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Abstract 

Therapeutic antibodies are one most significant advances in immunotherapy, the development of 
antibodies against disease-associated MHC-peptide complexes led to the introduction of TCR-like 
antibodies. TCR-like antibodies combine the recognition of intracellular proteins with the 
therapeutic potency and versatility of monoclonal antibodies (mAb), offering an unparalleled 
opportunity to expand the repertoire of therapeutic antibodies available to treat diseases like 
cancer. This review details the current state of TCR-like antibodies and describes their production, 
mechanisms as well as their applications. In addition, it presents an insight on the challenges that they 
must overcome in order to become commercially and clinically validated. 
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Introduction 
Cancer has caused tens of millions of deaths 

globally, making it the second leading cause of human 
deaths [1-3]. In the ongoing war against cancer, 
immuno-oncology (I-O), a product of the many 
breakthroughs and discoveries in immunology and 
cancer therapy, has raised our hopes of improving 
cancer survival [4]. In addition, I-O and its 
advancements were named the 2013’s scientific 
breakthrough of the year by “science” [5]. During the 
last few years, I-O based monoclonal antibody 
therapies have progressed at a rapid pace, the Food 
and Drug Administration (FDA) has approved over 
50 monoclonal antibodies targeting PD-1, CTLA-4, 
CD30, CD20 and so on, which gave rise to now 
commercially and clinically available drugs such as 
Rituximab and Trastuzumab [6-8]. The biological and 
pharmacological properties of monoclonal antibodies 
make them attractive to the researchers [9]. 

Regardless of the approach, the target antigens 
are mostly extracellular proteins [10, 11]. This is partly 
due to the antibodies’ high molecular weight that 
prevents them from crossing the cellular membrane 
and thus target intracellular antigens. Given that 
majority of the tumor-associated antigen (TAA) 
proteins produced by a cancer cell are produced 
intracellularly, the number of externally expressed 
tumor antigens is limited. What’ s more, majority of 
the proteins identified as specific tumor markers are 
intracellularly localized such as the case of WT1, 
which is regarded as the most promising among the 
75 representative target antigens [12, 13]. Altogether, 
intracellular proteins may provide an untapped 
reservoir of potential therapeutic targets.  

Many efforts have been made to target 
intracellular antigens; these strategies can be divided 
into two broad approaches. The first approach is to 
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target the antigens that are normally intracellular but 
become externalized in exceptional situations, as in 
the case of heat-shock protein 70, heat-shock protein 
90, phosphatase of regenerating liver 3 (PRL-3) and 
gp75 [14-17]. Zeng and colleagues focused on PRL-3, a 
cancer-related phosphatase which is undetectable in 
most normal human tissues but over-expressed in 
85% of gastric cancers, and developed a humanized 
anti-PRL-3 antibody. The second approach is to 
engineer the antibodies or specific fragments to 
penetrate the cells or to express antibodies using a 
gene therapy approach. Some of these approaches 
include the usage of viral vectors, liposomes, 
nanoparticles and the fusion of peptides and 
antibodies [18-22].  

Furthermore, intracellular proteins are degraded 
by the proteasomes to form short peptides of specific 
lengths which are normally 8-10 amino acids long. 
These peptides are then presented on the cell surface 
of the cancer cells in the context of major 
histocompatibility complex class I (MHC-I) molecules, 

forming various MHC-peptide antigens that can be 
recognized by T cells [23-25]. Since the MAGE-1 gene 
was reported to encode a human tumor antigen 
recognized by T cells, molecular identification and 
characterization of novel tumor-associated antigens 
(TAAs) has expanded rapidly [26-31]. To date, there 
are hundreds of identified MHC-peptide antigens, 
which can be used for the development of diagnostic 
methods and targeting therapy for cancer [32-34].  

Antibodies targeting the MHC-peptide 
complexes are known as the T cell receptor mimic 
(TCRm) monoclonal antibodies (mAbs) or T-cell 
receptor (TCR) -like antibodies. TCR-like antibodies 
can combine the recognition of intracellular proteins 
(analogous to that of TCRs but with higher affinity) 
and the therapeutic potency as well as the versatility 
of mAbs [35, 36]. TCR-like antibodies are redefining 
the selection of suitable targets in cancer therapy and 
may open the door to a new realm of antibody 
therapy, with promising clinical benefits (Figure 1).  

