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GM‑CSF derived 
from the inflammatory 
microenvironment potentially 
enhanced PD‑L1 expression 
on tumor‑associated macrophages 
in human breast cancer
Kimihiro Yonemitsu1,5, Cheng Pan1,5, Yukio Fujiwara1, Yuko Miyasato1, Takuya Shiota1, 
Hiromu Yano1, Seiji Hosaka1, Koji Tamada2, Yutaka Yamamoto3 & Yoshihiro Komohara1,4*

Ever since immune checkpoint inhibitors have been approved for anti‑cancer therapy in several 
cancers, including triple‑negative breast cancer, the significance of programmed death‑1 ligand 1 
(PD‑L1) expression in the tumor immune microenvironment has been a topic of interest. In the present 
study, we investigated the detailed mechanisms of PD‑L1 overexpression on tumor‑associated 
macrophages (TAMs) in breast cancer. In in vitro culture studies using human monocyte‑derived 
macrophages, lymphocytes, and breast cancer cell lines, PD‑L1 overexpression on macrophages 
was induced by the conditioned medium (CM) of activated lymphocytes, but not that of cancer cells. 
Granulocyte–macrophage colony‑stimulating factor (GM‑CSF) derived from activated lymphocytes 
was found to be involved in PD‑L1 overexpression, in addition to interferon (IFN)‑γ, via STAT3 
pathway activation. Macrophages suppressed lymphocyte activation, and this inhibition was impaired 
by PD‑1 blocking. The CM of activated lymphocytes also induced the overexpression of PD‑L2, but 
GM‑CSF did not affect PD‑L2 expression. In the murine E0771 breast cancer model, anti‑GM‑CSF 
therapy did not affect PD‑L1 expression on TAMs, and the mechanisms of PD‑L1 expression on TAMs 
might differ between humans and mice. However, not only PD‑L1, but also PD‑L2 was overexpressed 
on TAMs in the E0771 tumor model, and their expression levels were significantly lower in the tumors 
in nude mice than in wild‑type mice. Anti‑PD‑L1 antibody and anti‑PD‑L2 antibody synergistically 
inhibited E0771 tumor development. In conclusion, PD‑L1 and PD‑L2 were overexpressed on 
TAMs, and they potentially contributed to immunosuppression. The GM‑CSF‑STAT3 pathway is 
thought to represent a new mechanism of PD‑L1 overexpression on TAMs in human breast cancer 
microenvironment.

Breast cancer is the most common cancer in women, and its incidence has been increasing worldwide. Breast 
cancer is classified into four molecular subtypes depending on the expression of hormone receptors and human 
epidermal growth factor receptor  21,2. Triple-negative breast cancer (TNBC) is clinically defined by the absence 
of hormone receptor expression and human epidermal growth factor receptor 2  overexpression3,4. Neoadjuvant 
chemotherapy has been used as the standard treatment for patients with advanced breast cancer. An immunother-
apy targeting programmed death 1 ligand 1 (PD-L1) has been approved in several countries for PD-L1-positive 
TNBC, and many clinical trials using immune checkpoint inhibitors in combination with compound-based drugs 
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are now ongoing around the  world5,6. Mismatch repair deficiency and PD-L1 expression on immune cells have 
been shown to be biomarkers for immunotherapy in TNBCs, and the tumor mutation burden, tumor-infiltrating 
lymphocytes (TILs), and transcriptional signatures of immune cells have also been suggested to be potential 
 biomarkers7,8. Thus, recent advances in immunotherapy for solid cancers, including breast cancer, have shown 
the significance of the tumor immune microenvironment (TIME) in immune suppression in cancer patients.

Tumor-associated macrophages (TAMs) and TILs are the main components of the TIME in breast cancer 
cases. Several studies of solid tumors, including breast cancer, have indicated that a high density of TAMs was 
linked to a high malignant potential and a worse clinical  course9,10, whereas a high density of TILs was associ-
ated with longer breast cancer-specific  survival11–13. A high density of TILs in the TIME significantly predicted a 
pathological complete response by neoadjuvant chemotherapy in breast  cancer14,15. We previously demonstrated 
that a high number of infiltrating CD204-positive protumor TAMs was a predictive marker for a worse clinical 
course in breast  cancer16. Protumor TAMs are known to secrete several kinds of protumor molecules, including 
epidermal growth factor receptor ligands, interleukin (IL)-1β, IL-6, prostaglandin E2, tumor necrosis factor-α, 
oncostatin M, and  osteopontin17.

