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Background: The frequent emergence of drug resistance to chemotherapy is a

major obstacle for the treatment of ovarian cancer. There is a need for novel

drugs to fulfill this challenge. Pyroptosis-inducing drugs can inhibit tumor

growth. However, their roles in ovarian cancer have not been demonstrated.

Methods:We tested the effectiveness of a novel drug, BI 2536, which we found

in colorectal cancer. Cell proliferation, cell cycle, and drug-induced apoptosis

and pyroptosis were tested. In vivo treatments were performed using a cell-

derived xenograft model.

Results: BI 2536 significantly inhibited the proliferation of ovarian cancer cells

and induced cell cycle arrest at the G2/M phases. After BI 2536 treatment, DNA

fragmentation and PS exposure on the outside of apoptotic cells were

detected. Moreover, the pyroptotic phenotype of ovarian cancer cells along

with the release of LDH and HMGB1 were observed, indicating the leakage of

cells. Western blot analysis verified that BI 2536 induced GSDME-mediated

pyroptosis. Pyroptosis was abolished after additional treatment with Z-DEVD-

FMK, a caspase-3 inhibitor. Thus, BI 2536 induced pyroptosis in ovarian cancer

through the caspase-3/GSDME pathway. In vivo experiments further

demonstrated the antitumoral effect and ability of BI 2536 to accumulate

CD8+ T cells in ovarian cancer.

Conclusion: In this study, we identified BI 2536 as an effective anti-ovarian

cancer drug that inhibits proliferation, arrests the cell cycle, induces apoptosis

and pyroptosis, and leads to the accumulation of CD8+ T cells in tumor sites.

Drug-induced pyroptosis may have promising prospects for reducing side

effects and activating immune responses.
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Introduction

The mortality-to-incidence ratio in ovarian cancer is

over 0.6, and studies estimated that 1 in 6 women die

within the first three months of diagnosis (1). The

potentially high morbidity and mortality are partially

due to late-stage diagnoses and resistance to previous

treatments (2). Cytoreductive surgery and platinum-based

chemotherapy remain the main therapies. Although research

regarding the treatment of ovarian cancer has progressed

rapidly, the majority of women presenting with advanced

stages seldom benefit from these treatments. Therefore,

finding effective therapeutic agents to inhibit the occurrence

of drug resistance is important to prolong the survival rate

of patients.

The evasion of tumor cell death, especially apoptosis,

accounts for metastasis, occurrence, and chemotherapy

resistance (3, 4). Thus, current studies have put effort into

inducing nonapoptotic cell death, which is shown to be an

effective approach to improving therapeutic efficacies.

Nonapoptotic cell death modes mainly include autophagy,

pyroptosis, ferroptosis, and necroptosis. Pyroptosis is

ascribed to the proteolytic fragmentation of gasdermin D

(GSDMD) by caspase-1/4/5 (5, 6) and is verified to function

through caspase-3 cleavage of gasdermin E (GSMDE) (7, 8).

Pyroptotic cells undergo plasma membrane leakage after

swelling, and many bubble-like protrusions appear on the

surface of the cel lular membrane (9) . They al low

immunogenic components, including damage-associated

molecular patterns (DAMPs), such as high mobility group

proteins B1 (HMGB1) and inflammatory cytokines (i.e.,

interleukin [IL]-1b), to be released into the tumor

microenvironment (10). Recently, the role of pyroptosis-

inducing drugs in cancer treatments has attracted increasing

attention. Zhou B et al. (11) demonstrated that iron-activated

ROS induce pyroptosis via a Tom20/Bax/caspase/GSDME

pathway, which plays a role in melanoma therapy. Yu J et al.

(12) reported that lobaplatin-induced GSDME-mediated

pyroptosis downstream of the ROS/JNK/Bax pathway

and caspase-3/-9 activation inhibits the growth of colorectal

cancer cells. Since drug-induced pyroptosis has not

been reported in ovarian cancer, effective drugs able to

trigger pyroptosis could provide an option for ovarian

cancer treatment.

