ExomeDepth works well if, as in our analysis, only controls are used

that do not have a clinical indication that matches or overlaps that of

the test sample. In contrast to panelcn.MOPS, the control selection

algorithm of ExomeDepth does not exclude the genes of interest, and

it is possible that only one control sample is selected. A large CNV that

is present in the test sample and one or more control samples would

lead to a high correlation of RCs between these samples and conse-

quently to their selection as best controls. The CNV detection algo-

rithmwould then regard theCNVas a normal CN2. Thiswas confirmed

in a test using all samples as controls where the deletion of all ROIs of

the NF1 gene in samples IBK6 and IBK7 was not detected since only

the other sample with the same CNV was chosen as control. For pan-

elcn.MOPS, we tested how the results change if we provide as controls

(1) only the 10 control samples used for NextGENe or (2) all TSC panel

samples (see Supp. Table S4). Althoughmore samples are excluded due

to low quality when only 10 controls are used and CNVs smaller than

oneROIaremissed, our tests showed that in general for panelcn.MOPS

the choice of control samples is less important than for othermethods,

such as NextGENe, CoNVaDING, and ExomeDepth.

4.6 Runtime

If only a small number of samples is analyzed, a runtime of a few min-

utes per sample does not pose a big problem. However, in a larger set-

ting such as ours withmore than 100 samples, this means hours rather

than minutes. For NextGENe, there is an additional issue: it does not

support the analysis of more than one sample at a time; therefore,

in addition to a runtime of several hours, the hands-on time is longer

than for the other methods. Since calculating CNs for a single sample

takes only seconds with panelcn.MOPS, large datasets with thousands

of samples can be analyzedwithin hours rather than days.

4.7 Graphical user interface

ExomeDepth, CoNVaDING, andVisCap do not have aGUI, but are exe-

cuted via the command line or an R console. Additionally, R or other

programming tools must be installed. This is often a barrier for users

without programming experience. Further, commercial software such

as NextGENe and SeqNext cannot be incorporated into existing vari-

ant detection pipelines or even modified by bioinformaticians. While

a GUI is especially helpful to clinical geneticists without any program-

ming experience, an R package enables integration of the analysis in a

larger pipeline.Hence,weprovide panelcn.MOPSboth as anRpackage

and as standalone software with GUI and Windows installer to serve

both needs.

4.8 Usagewith different types of data

In this analysis, we only tested panelcn.MOPS with one sequencing

library preparation type and one type of sequencing kit. For other

enrichment types or sequencing kits, parameters such as the expected

fold change for deletions and duplications should be adapted to the

data at hand. Especially the fixed read length parameter should be set

to the actual read length of the current data. Since the read count-

ing procedure of panelcn.MOPS handles paired-end reads separately,

single-read sequencing data can be used without any adaption of the

read counting procedure. Additional tests have shown that pooling

of different library preparations do not affect the performance of

panelcn.MOPS if sufficient control samples from each library are avail-

able. Furthermore, our tests have shown that panelcn.MOPS is also

suitable for small panels with only 10 genes as long as no sample har-

bors a CNV that spans themajority of ROIs of the panel.

5 CONCLUSIONS

In this first thorough comparison of six state-of-the-art CNV detec-

tion methods for targeted NGS panels, we have demonstrated that

panelcn.MOPS has not only the highest sensitivity and specificity, but

also one of the best QCs. Furthermore, panelcn.MOPS uses reads

from all ROIs to determine the CN, but exclusively presents results for

user-selected genes avoiding incidental findings. The freely available

panelcn.MOPS can readily be used via the GUI by clinical geneticists

without programming experience, or integrated as R package into

existing variant detection pipelines.

ACKNOWLEDGMENTS

We thank Drs. S. Wenzel, E. Maurer, and M. Witsch-Baumgartner for

helpful discussions and providing precharacterized samples.

DISCLOSURE STATEMENT

The authors declare no conflict of interest.

REFERENCES

Alkan, C., Coe, B. P., & Eichler, E. E. (2011). Genome structural variation dis-

covery and genotyping.Nature Review Genetics, 12, 363–376.