In breast cancer, recent studies have indicated that PD-L1 is mainly expressed on immune cells, especially 
on  TAMs18. PD-L1 expression on cancer cells (cut-off value: 1%) and immune cells (cut-off value: 10%) were 
detected in 12% and 28% of breast cancer samples, respectively, and high PD-L1 expression in immune cells 
predicted a better clinical  course19. It was also reported that PD-L1 expression was closely associated with 
the interferon signature, indicating that PD-L1 expression reflects the anti-cancer immune responses in breast 
 cancer20. Therefore, we examined the mechanisms of PD-L1 overexpression on TAMs and the immunosup-
pressive functions of TAMs, and found that lymphocyte-derived factors, but not cancer cell-derived factors, 
induced PD-1 ligand overexpression. In addition, although it is well known that interferons (IFNs) secreted 
from activated lymphocytes increase the expression of PD-1 ligands, we found that granulocyte–macrophage 
colony-stimulating factor (GM-CSF) secreted from activated lymphocytes also induced the overexpression of 
PD-1 ligands on macrophages via STAT3-related signals.

Results
Activated lymphocyte‑derived factors induced PD‑L1 overexpression in the breast cancer 
microenvironment. First, we examined whether macrophages expressed PD-L1 in breast cancer tissues 
by double-immunohistochemistry (IHC) of Iba1 (a pan-macrophage marker) and PD-L1. In a representative 
PD-L1-positive breast cancer case, many Iba1 and PD-L1 double-positive cells were observed infiltrating the 
cancer stroma (Fig. 1A), and this observation was consistent with a previous  report18. Lymphocyte-derived fac-
tors are well known to be stimulators that induce PD-L1 expression; however, no studies on the association 
between breast cancer-derived factors and PD-L1 expression on human macrophages have been published. In 
the present study, human monocyte-derived macrophages (HMDMs) were stimulated with the conditioned 
medium (CM) of lymphocytes, the CM of lymphocytes activated with anti-CD3 and anti-CD28 antibodies, and 
the CM of breast cancer cell lines (BT-20 and MCF-7). A significant increase in PD-L1 expression was induced 
by the CM of activated lymphocytes; however, no change was observed in the HMDMs cultured with the CM 
of resting lymphocytes or breast cancer cell lines (Fig. 1B). Next, we examined whether macrophages stimulated 
with the CM of activated lymphocytes had immunosuppressive functions. Human autologous lymphocytes and 
HMDMs (pre-stimulated with the CM of activated lymphocytes) were co-cultured in a cell culture plate coated 
with anti-CD3 and anti-CD28 antibodies. As shown in Fig. 1C, the co-culture with HMDMs suppressed IFN-γ 
production and BrdU incorporation; this suppression of BrdU incorporation was abrogated by anti-PD-1 anti-
body (Fig. 1D). Based on The Cancer Genome Atlas (TCGA) database (https:// www. prote inatl as. org/), PD-L1 
expression is highly positively correlated with both CD8a and Iba-1 gene expression (Fig. 1E). In the same case 
shown in Fig. 1A, double-IHC showed that the CD8-positive lymphocytes and Iba1-positive macrophages were 
in direct contact (Fig. 1F).

STAT1 and STAT3 signals were involved in PD‑L1 overexpression on HMDMs. We next investi-
gated the detail mechanisms of PD-L1 overexpression on HMDMs stimulated with the CM of activated lympho-
cytes. A phosphorylation kinase array analysis was then performed using the cell lysates of the HMDMs with 
the CM of lymphocytes or activated lymphocytes. The levels of some phosphorylation kinases were elevated; 
among them, we focused on STAT3, STAT5, and c-Jun (Fig. 2A), and we investigated the pathways that contrib-
ute to PD-L1 expression using inhibitors against these molecules. No direct inhibitor was available for c-Jun, so 
inhibitors of its upstream kinases, JNK and ERK, were used instead. A STAT1 inhibitor was also included since 
it has been reported that STAT1 induces PD-L1 expression in HMDMs 21. PD-L1 expression was strongly sup-
pressed by the STAT1 and STAT3 inhibitors, with the STAT3 inhibitor showing a stronger inhibitory effect (79% 
reduction) than the STAT1 inhibitor (22% reduction; Fig. 2B). Western blot analysis was performed to examine 
whether STAT1 and STAT3 signals were activated by the CM of activated lymphocytes, and we found that the 
CM of activated lymphocytes induced the phosphorylation of both STAT1 and STAT3 (Fig. 2C).