 

 
Figure 1. TCR-like antibodies binding to specific MHC-peptide complexes on a cancer cell. Intracellular proteins can be degraded by the proteasome 
and processed into peptides that are then presented on the cell surface in the context of MHC class I molecules. TCR-like antibodies can specifically target cancer cells 
exhibiting specific MHC-peptide complexes on their surface. MHC, major histocompatibility complex; ER, endoplasmic reticulum. 
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Production of TCR-like antibodies 
During the last decades there has been 

significant progress in the development of TCR-like 
antibodies, and several research groups have been 
able to generate TCR-like antibodies directed to a 
growing repertoire of cancer. The traditional 
production manner of TCR-like antibodies is 
hybridoma technology. The first and most important 
step using conventional hybridoma is to obtain 
purified recombinant MHC-peptide complexes that 
are recognized by a T cell [37, 38]. These complexes 
are prepared by the means of bacterial expression 
(usually Escherichia coli.) to generate inclusion bodies 
comprising the extracellular domain of the heavy 
chain of human leukocyte antigen (HLA) and 
β2-microglobulin. Thence, the HLA heavy chain and 
2-microglobulin inclusion bodies are refolded in the 
presence of the desired HLA-restricted peptides in 
vitro [39-41]. The refolding must be processed in the 
right conformation, as demonstrated by structural 
and functional studies, then these complexes can be 
used for downstream applications [42]. 

At first, researchers employing traditional 
hybridoma technology used antigen-presenting cells 
(APCs) presenting strong immunogenic peptides in 
their MHC complex as immunogens but not the 
purified recombinant MHC-peptide complexes [43, 
44]. The peptide-specific, MHC-restricted antibodies 
using the above-mentioned technique are quite rare 
even under optimal conditions; given that one to three 
out of 1000 growth positive clones could produce 
antibodies of the requested specificity [45-50]. 
Although the attempts to improve this technique have 
failed several times, numerous research groups have 
used recombinant MHC-peptide complexes for the 
isolation of TCR-like antibodies and have been 
successful in using conventional hybridoma 
technology [51-55]. 

In the mid-1990s, it was shown that phage 
display technology could also be used to isolate 
antibodies (Figure 2). The pioneering work by 
Andersen and colleagues demonstrated that 
phage-display could be used as a tool to isolate 
antibodies with unique specificity, furthermore, 
subsequent works consecutively proved 
phage-display technology to be a promising way to 
isolate antibodies [56]. The first step of phage-display 
is to generate antibody libraries exposed as fusion 
proteins on the surface of phage particles. These 
libraries are called the naïve libraries, and each phage 
particle in the naïve libraries displays a unique 
antibody. Phage particles carrying specific antibodies 
are purified by repeated rounds of selection, and then 
TCR-like antibodies (scFv/Fab) are isolated from 

large naïve human phage-display libraries [57-60]. 
The phage-based approach can be consistently 
applied to isolate recombinant antibodies with the 
requested specificity, providing new means for 
TCR-like antibodies production. 

The affinity of TCR-like antibodies isolated from 
a naïve phage-display library is not always sufficient 
for therapeutic purposes. Similar to hybridoma 
technology, many efforts have been made to improve 
the affinity of the TCR-like antibodies, 
second-generation libraries generated by different 
affinity-maturation strategies are used for the 
isolation of the TCR-like antibodies. Chames and 
colleagues isolated an 18-fold affinity TCR-like Fab 
(the VH-VL hybrid clone Hyb3) directed to the cancer 
T-cell peptide HLA-A1-MAGE-A1, using Fab G8 as 
the platform for the construction of two randomized 
libraries: L chain shuffling library and H chain 
complementarity determining region 3 mutated 
library [61]. Renner and colleagues have achieved the 
20-fold affinity improvement of a new TCR-like Fab to 
the HLA-A-0201-NY-ESO-1 peptide using a 
second-generation Fab library. This Fab library is 
based on Fab 2M4E5 in which they randomized 
residues at positions that could optimize peptide 
interaction to improve their affinity, without changing 
the key residues responsible for the binding of the 
complex antigen [62]. It was also reported that using 
transgenic mice expressing the desired human MHC 
allele on a murine MHC knocked out background 
would increase the probability of isolating a rare 
TCR-like antibody [63].  

Most of the TCR-like antibodies published works 
have used phage display for antibody production 
[64-68]. The major advantage of the phage display 
approach is the high selection power of the desired 
antigens due that the process is being achieved within 
a relatively short time, conversely the generation of 
TCR-like antibodies using hybridoma technology is 
less efficient and relatively more time consuming [69]. 
TCR-like antibodies isolated using hybridoma 
technology were reported to have higher binding 
affinity compared to the moderate average affinity of 
TCR-like antibodies isolated from the naïve phage 
display libraries [70, 71]. Therefore, using hybridoma 
technology could have a tendency for isolating 
antibodies with high-affinity binding to the 
MHC-peptide complexes. The antibodies produced 
by hybridoma technology are bivalent IgG isotype 
antibodies while antibodies produced by phage 
display are either scFv or Fab fragments. IgG 
antibodies are more stable and have a superior 
affinity due that antibodies undergo multiple antigen 
challenges and affinity maturation in vivo. Antibodies 
in the monovalent form have reduced avidity 
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(functional affinity) and increased turnover rates, 
which are undesirable when targeting peptides on 
tumor-associated MHC-peptide complexes. Although 
monovalent forms are useful reagents for a variety of 

TCR-like applications, their reduced binding strength 
is a great limitation. To overcome this limitation, it is 
reported that Fab or scFv-tetramers or transformer of 
IgG isotype can improve the binding avidity [72-75]. 