Previously, we found a novel small molecule inhibitor, BI

2536, which can induce GSDME-mediated pyroptosis in

colorectal cancer (13). Since there are few studies on the role

of pyroptosis in ovarian cancer, we wondered whether BI 2536

could have a similar antitumor effect in ovarian cancer. In this

study, the antiproliferative and cell cycle arrest roles of BI 2536

were verified in ovarian cancer. We examined the mechanism

of regulated cell death and surprisingly found that BI 2536 can
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trigger GSDME-dependent pyroptosis, concurrent with

caspase-3-mediated apoptosis. In vivo experiments further

confirmed the therapeutic function of BI 2536 in ovarian

cancer mouse models. Moreover, BI 2536 increased CD8+ T

cell infiltration in tumor sites. As a result, our study found a

promising agent for ovarian cancer and illustrated that it can

induce pyroptosis through the caspase-3/GSDME pathway,

which may have reasonable prospects in overcoming the

drug resistance of ovarian cancer and improving the

outcomes of these patients.
Materials and methods

Cell culture and reagents

Human ovarian cell line A2780 cell was purchased from the

American Type Culture Collection (ATCC, USA). It was

cultured in RPMI 1640 medium supplemented with 10% FBS

and 1% penicillin/streptomycin in a humidified incubator at 37°

C in 5% CO2. Small-molecule inhibitor, BI 2536, was purchased

from TargetMol (China), dissolved in DMSO at a storage

concentration of 10mM.
Cell viability assay

Cell survival rates were estimated by the Cell Counting Kit

(CCK)-8 assay (Beyotime Biotec). Approximately 8,000 cells

were seeded in 96-well plates with 100 ml of medium in each well.

After 24 hours, drugs were added for another three-day

treatment. Each well was incubated with 10 ml CCK-8 solution

for two hours at 37 °C in the dark, and the absorbance at 450 nm

was measured by a microplate spectrophotometer (Tecan).
Colony formation assay

Ovarian cancer cells were seeded in a 12-well plate at

concentration of 500 cells/well before treated with indicated

drugs (DMSO, 0.1 mM, 0.5 mM, 1.0 mM, 2.0 mM BI 2536). After

visible cloning appeared, the cell medium was discarded, and the

colonies were fixed with 4% formaldehyde for 30 min and later

stained with crystal violet solution for 10 min. The stained

colonies were photographed after PBS washing.
Cell cycle assessment

Cells were seeded in a 12-well plate and treated with

indicated drugs (DMSO, 0.1 mM, 0.5 mM, 1.0 mM, 2.0 mM BI

2536) for three days. Then cells were washed with PBS,
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harvested, and fixed with anhydrous ethanol overnight. After

washed with PBS, PI/RNase staining (550825, BD Biosciences)

was added to suspend cells and incubate for 30 minutes in dark.

The cell cycle distribution was determined by flow cytometry

(BD Biosciences).
EdU proliferation assay

Cells were seeded in a 12-well plate. After the treatment with

indicated drugs (DMSO, 0.5 mM BI 2536) for three days, EdU

(Beyotime Biotec) was added at a working concentration of

10mM for 2 hours. The cells were washed with PBS, fixed with

4% formaldehyde for 30 min, permeabilized with 0.25% Triton

X-100 (Sigma), and incubated with Click Additive Solution

(Beyotime Biotec) according to the manufacturer ’s

instructions, following by staining with Hoechst (Beyotime

Biotec). After the staining, the cells were observed using a

fluorescent microscope (Olympus).
Apoptosis assay

After treatment with drugs (0.1 mM, 0.5 mM, 1.0 mM, 2.0 mM
BI 2536) or the DMSO control for three days, the cells were

stained with Annexin-V-APC (550474, BD Biosciences) and

propidium iodide (PI; 556463, BD Biosciences) according to the

manufacturer’s protocol and assessed with a flow cytometer (BD

Biosciences). Annexin-V+ PI- cells were classified as early

apoptotic cells, and Annexin-V+ PI+ cells were classified as late

apoptotic cells.
TdT-mediated dUTP Nick-End Labeling
(TUNEL) assay

The DMSO- and 0.5 mM BI 2536-treated cells were

labelled with FITC using the One Step TUNEL Apoptosis

Assay Kit (Meilunbio) according to the manufacturer’s

recommendations. The nucleus was stained with 4′,6-
diamidino-2-phenylindole (DAPI; Beyotime Biotec).