GM‑CSF‑related STAT3 activation enhanced IFN‑γ‑related PD‑L1 overexpression on 
HMDMs. Western blot analysis showed that the CM of activated lymphocytes, but not IFN-γ, induced the 
activation of STAT3 (Fig.  2C). This indicated that yet-unknown lymphocyte-derived factors are involved in 
PD-L1 overexpression on HMDMs via STAT3 activation. Using a cytokine array kit, we examined the kinds of 
cytokines that are present in the CM of activated lymphocytes. The levels of GM-CSF and macrophage migration 
inhibitory factor were significantly elevated in the CM of activated lymphocytes (Fig. 3A). Since it is well known 
that GM-CSF is linked to the STAT3 signaling pathway, we focused on GM-CSF. Antibody-mediated GM-CSF 
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Figure 1.  PD-L1 expression on macrophages. (A) Double-IHC of PD-L1 (brown) and Iba-1 (green; a pan-macrophage 
marker) in a breast cancer section is presented. Scale bar: 50 μm. (B) PD-L1 expression on HMDMs stimulated with the 
CMs from the resting lymphocytes, activated lymphocytes, BT-20 cell line, and MCF-7 cell line was evaluated by a cell-
ELISA assay. PD-L1 staining on macrophages with or without CM stimulation is shown. (C) Autologous lymphocytes 
and macrophages were co-cultured in a culture plate coated with or without anti-CD3 and anti-CD28 antibodies. The 
IFN-γ concentration and BrdU incorporation were examined to evaluate lymphocyte activation. (D) Lymphocytes 
and macrophages were co-cultured in a culture plate coated with anti-CD3 and anti-CD28 antibodies, and anti-PD-1 
antibody or control IgG was added. (E) The correlations between the PD-L1, Iba-1, and CD8a gene expression levels in 
breast cancer data from TCGA were tested by Spearman’s correlation test. (F) Double-IHC of Iba-1 (brown) and CD8 
(green) in a breast cancer section is presented. Scale bar: 50 μm. *p-value < 0.05.
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neutralization significantly suppressed PD-L1 overexpression and STAT3 activation (Fig. 3B and C). GM-CSF 
enhanced IFN-γ-induced PD-L1 expression on HMDMs (Fig. 3D). In a TCGA cohort of breast cancer cases, 
GM-CSF mRNA expression was seen in 375 (34.8%) of 1075 cases, and GM-CSF-positive cases showed higher 
gene expression levels of CD8a, Iba1, PD-L1, PD-L2, and lymphocyte activation-related genes such as IFN-γ and 
Granzyme B as compared to the levels in GM-CSF-negative cases (Supplemental Fig. 1A).

PD‑L2 expression was also observed on TAMs and HMDMs. A previous study showed that STAT3 
activation was also linked to PD-L2 expression in HMDMs 22. Based on the TCGA database of breast cancer, the 
mRNA expression of PD-L2 is significantly associated with PD-L1 expression (Fig. 4A). The expression of both 
PD-L1 and PD-L2 was significantly correlated with CD8 and Iba1 gene expression. These findings suggested 
that PD-L2 was also overexpressed on TAMs and HMDMs. The in vitro studies using HMDMs indicated that 