 

 
Figure 2. Generation of antibody libraries and selection of the TCR-like antibodies. (A) Diverse repertoires can be obtained from the rearranged V-gene 
segments which are derived either from naïve or activated B cells subsequent to immunization or infection or human V-gene segments rearranged in vitro (synthetic 
repertoires). The assembled scFv/Fab repertoires are then cloned into a phagemid vector in order to be expressed on the surface of the phage as single-chain scFv 
or Fab antibody libraries and then the phage library is incubated with the desired target cells. (B) After incubation, there are two types of the phages. The unbound 
phages are removed through washing and the bound phages are eluted and propagated in E. coli. The bound phages are then used for further rounds of selection to 
get the specific binders. Fab, fragment antigen binding; scFv, single-chain variable fragment. 
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Production techniques for TCR-like antibodies 
are not shared, and most phage display libraries are 
proprietary. Tao Dao and colleagues have discovered 
a fully human “T cell receptor-like” monoclonal 
antibody (mAb) ESK1, specific for the WT1 RMF 
peptide/HLA-A0201 complex. The antibody ESK1, 
developed in collaboration with Memorial Sloan 
Kettering Cancer Center (MSKCC) and Eureka 

Therapeutics, is now patented. Eureka Therapeutics, a 
pioneer in the development of TCR-like antibodies; 
currently works with different companies to develop 
TCR-like antibodies against different intracellular 
proteins. Bringing the developed TCR-like antibodies 
into clinical trials as soon as possible is one of the most 
notable challenges faced by all researchers in this area. 

TCR-like antibodies to date 
Over the past 20 years, there has been an increase 

in the production of TCR-like antibodies. Initially 
most of the target peptides of these antibodies were 
derived from viruses; however, with the introductions 
of TCR-like antibodies, new key targets for the 
treatment of cancer have been discovered [76-83]. 
Having two different production strategies, TCR-like 
antibodies can be bivalent IgG isotype antibodies 
produced through hybridoma technology or the scFv 
or Fab fragments produced through phage display. 
Regarding IgG isotype antibodies, most of them were 
produced by four laboratories. Weidanz’s research 
laboratory engineered RL4B/3.2G1 targeting 
HLA-A2-restricted GVL peptide derived from the 
parent protein hCGβ, 1B8 targeting HLA-A2- 
restricted KIF peptide derived from parent protein 
Her2/neu in 2006, 1B10/3F9 targeting HLA-A2- 
restricted GVL peptide/TMT peptide derived from 
parent protein hCGβ in 2008, RL6A targeting HLA- 
A2-restricted YLL peptide derived from parent 
protein p68 in 2010, and RL21A targeting 
HLA-A2-restricted MIF19-27 peptide in 2011 [84-88]. 
Banham’s research laboratory engineered T1-29D/T1- 
84C/T1-116C targeting HLA-A2-restricted RMP 
peptide derived from parent protein p53, and 
T2-108A/T2-2A/T2-116A targeting HLA-A2- 
restricted GLA peptide derived from parent protein 
p53 in 2017 [89, 90]. Molldrem’s research laboratory 
engineered a TCR-like antibody 8F4 targeting 
HLA-A2-restricted VLQ peptide derived from parent 
protein Proteinase3 in 2011 [91, 92]. Scheinberg’s 
research laboratory engineered the antibody ESK1 
targeting HLA-A2-restricted RMF peptide derived 
from parent protein WT1 in 2013, and its Fc enhanced 
form ESKM in 2014 [93, 94]. 

The scFv or Fab fragments produced through 
phage display are not complete IgG isotype 
antibodies and they cannot recruit components of the 
immune system for cytotoxic effects through 
antibody-dependent cell-mediated cytotoxicity 
(ADCC) and complement dependent cytotoxicity 
(CDC). Literatures regarding TCR-like antibodies like 
scFv or Fab fragments published to date can be 
divided in three groups. 