Immunofluorescent staining was observed using a fluorescent

microscope (Olympus).
Western blot analysis

Cells were lysed in RIPA buffer (Solarbio) containing

phenylmethylsulfonyl fluoride (PMSF; Sigma-Aldrich)

protease inhibitor, and the protein concentration was

measured with the Pierce™ BCA Protein Assay Kit

(ThermoFisher Scientific). Protein extracts (20 mg) were

subjected to sodium dodecyl sulfate polyacrylamide gel
Frontiers in Oncology 03
electrophoresis (SDS-PAGE), then transferred onto

polyvinyl difluoride (PVDF) membranes (Millipore) and

blocked with 5% BSA for one hour at room temperature.

The membranes were incubated with primary antibodies

target ing Bcl-2 (60178-1-Ig , Prote intech) , cIAP-1

(ab108361, Abcam), GSDME (A7432, ABclonal), caspase-3

(ab32351, Abcam; 1:1000 dilution) and GAPDH (60004-1-Ig,

Proteintech, 1:5000 dilution) at 4 °C overnight. After washing

three times with Tris Buffered Saline with Tween (TBST)

buffer, the membranes were incubated with horseradish

peroxidase-conjugated secondary antibodies at room

temperature for one hour. Western horseradish peroxidase

(HRP) Substrate (Millipore) was added to visualize

protein bands.
LDH and HMGB1 release assay

The cells were pretreated with the respective drugs (DMSO,

0.1 mM, 0.5 mM, 1.0 mM, 2.0 mM BI 2536) for three days. The

LDH release was measured with the LDH Release Assay Kit

(Beyotime Biotec) according to the manufacturer’s instructions.

In brief, 120 ml of supernatant was transferred to a 96-well plate,

and the response mixture was added and incubated in the dark

for 30 minutes at room temperature. The absorbance value at

490 nm was then measured, referenced by 1000 nm. HMGB1

levels in the supernatant medium of the cells were determined by

an enzyme linked immunosorbent assay (ELISA) according to

the manufacturer’s instructions. HMGB1 (Human) Matched

Antibody Pair was purchased from Abnova (H00003146-

AP41, Taiwan, China) and the human HMGB1 ELISA kit was

purchased from Senxiong BioTech (SX01187, Shanghai, China).
Cell-derived xenograft model

All animal studies were approved by the Biomedical Ethics

Committee of Ruijin Hospital. Tumor cells (3×106) in the

logarithmic growth phase were subcutaneously injected into

the flanks of 4-week-old male BALB/c nude mice. One week

after injection, the mice were randomly divided into two groups

of three, and respectively treated with a vehicle control and BI

2536 (10 mg/kg) via intraperitoneal injection. When four doses

of drugs were injected or the diameter of tumors reached twenty

millimeters, mice were sacrificed. Tumor volumes were

calculated as length × width2 × 0.5.
Hematoxylin-eosin (H&E) and
immunohistochemistry (IHC) staining

For H&E staining, tissue samples were fixed in 4%

paraformaldehyde, washed with PBS and transferred to 70%
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ethanol. The samples were then embedded in paraffin,

sectioned and stained with H&E. For IHC staining,

paraffin-embedded tissues were deparaffinized in xylene,

passed through graded alcohols and the antigen was

retrieved with citrate buffer in a steam pressure cooker. The

samples were then incubated with anti-Ki67 (ab15580,

Abcam) or anti-CD8 (ab217344, Abcam), washed in PBS,

and incubated with horseradish peroxidase-conjugated

secondary antibody. Slides were counterstained with

hematoxylin, dehydrated in graded alcohol and xylene, and

coverslipped with mounting solution. The number of positive

cells were counted in each high-power field (HPF) by two

independent pathologists.
Statistical analysis

Statistical analysis was performed with GraphPad Prism 7.0

(GraphPad Software). The statistical significance between two

groups was analyzed by the Student’s t test. All tests were two-

tailed, and P-values < 0.05 were considered significant (* P < 0.05,
Frontiers in Oncology 04
** P < 0.01, and *** P < 0.001). Relative protein expression was