Figure 2.  STAT1 and STAT3 activation in macrophages. (A) A phosphorylation kinase array was performed 
using HMDMs stimulated with the CM of resting lymphocytes and activated lymphocytes. Spot densities were 
evaluated by Image J software. Detailed molecules listed in a membrane was presented in supplemental Fig. 6A. 
(B) HMDMs were stimulated by the CM of activated lymphocytes (Active Ly) with inhibitors of STAT1, STAT3, 
STAT5, JNK, and ERK (10 nM) for 24 h, and PD-L1 expression was examined by a cell-ELISA assay (n = 3 to 
5 each). (C) Western blot analysis of PD-L1, pSTAT1, pSTAT3, and β-actin was performed using the lysates of 
HMDMs stimulated with the CMs and IFN-γ for 24 h. *p-value < 0.05.
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Figure 3.  GM-CSF and PD-L1 expression. (A) A cytokine array was performed using the CMs of resting 
lymphocytes and activated lymphocytes. Spot densities were evaluated by Image J software. Detailed molecules 
listed in a membrane was presented in supplemental Fig. 6B. (B) HMDMs were stimulated by the CM of 
activated lymphocytes (Active Ly) with anti-GM-CSF antibody (20 μg/mL) or control IgG for 24 h, and PD-L1 
expression was examined by a cell-ELISA assay (n = 3 to 5 each). *p-value < 0.05. (C) Western blot analysis of 
PD-L1, pSTAT1, pSTAT3, and β-actin was performed using the lysates of HMDMs stimulated with the CMs and 
antibodies for 24 h. (D) HMDMs were stimulated with IFN-γ (20 ng/mL) and GM-CSF (5 ng/mL) for 24 h, and 
PD-L1 expression was examined by a cell-ELISA assay (n = 4 each). *; p value = 0.0286.
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the overexpression of PD-L2 was induced by the CM of activated lymphocytes as well as PD-L1 (Fig. 4B). PD-L2 
overexpression was suppressed by inhibitors of STAT1, STAT3, JNK, and ERK (Fig. 4C); however, GM-CSF was 
not involved in PD-L2 expression (Fig. 4D).

Inflammation‑induced overexpression of PD‑L1 and PD‑L2 is a promising target for anti‑can-
cer therapy. Based on these observations, we hypothesized that inflammatory responses associated with 
TILs induce the overexpression of PD-1 ligands, which contributes to immune suppression. E0771 cells are 
a murine breast cancer cell line, and E0771 tumors are known to be an immunogenic “hot” tumor model. To 
examine the influence of TILs on the expression of PD-1 ligands in an in vivo model, E0771 cells were inocu-
lated subcutaneously in wild-type mice and athymic nude mice. No TILs were observed in the tumor tissues 

Figure 4.  PD-L2 expression on macrophages. (A) The correlations between the PD-L1, PD-L2, Iba-1, and 
CD8a gene expression levels in breast cancer data from TCGA were examined by Spearman’s correlation test. 
(B) PD-L2 expression on HMDMs stimulated with the CMs of the resting lymphocytes, activated lymphocytes, 
BT-20 cell line, and MCF-7 cell line was evaluated by a cell-ELISA assay. PD-L2 staining on macrophages 
with or without CM stimulation is shown. (C) HMDMs were stimulated by the CM of activated lymphocytes 
(Active Ly) with inhibitors of STAT1, STAT3, STAT5, JNK, and ERK (10 nM) for 24 h, and PD-L2 expression 
was examined by a cell-ELISA assay (n = 3 to 5 each). (D) HMDMs were stimulated with IFN-γ (20 ng/mL) 
and GM-CSF (5 ng/mL) for 24 h, and PD-L2 expression was examined by a cell-ELISA assay (n = 4 each). *; p 
value = 0.0286.
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that developed in the nude mice, whereas many TILs were found infiltrating the tumor tissues that developed 
in the wild-type mice (Fig. 5A). Higher PD-L1-positive signals were seen in the wild-type mice as compared to 
the nude mice (Fig. 5B), and double-IHC showed that PD-L1 was expressed on TAMs (Fig. 5C). Flow cytometry 
revealed that both PD-L1 and PD-L2 were overexpressed on  CD11b+F4/80+ TAMs in the wild-type mice as 
compared to the nude mice (Fig. 5D). Tumor cells expressed PD-L1, and the expression level was lower in nude 
mice than in wild-type mice (Fig. 5E, Supplemental Fig. 2A); the mean fluorescent intensity of PD-L1 on tumor 
cells was half of that on the TAMs in the wild-type mice. No expression of PD-L2 was detected on the E0771 
cells (Supplemental Fig. 2B). Next, anti-GM-CSF antibody was injected to neutralize the GM-CSF in the tumor 
microenvironment; however, the tumor growth and PD-L1 expression level remained unchanged (Supplemental 
Fig. 3). When anti-PD-L1 antibody and anti-PD-L2 antibody were injected to block the PD-1 signal, combina-
tion therapy with both antibodies completely suppressed tumor development (Fig. 5F).