 The first group focuses on the selection and 

characterization of the Fab/scFv fragments, 
researchers used naked TCR-like antibodies to target 
cells. Patrick Chames and colleagues engineered a 
fully human Fab fragment Fab-G8 directed against the 
HLA-A1-MAGE-A1 complex by selection from a large 
naïve phage-antibody library in 2000, posteriorly they 
enhanced TCR-like antibody Fab-Hyb3 by selection 
from a second-generation library in 2002 [61, 95]. Galit 
Denkberg and collaborators engineered Fab 
fragments like 1A7 from a large nonimmune 
repertoire of phage Fab Abs in 2002 [96]. Avital Lev 
and collaborators finished the isolation of some 
human antibodies with antigen-specificity, MHC- 
restricted specificity of T cells binding with HLA-A2 
complexes which display the specific hTERT-derived 
peptide [97]. Christoph Renner’s laboratory described 
the selection and characterization of Fab fragments 
recognizing the NY-ESO-1157-165 peptide in the 
HLA-A*0201 context [98]. Renner’s laboratory also 
selected Fab antibodies binding to the HLA-A2- 
restricted EAA or ELA peptide derived from the 
parent protein Melan-A [99]. 

Similarly, articles from the second group 
describe the selection and characterization of the 
Fab/scFv fragments, however in this case researchers 
modified the structure of the TCR-like antibodies. 
Galit Denkberg and colleagues reported for the first 
time the fusion of the TCR-like antibody gene to a 
truncated form of Pseudomonas exotoxin A to form a 
recombinant immunotoxin [63, 100]. Cyril J. Cohen 
and colleagues reported the production of fluorescent 
tetramerized Fabs to directly visualize and quantitate 
the specific HLA-A2/MUC1-D6 peptide on the 
surface of tumor cells [101]. David A. Scheinberg’s 
laboratory selected a ScFv fragment that is specific for 
the WT1 RMF peptide/HLA-A*0201 complex found 
on many human cancers, they also engineered the 
scFv fragment to a full length human monoclonal 
antibody to target cancer cells [93]. The three before 
mentioned reports are the main representatives of this 
type of literatures and there are also some papers 
reporting similar work [102-104]. 

The third group describes the selection and 
characterization of Fab/scFv fragments, in this 
articles researchers describe the development of 
TCR-like antibodies into a CAR based approach on 
the TCR-like antibody of a high-affinity antibody that 
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recognizes the complex antigen composed of the 
MHC molecule and a peptide derived from the 
antigen protein. David A. Scheinberg’s laboratory 
selected a scFv fragment that is specific for the WT1 
RMF peptide/HLA-A*0201 complex and then created 
a TCRm CAR against WT1 utilizing the previously 
described scFv which demonstrated effective in 
vitro/vivo efficacy [105]. WT1 is over-expressed in 
numerous hematological malignancies like acute 
myeloid leukemia (AML), as well as in many solid 
malignancies such as ovarian cancer, thus the created 
WT1 TCRm CAR T-cell approach allows for the 
application of a single CAR to a wider array of 
malignancies [106-108]. Hong Liu and colleagues 
developed ET1402L1, a fully human antibody that 
selectively binds to AFP158-166 (AFP158) peptide 
presented by HLA-A*0201, then engineered this 
antibody into a second generation CAR, 
demonstrating that CAR-T cell immunotherapy 
targeting intracellular/secreted solid tumor antigens 
like AFP can elicit potent anti-tumor responses 
[109-112]. Similar works targeting different peptides 
presented by HLA-A molecules have been reported 
[113-118].  

Mechanisms of the TCR-like antibody function 
Similar to monoclonal antibodies that target 

specific tumor antigens, naked TCR-like antibodies 
can also be used to mediate ADCC and CDC, which 
are also called the Fc-dependent mechanisms of mAb. 
RL4B and other naked TCR-like antibodies have been 
shown to induce CDC mechanisms in vitro, which are 
induced by the binding of the complement proteins to 
the Fc region of therapeutic TCR-like antibodies, 
however most of the naked TCR-like antibodies have 
been proved to induce ADCC mechanisms in vitro 
[119-122]. The exact mechanism of ADCC varies 
depending on the type of immune effector cells that 
are activated. Activated NK cells secrete perforin and 
granzyme B, which are taken up by the target cells 
and result in their lysis, while monocytes and 
macrophages are capable of secreting cytotoxic factors 
like TNF and reactive oxygen intermediates [123-125]. 