analyzed by ImageJ software.
Results

BI 2536 inhibits ovarian cancer cells
growth in vitro

We first evaluated the dose-response relationship of BI 2536

in an ovarian cancer cell line A2780. BI 2536 significantly

inhibited the viability of A2780 with an IC50 of 0.439mM
(Figure 1A). In colony formation assay, the number of

colonies reduced after the treatment with BI 2536 (Figure 1B),

revealing that BI 2536 inhibited cell proliferation in a dose

dependent manner. Cell cycle assessment indicated that A2780

treated with BI 2536 underwent an increased proportion of G2/

M phases and a reduced proportion of G0/G1 phases

(Figures 1C, D). The EdU proliferation assay showed that,

when treated with 0.5mM BI 2536, ovarian cancer cells at

proliferation phases were decreased (Figure 1E). Taken

together, these results emphasized that BI 2536 inhibited the
B

C

D E

A

FIGURE 1

BI 2536 inhibits ovarian cancer cells growth in vitro (A) Half-maximal inhibitory concentration curves of BI 2536 evaluated by CCK-8 assay. (B)
Colony formation assay of A2780 treated with the indicated concentration of BI 2536. (C, D) Flow cytometry analysis of the proportion of
different cell cycle phases in treated A2780 cells. (E) Representative images showing fluorescence staining of BI 2536-treated cells using EdU
proliferation assay. **P < 0.01, and ***P < 0.001.
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proliferation of ovarian cancer cells and induced cell cycle arrest

at the G2/M phases.
BI 2536 induces apoptosis of ovarian
cancer cells

Since hypodiploid peak appeared before G0/G1 peak in the

cell cycle analysis (Figure 1C), which is a sign of early

apoptosis of cells, we then investigated the role of BI 2536 in

apoptosis. Flow cytometric analysis revealed that the

percentage of Annexin V positive and/or PI positive A2780

cells increased significantly after treated with BI 2536

(Figures 2A, B). DNA fragmentation stained using the

TUNEL assay confirmed apoptosis induction of BI 2536

(Figure 2C). We then examined the apoptosis-related

protein level alteration by the western blot assay. The

expressions of Bcl-2 and cIAP-1 were significantly

downregulated after A2780 cells were treated with BI 2536
Frontiers in Oncology 05
(Figure 2D). These data suggested that BI 2536 induced

apoptosis of ovarian cancer cells.
BI 2536 induces GSDME-dependent
pyroptosis of ovarian cancer cells

We previously found BI 2536 induced concurrent apoptosis

and pyroptosis in colorectal cancer cells (13). Here, we observed

the morphology of BI 2536-treated A2780 cells. These cells were

swelling and exhibited large bubbles of the plasma membrane

(Figure 3A). The level of LDH release was elevated in a dose

dependent manner (Figure 3B). Moreover, the release level of

HMGB1, one of the DAMPs, was increased simultaneously

(Figure 3C), indicating cell membrane rupture and leakage.