Discussion
In the present study, we showed by IHC that PD-L1 was overexpressed on TAMs, and by in vitro cell culture 
studies that infiltrating TILs affected the overexpression of PD-L1 on TAMs. The immunosuppressive function 
of PD-L1 on TAMs has been demonstrated in previous research using PD-L1-deficient  mice23,24. In the present 
study, anti-PD-1 antibody increased the lymphocyte activation that was suppressed by macrophages. The in vitro 
studies using HMDMs demonstrated that soluble factors secreted by activated lymphocytes enhanced not only 
PD-L1, but also PD-L2; however, the mechanisms of PD-L2 overexpression appear to be different from those of 
PD-L1. A study using murine macrophages showed that PD-L1 expression was dependent on STAT1 and TLR4 
signals, whereas PD-L2 expression was dependent on IL-4R and STAT6  signals25. The murine model using E0771 
cells indicated that tumor cells expressed a low level of PD-L1, and were negative for PD-L2, whereas both PD-L1 
and PD-L2 were expressed on TAMs. In a previous study using a MC38 murine tumor model, an elevated PD-L2 
expression level was seen in TAMs treated with anti-PD-L1 antibody, and anti-PD-L2 antibody enhanced the 
anti-tumor immune responses induced by the anti-PD-L1  antibody26. Similar results were observed in the present 
study using the E0771 breast cancer model. These observations suggested that not only PD-L1, but also PD-L2 
in the tumor microenvironment is a promising target for anti-tumor immunotherapy.

Many studies have demonstrated that gene amplification, 3’UTR disruption, and the activation of signaling 
molecules, such as STAT1/3, NF-kB, and HIF1a, are involved in PD-L1 overexpression in tumor  cells7; however, 
there have been fewer studies on the PD-L1 overexpression on TAMs than that on tumor cells. PD-L1 expression 
on macrophages has been shown to be regulated by STAT1 and STAT3  signals27. We previously reported that 
lymphoma cell-derived IL-27 significantly enhanced PD-L1 expression on TAMs via the STAT3  pathway22. PD-L1 
expression on macrophages is suggested to reflect the high IFN signature of immunologically “hot” tumor. In 
the present study, we showed that GM-CSF derived from activated lymphocytes enhanced IFN-induced PD-L1 
expression on macrophages.

It is well known that lymphocyte-derived soluble factors, including IFN-γ, induce the overexpression of 
PD-L1 and PD-L2 on  macrophages28,29. In the present study, lymphocyte-derived GM-CSF was found to enhance 
the IFN-γ-mediated PD-L1 overexpression via the activation of the STAT3 signaling pathway. PD-L2 expression 
on macrophages was increased by the CM of activated lymphocytes; however, the mechanisms of PD-L2 expres-
sion differed from those of PD-L1. GM-CSF is known to act as a survival and activating factor for myeloid cell 
 maturation30. Although lymphocytes did not express receptors for GM-CSF, IL-2 induced GM-CSF expression 
in helper T cells via the STAT3 and STAT5 signaling  pathways31. The levels of GM-CSF-producing CD4 and 
CD8 lymphocytes were shown to be increased in the blood and joints of patients with spondyloarthritis, and G 
protein-coupled receptor 65 was found to mediate GM-CSF  production32. A deficiency in GM-CSF signaling 
suppressed the differentiation and maturation of alveolar macrophages, and contributed to the development of 
pulmonary alveolar  proteinosis33. GM-CSF was the first cytokine shown to promote dendritic cell differentiation 
from monocytic lineage cells, and vaccination of GM-CSF gene-transfected cancer cells was reported to induce 
anti-cancer immune  responses34. GM-CSF is produced not only by lymphoid cells, but also by endothelial cells 
and  fibroblasts34. Ectopic GM-CSF expression in cancer cells has been reported in a small cell lung cancer cell 
line, and GM-CSF showed an anti-proliferative effect on cancer cells by arresting cells at the G0/G1  phases35. 
Chemo-resistant pancreatic cancer cells were shown to express GM-CSF, and blockade of GM-CSF improved the 
anti-cancer effect of chemotherapy by modulating the immunosuppressive tumor  microenvironment36. Ectopic 
GM-CSF expression in lung cancer cells was enhanced by stimulation with chemotherapeutic drugs and induced 
PD-L1 overexpression in  TAMs37. LLC murine lung cancer cell express expressed GM-CSF, and anti-GM-CSF 
therapy abrogated LLC tumor growth in vivo model by inhibiting TAM infiltration and differentiation. Murine 
breast cancer 4T1 cells were also shown to express GM-CSF, which promotes monocyte chemoattractant pro-
tein-1 (MCP-1) expression in macrophages; however, anti-GM-CSF therapy showed a limited effect on tumor 
 growth38. Thus, multiple functions of GM-CSF in cancer biology have been reported, although few studies had 
investigated whether anti-GM-CSF therapy would be effective as a breast cancer therapy. To our knowledge, 
the present study is the first to describe the potential anti-tumor effect of anti-GM-CSF, which may be useful as 
a therapy for patients with breast cancer. However, anti-GM-CSF therapy showed a limited effect in the E0771 
breast cancer model in the present study. IFN-γ, rather than GM-CSF, might be important for PD-L1 overex-
pression in TAMs in murine models.