 Naked TCR-like antibodies like RL4B can also to 
deliver a direct apoptotic signal to cancer cells in a 
mechanism involving JNK activation and the 
caspase-dependent pathway, directly killing the 
target cells [126]. Similar to the Fc-independent killing 
mechanism, immunoconjugates such as immuno-
toxins and immuno-drugs are able to directly kill the 
target cells. The targeting moiety of the 
immunoconjugates can be a Fab or a scFv fragment 
composed of the variable domains VH and VL which 
are covalently linked through a peptide linker 
[127-132]. Immunotoxins or immuno-drugs’ 

mechanisms of action allows them to directly kill 
cancer cells, conferring them a clinical benefit in the 
treatment of patients who may not respond to agents 
that require a fully functioning immune system.  

In adoptive T-cell transfer therapeutic 
approaches like CAR-T cell therapy, autologous T 
cells are isolated, expanded and engineered in vitro 
and re-infused to patients [133-135]. TCR-like 
antibodies are responsible for recognition, while 
cytotoxic T-cell signaling moiety FcεRIγ chain is 
responsible for the initiation of tumor-specific killing 
activities and cytokines release [136, 137]. The 
engineered T cells were found to specifically bind 
MHC-peptide complexes on target cells, leading to 
the production of cytokines and induction of cytolysis 
(Figure 3).  

The applications of TCR-like antibodies 
TCR-like antibodies can be used to directly 

visualize the presence of MHC-peptide complexes by 
standard methods such as flow cytometry [138-140]. 
Since TCR-like antibodies can provide novel data 
regarding antigen presentation in various cells, 
TCR-like antibodies can be used to analyze 
immunotherapy-based approaches by determining 
the alterations in MHC-peptide complexes expression 
on cells before, during and after the therapies, this 
could also provide new powerful means to study the 
structure-function relationships in the MHC-peptide 
context [141-149]. Since the density of a particular 
MHC-peptide complex on tumor cells is expected to 
be low compared to peptide-pulsed or transfected 
APCs, TCR-like antibodies were engineered to make 
tetramers, with directly tagged fluorescent probes 
[150]. 

More importantly, TCR-like antibodies present 
new opportunities for use as targeting moieties for 
various antibody-based immunotherapeutic 
approaches because of their exquisite specificity 
towards a very precise and unique human tumor 
antigen. This includes using such antibodies to 
construct recombinant immunotoxins/drugs, fusion 
with cytokine molecules, bispecific antibody therapy 
and for CAR-T therapy [151-160]. With more 
applications yet to be explored, TCR-like antibodies 
promise to be as useful as monoclonal antibodies 
(Figure 4). 

Choosing the ideal target 
Tumor associated antigens can be classified into 

three categories: cancer testis antigens and oncofetal 
antigens, differentiation antigens and over-expressed 
antigens. Cancer testis antigens and oncofetal 
antigens like MAGE, WT1 as well as alpha-fetoprotein 
are expressed in a wild range of different cancer cells, 
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but limited in normal tissues except for embryonic 
cells or germ cells [161-164]. Differentiation antigens 
are restrictively expressed in limited cell lineages, 
such as gp100, Tyrosinase, and MART-1 [165-168]. 
Over-expressed antigens are normal proteins, but 
over-expressed or amplified in cancer cells, such as 
PR1, Her2/neu, PSA, EGFR [169-176]. They are all 
potential cancer targets, and they have their own pros 
and cons. Targeting the differentiation antigens like 
KRAS G12V/D is the most conceptually interesting 
approach as it can kill specific cancer cells without 
injuring normal cells, nevertheless they are also 
difficult to rationalize for therapeutic drug 
development [177]. Targeting the cancer testis 
antigens and over-expressed antigens like NY-ESO-1 
and Her2/neu could also be a more general strategy, 
although the expression on the normal healthy tissues 
must be considered [178, 179]. 

The process of proteins expression and the 
presentation of short peptides on MHC are well 
described. However, the specific rules that govern 
which protein peptides are ultimately presented on 
the cell surface are poorly understood and therefore 
not fully predictable. Further identification of the 
presented peptides is an empirical process [180, 181]. 
In cancer, the discovery of these peptides mostly 
emerged from the observation that cancer cells 
express antigens which can be recognized by 
cytotoxic T-lymphocytes (CTLs) derived from patients 

[182-189]. Some peptides may be generated but have 
low affinity to MHC, while other peptides may have 
high affinity to MHC molecule, but never reach the 
cell surface due to improper processing [190]. Hence, 
many potentially interesting targets are not available 
as MHC-presented cell-surface peptides. 