Cells undergoing necroptosis have a similar swelling

phenotype and change in membrane permeability (14). To

distinguish the pathway by which BI 2536 induced cell death,

we examined the protein level alteration by the western blot
B C

D

A

FIGURE 2

BI 2536 induces apoptosis of ovarian cancer cells (A, B) Flow cytometry analysis of Annexin V-APC and PI staining of apoptotic cells. (C) TUNEL
assay of A2780 cells treated with BI 2536 or DMSO. (D) Immunoblotting analysis of the indicated proteins extracted from BI 2536-treated A2780
cells. Scale bar = 200mm. ***P < 0.001.
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assay. Cleavage of caspase-3 was observed. Meanwhile, GSDME

was cleaved to generate N-terminal fragments (a marker of

pyroptosis, Figures 3D, E). In summary, these results indicated

that BI 2536-induced apoptosis cooccurred with GSDME-

mediated pyroptosis.
Caspase-3 inhibition eliminates BI 2536-
induced pyroptosis of ovarian
cancer cells

Since GSDME-mediated pyroptosis has emerged as a new

cancer treatment strategy (15–17), we focused on the mechanism

of BI 2536-induced pyroptosis. BI 2536 was shown to induce

pyroptosis triggered by GSDME cleavage (Figure 3D). As caspase-3

was cleaved concurrently, we speculated that GSDME-mediated

pyroptosis was dependent on caspase-3 as previously reported (8).

To verify the function of caspase-3 in pyroptosis, we employed

caspase-3 inhibitor, Z-DEVD-FMK (DEVD), to restrain the

cleavage of caspase-3. We found that BI 2536-induced cell

swelling was abolished by DEVD (Figure 4A). The release of

LDH and HMGB1 was remarkably reduced in presence

of DEVD (Figures 4B, C). In the molecular level, the inhibition

of caspase-3 suppressed BI 2536-induced generation of N-terminal

fragments of GSDME (Figures 4D, E), indicating that pyroptosis

was secondary to apoptosis. In summary, these results indicated

that GSDME-mediated pyroptosis triggered by BI 2536 was due to

the activation of caspase-3.
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BI 2536 inhibits ovarian cancer cells
growth and accumulate CD8+ T cells
in vivo

We validated the drug response in vivo using a subcutaneous

tumor model. One-week post-injection, mice were treated with

DMSO and BI 2536 via intraperitoneal injection every other day

four times. After the treatment, the growth rates of the tumors

were robustly inhibited compared with the vehicle control values

(Figures 5A, B). IHC staining of Ki67 revealed that cell

proliferation was significantly reduced when treated with BI

2536 (Figures 5C, D). Moreover, more CD8+ cells were observed

in BI 2536-treated tumors (Figures 5C, D). Hence, we concluded

that BI 2536 inhibited ovarian cancer cells growth in vivo.
Discussion

Although tumors can be alleviated to an undetectable level

using current chemotherapy, they often recur at primary or

distant sites if residual cancer cells are present after initial

therapy (18–20). Lack of effective treatment is one of the

major causes of death from ovarian cancer among women

with malignant gynecological tumors (21). Cancer treatments

based on molecular targeted therapy are promising for

improving therapeutic efficacy by inhibiting uncontrolled

cancer cell proliferation and inducing apoptosis.
B C

D

E

A

FIGURE 3

BI 2536 induces GSDME-dependent pyroptosis of ovarian cancer cells (A) Representative images of A2780 cells treated with DMSO and BI 2536
for 72 hours. Pyroptotic cell morphology is pinpointed by arrows. (B) LDH and (C) HMGB1 release from A2780 cells treated with BI 2536. Each
column represents the mean value of three biological replicates, and error bars indicate SD. (D, E) Immunoblotting analysis of the indicated
proteins extracted from BI 2536-treated cells. Scale bar = 200mm. ***P < 0.001.
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In this research, we found that a small molecule drug, BI

2536, has great efficacy in inhibiting ovarian cancer growth and

proliferation. In particular, BI 2536 induced concurrent

apoptosis (Figure 2) and pyroptosis (Figure 3) in ovarian

cancer cells. Pyroptosis, as a form of immunogenic cell

death, is a potential tumor treatment strategy (8, 9, 16, 22, 23).

Several promising small molecules and nanomaterials have

been reported in different cancers, such as non-small cell lung

carcinoma (24–26), colorectal cancer (12, 27–29), hepatocellular

carcinoma (30–32), breast cancer (33–36), melanoma (11, 16,

34), and glioblastoma (37–40). However, there have been only

two studies on pyroptosis-induced therapy in ovarian cancer.