In the present study, we focused on PD-L1 and PD-L2 as immunosuppressive molecules expressed on TAMs. 
We previously published two articles related to TAMs or lymphocytes in the tumor microenvironment in the 
same breast cancer  cohort16,39. The two datasets on TAMs and lymphocytes were combined and re-analyzed, 
and we found that breast cancer cases with a high TIL density and high TAM density showed the worst clinical 
course, while cases with a high TIL density and low TAM density showed the best clinical course (Supplemental 
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Figure 5.  The murine E0771 breast cancer model. (A) E0771 cells were injected subcutaneously into the mice, 
and the resulting subcutaneous tumor nodules were resected and fixed in 4% paraformaldehyde. Paraffin 
sections were used for IHC of PD-L1, CD3, and Iba-1. (B) Positively stained areas of PD-L1 were evaluated 
by Image J software (n = 10 in wild-type (WT) mice, n = 6 in nude mice). (C) Double-IHC of PD-L1 (brown) 
and Iba-1 (green) was performed. Scale bar: 20 μm. (D) Tumor nodules from WT mice and nude mice were 
dissected (n = 4 in each group), and the PD-L1 and PD-L2 expression levels on  CD11b+F4/80+ TAMs were 
analyzed by flow cytometry. The mean fluorescent intensity (MFI) of both proteins were evaluated. (E) PD-L1 
on  CD11b- tumor cells was analyzed by flow cytometry (n = 4 in each group). (F) Anti-PD-L1 (αPD-L1), anti-
PD-L2 (αPD-L1), and control hamster and rat IgG (100 μg/each) were injected intravenously at day 5 once, and 
tumor development was examined (n = 6 in each group). One of two representative experiments is presented.
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Fig. 4A). These observations indicated that TAMs potentially have an immunosuppressive function in breast 
cancer, and one possible mechanism is that PD-L1 overexpression is induced by GM-CSF/STAT3 signals (Sup-
plemental Fig. 4B). Nevertheless, the growing amount of unprecedented data obtained from single-cell RNA 
sequencing has indicated that TAMs make up very heterogeneous cell populations with different functions in 
tumor  immunity40,41.

In the present study, we could not confirm the GM-CSF expression in human breast cancer tissues, since 
no anti-GM-CSF antibody applicable to immunohistochemistry. However, there are some studies that demon-
strated the positive correlation between the density of infiltrating lymphocytes and PD-L1 expression in breast 
cancer  tissues42,43. There was also significant positive correlation between GM-CSF expression and lymphocyte-
activation markers (Supplemental Fig. 1). Taken together with our observations in the present study, it was 
suggested that activating lymphocytes infiltrated in cancer stroma secreted GM-CSF which potentially affect 
PD-L1 overexpression on TAMs.

TAMs are known to secret protumor soluble factors, including IL-6, in several cancers. In cases with breast 
cancer, we previously demonstrated that osteopontin and heparin-binding epidermal growth factor-like growth 
factor (HB-EGF), in addition to IL-6, were involved in cancer cell  growth44. We also examined which chemokines 
were potentially involved in TAM accumulation in the TIME. MCP-1 is the most well-known chemokine related 
to macrophage  chemotaxis45; however, the level of CCL5 was increased by lymphocyte-derived factors, suggesting 
that CCL5, rather than MCP-1, is a critical chemotactic factor. Inhibitor of FROUNT, a coactivator for CCR2 
and CCR5 signals, showed an inhibitory effect on E0771 tumor growth by blocking TAM  infiltration44. Taken 
together, we propose the following mechanisms of TAM-related protumor signaling: (1) Cytotoxic signals from 
TILs induce chemokine production, such as CCL5, in breast cancer cells; (2) Infiltrated TAMs secret protumor 
soluble factors, including osteopontin, heparin-binding epidermal growth factor-like growth factor, and IL-6; 
and (3) TIL-derived factors, including IFN-γ and GM-CSF, induce PD-1 ligands, which in turn suppress the 
anti-cancer effects of TILs (Supplemental Fig. 5).