Databases such as the Cancer Genome Atlas can 
be used to identify mutated protein sequences that 
can be used as potential targets, but current methods 
to identify peptides presented by cancer cells on 
surface MHC may lack the required sensitivity, and 
thus are able to identify only a limited number of 
possible antigens [191, 192]. Therefore, some peptides 
that are likely to be TCR-like antibody targets, may 
not be detected. cDNA expression cloning is used as 
the original technique for isolating tumor antigens 
recognized by CD8+ T cells, but with this method is 
difficult to determine MHC restriction for unique 
antigens. Posteriorly, SEREX (serological analysis of 
recombinant cDNA expression libraries), cDNA 
expression cloning using serum IgG Ab from cancer 
patients, was developed. But RNA expression levels 
do not correlate with that of protein expression, in 
other words, RNA expression levels do not concord 
with peptide presentation levels. Therefore, mass 
spectrometry is the direct way to identify peptides 
presented by cancer cells on surface MHC, and it has 
been the consensus in the field [193].  

 
Figure 3. Mechanism of action of TCR-like antibodies against cancer cells. (A) Most naked TCR-like antibodies induce CDC or ADCC mechanisms that 
are Fc-dependent and the ADCC mechanism can be different among different effector cells. (B) Naked TCR-like antibodies can also induce apoptosis mechanism. 
When fused to toxins or drugs, the fusion protein can kill the tumor cells directly. (C) T-cells engineered to display TCR-like antibodies as receptors can re-direct 
cytotoxic T cells against cancer cells forming lytic immunological synapse. CDC, complement-dependent cytotoxicity; MAC, membrane attack complex; ADCC, 
antibody-dependent cell mediated cytotoxicity; Fab, fragment antigen binding; scFv, single-chain variable fragment; MHC, major histocompatibility complex; TCRL, 
T-cell receptor-like. 
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Figure 4. Various applications of TCR-like antibodies. Fab/scFv fragments with MHC restricted specificity obtained by phage display can be used in different 
ways: (A, B) Directly to target the specific MHC-peptide complexes as diagnostic tools or therapeutic tools. (C) Fused to a drug/toxin/cytokine to form 
immunoconjugates. (D) Fused as a signaling moiety to genetically retargeting T cells toward cancer cells. (E) Reformated as bispecific antibody binding simultaneously 
a MHC-peptide complex and a receptor expressed by effector cells (CD3 on T cells). ADCC, antibody-dependent cellular cytotoxicity; CDC, 
complement-dependent cytotoxicity; Fab, fragment antigen binding; scFv, single-chain variable fragment; MHC, major histocompatibility complex. 

 
Although both TCR-like antibodies and 

traditional antibodies can bind to antigens, the 
binding sites and methods are different. Traditional 
mAbs bind to conformational antigens, whereas 
TCR-like antibodies recognize complex antigens 
composed of MHC molecules with embedded short 
peptides. For a given haplotype, the MHC component 
is invariant, and the embedded peptides can come 
from the millions of sequences encoded in the exome. 
Most TCR-like antibodies have been shown to bind 
only a few residues of their target linear peptide 
[194-196]. This suggests that TCR-like antibodies may 
theoretically have many off-target peptides that share 
the same residues at major contacts, but differ on 
other positions. For instance, the therapeutic TCR-like 
antibody ESK1 only binds to complex antigens 
composed of HLA-A*0201 amino acids in addition to 
3-5 N-terminal residues of the WT1-derived peptide 
9-mer. Exchange of the C-terminal amino acid of the 
target peptide still allows binding of ESK1 TCR-like 
antibody. On the contrary, a TCR-like antibody 
targeting the cancer-testis antigen PRAME was shown 
to bind the C-terminus of the full-length sequence as 
well as TCR-like antibody targeting the tumor- 
associated antigen PR1 that was shown to depend 
heavily on one residue of the PR1-peptide [197, 198]. 

Enhancing peptide density  
The peptide density of TCR-like antibody targets 

has been reported to hold only 100-1,000 sites per cell, 
which is significantly lower than some reported 

peptide densities of conventional monoclonal 
antibody whose cell surface targets are 20,000-500,000 
sites per cell. The density of TCR-like antibody cell 
surface sites is positively correlated with the killing 
effect of TCR-like antibodies on target cells, so a key 
factor that needs to be considered when choosing a 
target antigen for TCR-like antibody therapy include 
the peptide density on the cell surface. The levels of 
protein expression and presentation, HLA levels, 
protein half-life, levels of MHC-peptide complex 
presentation all dictate TCR-like target peptide 
density. 

A sufficient amount of protein must be 
translated to facilitate peptide processing. For 
example, the hypomethylating agent Decitabine can 
significantly increase the expression of NY-ESO1 in 
patient's tumor biopsies [199]. Another 
methyltransferase inhibitor, 5-azacytidine, can also 
induce cancer-testis antigen-specific CTLs in patients, 
minimally affecting immune effector populations and 
function [200]. Protein stability also plays an 
important role, it is reported that defective ribosomal 
products (DRiPs) that can be degraded quickly 
constitute a large percentage of peptides presented on 
MHC, and they may accumulate due to errors in the 
process of transcription, translation, or protein 
folding. Short-lived proteins appear to be more likely 
than proteins with longer half-lives [201]. 