Brand, H., Pillalamarri, V., Collins, R. L., Eggert, S., O’Dushlaine, C., Braaten,

E. B.,… Doyle, A. E. (2014). Cryptic and complex chromosomal aberra-

tions in early-onset neuropsychiatric disorders. The American Journal of
Human Genetics, 95, 454–461.

Bullard, J. H., Purdom, E., Hansen, K. D., & Dudoit, S. (2010). Evaluation

of statistical methods for normalization and differential expression in

mRNA-Seq experiments. BMC Bioinformatics, 11, 94.

Chang, W., Cheng, J., Allaire, J. J., Xie, Y., & McPherson, J. (2016).

Shiny: Web application framework for R. Retrieved from

https://CRAN.R-project.org/package=shiny

Charbonnier, F., Raux, G., Wang, Q., Drouot, N., Cordier, F., Limacher, J.,

… Frebourg, T. (2000). Detection of exon deletions and duplications of

the mismatch repair genes in hereditary nonpolyposis colorectal can-

cer families using multiplex polymerase Chain Reaction of Short Fluo-

rescent Fragments. Cancer Research, 60, 2760–2763.

https://CRAN.R-project.org/package=shiny


POVYSIL ET AL. 897

de Leeneer, K., Hellemans, J., Steyaert, W., Lefever, S., Vereecke, I.,

Debals, E.,… Claes, K. (2015). Flexible, scalable, and efficient targeted

resequencing on a benchtop sequencer for variant detection in clinical

practice.HumanMutation, 36, 379–387.

Fakhro, K. A., Yousri, N. A., Rodriguez-Flores, J. L., Robay, A., Staudt, M. R.,

Agosto-Perez, F.,…Crystal, R. G. (2015). Copy number variations in the

genome of theQatari population. BMCGenomics, 16, 1–19.

Ganster, C., Wernstedt, A., Kehrer-Sawatzki, H., Messiaen, L., Schmidt, K.,

Rahner, N.,…Wimmer, K. (2010). Functional PMS2 hybrid alleles con-

taining a pseudogene-specific missense variant trace back to a single

ancient intrachromosomal recombination event. Human Mutation, 31,
552–560.

Guo, Y., Sheng, Q., Samuels, D. C., Lehmann, B., Bauer, J. A., Pietenpol, J., &

Shyr, Y. (2013).Comparative studyof exomecopynumbervariationesti-

mation tools using array comparative genomic hybridization as control.

BioMed Research International, 2013.

Johansson, L. F., van Dijk, F., de Boer, E. N., van Dijk-Bos, K. K., Jongbloed, J.

D. H., van der Hout, A. H.,… Sikkema-Raddatz, B. (2016). CoNVaDING:

Single exon variation detection in targeted NGS data. Human Mutation,
37, 457–464.

Klambauer, G., Schwarzbauer, K., Mayr, A., Clevert, D., Mitterecker, A.,

Bodenhofer, U., & Hochreiter, S. (2012). cn.MOPS: Mixture of Poissons

for discovering copy number variations in next-generation sequenc-

ing data with a low false discovery rate. Nucleic Acids Research, 40,
e69.

Komura, D., Shen, F., Ishikawa, S., Fitch, K. R., Chen, W., Zhang, J., …
Aburatani, H. (2006). Genome-wide detection of human copy num-

ber variations using high-density DNA oligonucleotide arrays. Genome
Research, 16, 1575–1584.

Li, H., & Durbin, R. (2009). Fast and accurate short read alignment with

Burrows–Wheeler transform. Bioinformatics, 25, 1754–1760.

Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., …1000

Genome Project Data Processing Subgroup. (2009). The Sequence

Alignment/Map format and SAMtools. Bioinformatics, 25, 2078–2079.

Lin, X., Tang,W., Ahmad, S., Lu, J., Colby, C. C., Zhu, J., & Yu, Q. (2012). Appli-

cations of targeted gene capture and next-generation sequencing tech-

nologies in studies of human deafness and other genetic disabilities.

Hearing Research, 288, 67–76.

Lin, Y., Tseng, J. T., Jeng, S., & Sun, H. S. (2014). Comprehensive analy-

sis of common coding sequence variants in Taiwanese Han population.

Biomarkers and GenomicMedicine, 6, 133–143.
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