In conclusion, PD-L1 is preferentially overexpressed on TAMs, possibly due to the cell–cell interaction with 
TILs. Although IFN-γ is well known to be related to PD-L1 overexpression, GM-CSF derived from TILs was 
suggested to induce PD-L1 overexpression in a synergistic manner with IFN-γ via STAT3 signal activation. In 
the E0771 breast cancer model, TAMs expressed PD-L1 and PD-L2, and the expression levels of these molecules 
were suppressed in nude mice, suggesting that the inflammatory microenvironment induced the overexpression 
of PD-L1 and PD-L2. Anti-GM-CSF therapy showed a limited effect in the E0771 breast cancer model; however, 
combined anti-PD-L1 and PD-L2 therapy significantly suppressed cancer development. The present study results 
indicated a novel mechanism of PD-L1 overexpression on TAMs in the TIME.

Materials and methods
Immunohistochemistry. Paraffin Sections (3-μm thick) of breast cancer samples were used for immuno-
histochemical studies as described  previously46. The following monoclonal antibodies were used as the primary 
antibodies: anti-Iba-1 antibody (NCNP27; WAKO, Tokyo, Japan) and anti-CD8 antibody (C8/144B; Nichirei, 
Tokyo, Japan). After the samples were reacted with these primary antibodies, they were incubated with horse-
radish peroxidase-labeled secondary anti-mouse antibody (Nichirei). The reaction was visualized using the 
diaminobenzidine system (Nichirei). No signal was observed when normal mouse immunoglobulin (Ig; DAKO, 
Glostrup, Denmark) was used. The DAKO automated system (Autostainer Link 48; DAKO) was used for the 
IHC analysis of human PD-L1 (clone 22C3; DAKO). For double-IHC, the sections were washed with citrate 
buffer (pH 2.2), then reacted with anti-Iba-1 or anti-CD8 antibody, and visualized with HistoGreen (Linaris, 
Heidelberg, Germany).

Cell culture of macrophages. HMDMs were obtained from healthy donors in accordance with protocols 
approved by the Kumamoto University Hospital Review Board (No. 1169), and cultured as described  previously16. 
In brief, monocytes were isolated using RosetteSep Human Monocyte Enrichment Cocktail (STEMCELL Tech-
nologies, Vancouver, Canada). Then, the cells were cultured in AIM-V medium (Thermo Fisher, Waltham, MA, 
USA) supplemented with macrophage-colony stimulating factor (100 ng/mL; WAKO) and 2% human serum for 
7 days to induce monocyte differentiation into macrophages. Recombinant GM-CSF and IFN-γ were obtained 
from WAKO.

Cell culture of lymphocytes. Human T-lymphocytes were isolated from healthy donors using RosetteSep 
Human T-cell Enrichment Cocktail (STEMCELL Technologies). Lymphocytes were cultured in a cell culture 
plate coated with anti-human CD3 antibody (OKT3; eBiosciences, San Diego, CA, USA) and human CD28 
antibody (BioLegend, San Diego, CA, USA). The proliferation of lymphocytes was examined by the BrdU incor-
poration assay (Cell Proliferation ELISA kit, Roche, Basel, Switzerland). Anti-PD-1 antibody (clone EH12.2H7) 
and isotype-matched IgG were obtained from BioLegend.

Cell lines. Human breast cancer cell lines, BT-20 and MCF-7, were purchased from the Japanese Collection 
of Research Bioresources Cell Bank (Osaka, Japan). The murine breast cancer cell line E0771 was obtained from 
CH3 BioSystem (Amherst, NY, USA). All cells were cultured in DMEM/F12 (WAKO) with 10% fetal bovine 
serum (Invitrogen).

Cell enzyme‑linked immunosorbent assay (ELISA). HMDMs (2 ×  104 cells/well) were cultured with 
the CM of cancer cell lines at a CM:culture medium ratio of 1:4 for 1 day in a 96-well microplate. Following 
fixation with 1% paraformaldehyde for 10 min, the cells were reacted with biotin-labeled anti-PD-L1 antibody 
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(clone 29E.2A3; BioLegend), anti-PD-L2 antibody (clone 24F.10C12; BioLegend), or isotype-matched control 
antibody (BioLegend). After the wells were washed with phosphate-buffered saline, horseradish peroxidase-
labeled streptavidin (Nichirei) was added. Tetramethylbenzidine developing solution (BioLegend) was used to 
visualize the positive signals.