After the expression of the proteins, they are 
cleaved into random-sized peptides by proteasomes 
in the cytosol. Proteasomes are the major complex that 
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degrades proteins into peptides, constitutive 
proteasome (CP) or the immuno-proteasome (IP) are 
the two major forms of proteasomes [202, 203]. Hence, 
modulation of proteasome expression by treatment 
with cytokines or proteasome inhibitors could 
enhance or eliminate the presentation of specific 
peptides [204]. To name some examples, Lactacystin is 
an organic compound naturally synthesized by 
bacteria of the genus Streptomyces, the influenza M1 
58-66 peptide is more efficiently produced in the 
presence of Lactacystin, and a significant number of 
the cancer antigen MAGE-3 271-279 is presented by 
melanoma cells after the inhibition of Lactacystin [190, 
205].  

Posterior to degradation, these cytosolic peptides 
are then pumped into the endoplasmic reticulum 
through TAP, where they are trimmed by 
aminopeptidases, loaded onto MHC molecules, and 
transported to the cell surface. Peptide MHC loading 
is governed by the binding affinity of the MHC 
protein to the peptide. HLA molecules are not 
internalized readily, and it has been reported that up 
to 90% MHC class I down-regulation has been noted 
in several cancers [206]. Given all these obstacles, 
down regulation of the MHC class I expression 
prevents a properly processed peptide from reaching 
the cell surface. Using some agents to upregulate the 
MHC class I expression is necessary. MEK inhibitor 
PD98059 has been reported to increase MHC 
expression in esophageal and gastric cancers through 
the inhibition of the MAPK pathway [207]. Similarly, 
the EGFR inhibitor Erlotinib could induce increased 
MHC class I levels on patients treated with it [208]. In 
addition to small molecule modulation of the 
inhibitor, targeting associated protein molecules can 
also increase expression of MHC molecules. For 
example, β2 microglobulin (β2M) is often 
downregulated in cancers, using the modulators of 
β2M may have the possibility to increase target 
peptide presentation [209]. 

Future for the TCR-like antibodies 
Based on the fact that T-cell receptor mimicking 

antibodies have not yet entered the clinic, several key 
factors have the potential to improve the development 
of TCR-like antibodies so that TCR-like antibodies can 
have the prospect of undertaking clinical studies and 
ultimately establish themselves as a type of cancer 
therapy. 

Antibodies with the MHC-restricted specificity 
of T-cells are rare and lots of high-affinity, 
peptide-specific TCR-like antibodies have proven to 
be difficult to produce by either hybridoma 
approaches or phage display because B cells are not 
educated to be self-MHC restricted [210-214]. T cells 

are educated to recognize antigenic peptides 
presented in complex with MHC class I or II 
molecules through the alternating selection processes, 
while B-cells are not in this selection process. The 
creation of TCR-like antibodies is expensive and time 
consuming. In order to isolate fully high-affinity, 
peptide-specific human antibodies within a short 
period of time, the improvement of traditional 
production methods and even the creation of new 
production methods are necessary.  

It is crucial to ensure that the TCR-like 
antibodies do not recognize the MHC-I alone, as this 
molecule is found on most nucleated cells, and it does 
not cross-react with other processed peptides, as 
TCR-like antibodies recognize only a few amino acid 
residues in the peptide, which means that other 
processed peptides possess the same amino acids at 
those positions [215, 216]. Therefore, the TCR-like 
antibody must be specific for the specific 
peptide-MHC complex. A clinical trial of an 
affinity-enhanced TCR, which targeted a MAGE-A3 
peptide, was reported to cause two patient deaths 
[217]. It was discovered that the TCR also recognized 
a peptide on the unrelated protein titin that is 
expressed in cardiac tissue which was not observed in 
normal tissue screening and was not conserved in 
mice. The lack of suitable animal models to study 
whether TCR-like antibodies can target other 
cross-reactive peptides in vivo is a major problem 
disrupting its clinical applications. 