Zhang R et al. (41) reported that nobiletin, a food-derived

phytochemical extracted from citrus fruits, contributed to

GSDMD- or GSDME-mediated pyroptosis. Liang J et al. (42)

demonstrated that osthole triggers GSDME-dependent

pyroptosis in ovarian cancer cells. However, they did not

verify the mechanism of pyroptosis clearly.

BI 2536, a Plk1 enzyme inhibitor, was suggested to induce

mitotic arrest and a subsequent surge in apoptosis (43) and

suppress the expression of epithelial-mesenchymal transition

markers and 3D spheroid formation in breast cancer (44). The

Plk1 kinase inhibitor BI 2536 was previously confirmed to induce

pyroptosis in the caspase-3/GSDME pathway in esophageal

squamous cell carcinoma (45). However, no current research has

shown the pyroptosis-induced role of BI 2536 in ovarian cancer.
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Our results demonstrated that BI 2536 can induce GSDME-

dependent pyroptosis concurrent with caspase-3-mediated

apoptosis. Moreover, the cleavage of GSDME is dependent on

the activation of caspase-3 (Figure 4). When cells were treated with

both BI 2536 and caspase-3 inhibitor, the HMGB1 release and the

expression of GSDME-NT and cleaved caspase-3 were higher than

those of cells only treated with DMSO (Figures 4C, E). Therefore,

proteins other than caspase-3 might also promote the cleavage of

the linker region between the C and N terminals of GSDME. We

speculated that the terminal form of cell death after caspase-3

activation may be determined by the drug efficacy and GSDME

level, and emphasized that different types of cell death operating

synergistically, not mutually exclusively, could contribute to the

improvement of the toxic effects of treatment. The safety and

effectiveness of the drug were tested in vivo (Figure 5). Combined

therapy with traditional chemotherapy may be expected to have a

synergistic effect to improve the prognosis of patients.

GSDME-mediated pyroptosis induced by BI 2536 was shown

to be antitumorigenic in ovarian cancer. BI 2536 also showed

its role in the accumulation of CD8+ T cells in tumor sites

(Figure 5). BI 2536-induced immune cell accumulation may have

great translational prospects in improving the effect of

immunotherapy. However, one recent study showed that

GSDME expression at the mRNA level is decreased in ovarian

tumors compared to healthy tumors (46). Thus, ovarian cancer

cells may evade GSMDE-mediated pyroptotic cell death. Further
B C D E

A

FIGURE 4

Caspase-3 inhibition eliminates BI 2536-induced pyroptosis of ovarian cancer cells (A) Bright-field microscopy images of BI 2536-treated A2780 cells.
Altered morphology was shown when treated with caspase-3 inhibitor Z-DEVD-FMK. (B) LDH and (C) HMGB1 release from A2780 cells treated with BI
2536. Each column represents the mean value of three biological replicates, and error bars indicate SD. The level of LDH and HMGB1 was lowered
when adding DEVD. (D, E) Immunoblotting analysis of the indicated proteins extracted from BI 2536-treated cells. BI 2536-induced cleavages of
GSDME and caspase-3 were inhibited by DEVD. Scale bar = 200mm. ***P < 0.001.
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research can be performed to identify a method to upregulate the

expression of GSDME and improve the antitumorigenic function

of BI 2536. Peng Z et al. (24) reported that chemokines, such as

MIP-1a, MIP-1b, MIP-2, and IP-10, were increasingly released in

tumor tissue after drug treatment and have been shown to play an

important role in T cell recruitment. The mechanism of pyroptosis

in the accumulation of immune cells needs further research.

In conclusion, the small molecule drug BI 2536 was verified

to inhibit the proliferation of ovarian cancer cells and induce

concurrent apoptosis and pyroptosis through the caspase-3/

GSDME pathway, and it showed both in vitro and in vivo

antitumoral activity and the ability to accumulate CD8+ T cells

in tumor sites. BI 2536-induced pyroptosis might have great

potential for improving the outcomes of immunotherapy.
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