Western blot analysis. Western blot analysis. After the protein concentration in the cell lysates was 
quantified using the bicinchoninic acid assay, equal amounts of protein were separated by electrophoresis and 
transferred onto a polyvinylidene fluoride membrane. The following antibodies were used for western blotting: 
anti-PD-L1 antibody (clone E1L3N), anti-STAT1 antibody (clone 42H3), anti-pSTAT1 antibody (clone D4A7), 
anti-STAT3 antibody (clone 124H6), and anti-pSTAT3 antibody (clone Y705; all from Cell Signaling Technol-
ogy).

Flow cytometry. Tumor nodules were treated with Tumor & Tissue Dissociation Reagent (Becton Dickinson, 
Franklin Lake, NJ, USA). The resulting cell suspensions were treated with FcR-blocking reagent (BioLegend), 
then the cells were reacted with APC anti-mouse PD-L1 antibody (10F.9G2), PE anti-mouse PD-L2 antibody 
(TY25), PE/Cyanine7 anti-mouse F4/80 antibody (BM8), Violet 51 anti-mouse/human CD11b antibody 
(M1/70), or isotype-matched control IgGs (all from BioLegend). Dead cells were excluded by labeling with 
Fixable Viability Dye eFluor™ 780 (Invitrogen). The stained cell samples were analyzed on a FACSverse (Becton 
Dickinson) flow cytometer with FlowJo software (Becton Dickinson).

Murine breast cancer model. E0771 cells (8 ×  105) in 50 μl of phosphate-buffered saline were inoculated 
subcutaneously into the left and right back of C57BL/6 J female mice (CLEA, Shizuoka, Japan). The hamster 
anti-mouse PD-L1 antibody (clone 10B5; 100 mg/mice) was established  previously39, and control hamster IgG 
was obtained from Sigma (St. Louis, MO, USA). Anti-PD-L2 antibody (TY25) and rat isotype-matched control 
antibody were purchased from BioXel (New Haven, CT, USA). All animal procedures were planned according 
to the Animal Research: Reporting of In Vivo Experiments (ARRIVE) guidelines, and approved by the Animal 
Research Committee at Kumamoto University (#A2020-089).

Statistics. Statistical analysis was carried out using GraphPad PRISM7 (https:// www. graph pad. com) and 
JMP7 (SAS Institute, Chicago, IL, USA) software. Spearman’s correlation test and the Mann–Whitney U-test 
were used to test for correlations between two groups. Differences in mean values among multiple groups were 
analyzed by one-way analysis of variance. P values of < 0.05 were considered statistically significant. The cell 
count data of TAMs and TILs and the breast cancer-specific survival periods in a breast cancer cohort were 
obtained from two studies previously published by our  groups16,22. The breast cancer-specific survival rates were 
compared between two groups using the log-rank test and Kaplan–Meier plots. All p-values are based on two-
tailed statistical analyses, and p-values < 0.05 were considered to be statistically significant.

Ethics. Approval for human experiments. The study design was approved by the Institutional Review Board 
of Kumamoto University (#2059) in accordance with the guidelines for Good Clinical Practice and the Declara-
tion of Helsinki. HMDMs and lymphocytes were obtained from healthy donors in accordance with protocols ap-
proved by the Kumamoto University Hospital Review Board (No. 1169). The need for individual patient consent 
for inclusion in the study was waived by the Institutional Review Board of Kumamoto University (#2059) since 
the present study was a retrospective analysis using previously published  data16,22; however, although all of the 
retrospective patient data were automatically included in the study, the patients were given the opportunity to 
refuse participation by opting out of the study.

Approval for animal experiments. All procedures were carried out in accordance with the relevant guidelines 
and regulations. All animal procedures were planned according to the Animal Research: Reporting of In Vivo 
Experiments (ARRIVE) guidelines, and were approved by the Animal Research Committee at Kumamoto Uni-
versity (#A2020-089).

Data availability
The datasets generated and/or analyzed in the current study are available from the corresponding author on 
reasonable request.
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