One of the key limitations of TCR-like antibody 
therapy is the MHC restrictive nature of treatment, 
although it is vital to be able to recognize intracellular 
proteins. Most studies to date focused on the 
HLA-A*0201 haplotype, which is found in up to 40% 
of Caucasians and 10-20% of other ethnic groups 
around the world [218-220]. There are other dominant 
HLA alleles such as HLA-A*2402. Although TCR-like 
antibodies are HLA-restricted, it has been proposed 
that antibodies to three HLA alleles for a particular 
target antigen would cover over 96% of the world’s 
population, it is reported that TCR-like antibodies 
bind multiple HLA-A*02 variants and not only the 
HLA-A*0201 subtype, suggesting that certain 
TCR-like antibodies could target a larger population 
of patients with a variety of HLA subtypes [221, 222]. 
Therefore, HLA-A restriction does not limit the 
treatment to a limited number of patients, and the use 
of HLA-restricted presentation peptides allows 
multiple antibodies to be designed for specific 
antigens for combination therapy that could achieve 
better results. 

There are a lot of strategies to augment the 
therapeutic index of the TCR-like antibodies. In 
addition to increasing the expression of complex 
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MHC-peptide antigens, the application of TCR-like 
antibodies to other therapeutic methods and the 
combination with other treatments are the future 
direction. TCR-like antibodies can serve as an ideal 
cancer targeting platform for the delivery of cytotoxic 
payloads specific to tumors such as potent drugs and 
toxins. TCR-like antibodies can also be engineered 
into bispecific T-cell engagers (BiTEs) and chimeric 
antigen receptors (CARs) for expression on cytotoxic 
T-cells [223-225]. CARs are single-chain variable 
fragment (scFv)-based receptors used to redirect T 
cells to recognize and lyse cancer cells. CARs would 
be advantageous in that they do not directly compete 
with the native TCR, and would further provide 
supportive co-stimulation to the transduced T cells 
[226]. In 2018, The FDA made history by approving 
the first gene therapy in the United States. Kymriah, a 
cell-based gene therapy, is approved in the United 
States for the treatment of patients up to 25 years of 
age with B-cell precursor ALL that is refractory or in 
second or later relapse. On October 18th of the same 
year, the FDA approved the Kite Yescarta 
(axicabtagene ciloleucel, KTE-C10) cell gene therapy 
for the treatment of diffuse large B-cell lymphoma 
[227, 228]. More importantly, Joseph A. Fraietta and 
colleagues reported that due to the proliferation of a 
single CAR-T cell, a patient with chronic lymphocytic 
leukemia (CLL) treated with CAR-T cells in 2013 was 
relieved and remains cancer-free for over 5 years, and 
that the CAR-T cells are still present in his immune 

system [229]. Due to the great therapeutic potential of 
CAR-T therapy, the application of TCR-like 
antibodies to CAR-T will make TCR-like antibodies 
the ideal companion for this role. 

Furthermore, the variable (V) region domain can 
be used by its own to form a domain antibody called 
nanobody (Figure 5) [230]. These nanobodies can be 
engineered from the heavy-chain antibody (HcAb) 
derived from camelids (camel or llama) or 
cartilaginous fish (carpet or nurse sharks), whose 
immune systems were found to have evolved 
high-affinity V-like domains that do not require 
intramolecular disulfide bonds for stability [231-234]. 
The ability to specifically recognize unique epitopes 
with sub-nanomolar affinity have made nanobodies a 
useful class of biomolecules for medical research due 
to their various diagnostic and therapeutic 
applications. To name some recent examples, 
nanobodies have been employed as a cell re-targeting 
moiety in CAR-T cell therapy to target the 
extracellular antigens [235-237]. It has also reported 
that TCR-like CARs containing GPA7, a 
single-domain antibody (sdAb) specific for gp100 
209-217/HLA-A2 complex, could mediate the 
enhanced cytotoxicity of transgenic T cells against 
HLA-A2-matched melanoma in vitro and in vivo [117, 
238]. The variable (V) region domains represent the 
smallest format of the antibody that retains target 
specificity and it can replace traditional antibodies in 
a series of applications for cancer treatment. 

 

 
Figure 5. The selection of the VHH. (A) The first step of the selection using phage-display technology is to generate VHH libraries. After repeated rounds of 
selection, the specific VHHs are isolated from the large libraries. (B) The various antibody formats: mAb (monoclonal antibody), Fab (fragment antigen binding), HcAb 
(camel heavy-chain antibody), VHH or Nb (nanobody). 
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Conclusion  
Expanding the targeting repertoire to the 

intracellular proteome represented by the MHC 
molecules, the generation of antibodies that can target 
intracellular antigens offer unparalleled opportunities 
not only for optimizing cancer treatment but also for 
the development of new anticancer strategies. 
TCR-like antibodies transform the fine cellular 
specificity of the T-cell recognition into an 
antibody-based immunotherapeutic approach and 
also fit in with the growing field of personalized 
medicine. The vast new arrays of potential targets 
presented by the MHC molecules suggest that 
TCR-like antibodies will find an important place in 
our armamentarium, picturing a promising next step 
for immunotherapy. 
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