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Phaeobacter sp. strain JL2886, isolated from deep seawater of the South China Sea, can catabolize D-amino acids. Here, we report
the complete genome sequence of Phaeobacter sp. JL2886. It comprises ~4.06 Mbp, with a G�C content of 61.52%. A total of
3,913 protein-coding genes and 10 genes related to D-amino acid catabolism were obtained.
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In the marine environment, the D-amino acids synthesized by
microbes can be released into the seawater (1). D-Amino acids

(D-AAs), as the �-carbon enantiomers of L-amino acids (L-AAs),
are commonly known as nonproteinogenic amino acids (2), and
there are few reports about marine bacteria utilizing D-amino ac-
ids as carbon and nitrogen sources (3). A bacterial strain, JL2886,
was isolated from deep seawater at 2,000-m depth of South China
Sea collected during a cruise organized by the National Natural
Science Foundation of China in August 2012. Phylogenetic anal-
ysis based on the 16S rRNA gene sequences revealed that strain
JL2886 belongs to the genus Phaeobacter, Roseobacter clade (4).
JL2886 can utilize many D-AAs as a sole source of carbon or nitro-
gen for growth (our unpublished data).

The complete genome sequencing of strain JL2886 was per-
formed using the PacBio RS platform (Pacific Biosciences). A
10-kb library was sequenced using P4-C2 chemistry on two single-
molecule real-time (SMRT) cells. The average read length was
6,734 bp, with a sequencing depth of 289�. The continuous long
reads (CLR) were assembled de novo using SMRT Analysis version
2.1 and the protocol PacBio Hierarchical Genome Assembly Pro-
cess (HGAP) (5). The consensus polishing process resulted in a
highly accurate self-overlapping contig, as observed using Gepard
dotplot (6), with a length of 4,061,725 bp, in addition to five self-
overlapping 678,758-bp plasmids, and the overall G�C content of
strain JL2886 was 61.52%. DNA methylation was determined us-
ing the RS Modification and Motif Analysis protocol within the
SMRT Portal version 1.3.3.

The genome was annotated using Prodigal version 2.6 (7),
RNAmmer version 1.2 (8), and ARAGORN version 1.2 (9), as
implemented in the Prokka automatic annotation tool version
1.11 (10). The main chromosome contained 12 rRNA operons, 58
tRNAs, a predicted 3,913 protein-coding genes, and 744 protein-
coding genes in plasmids.

The predicted open reading frames (ORFs) were annotated
through comparisons with the NCBI-NR database and KEGG
protein database (11). The functional genes were then identified
by association with Clusters of Orthologous Groups (COGs) clas-

sification (12) and the KEGG pathway collection (13). A total of
3,690 proteins matched to known functions in the genome. There
were 2,641 proteins classified to COG categories and 2,120 pro-
teins classified to KEGG orthologs.

The genome sequences from strain JL2886 contained 361 pre-
dicted protein-coding sequences (CDSs) related to amino acid trans-
port and metabolism, including five CDSs for putative D-AA trans-
ferases, four CDSs for putative D-AA racemase, and one CDS for
putative D-AA oxidases. Strain JL2886 has robust D-AA catabolism
ability.

Accession number(s). The data from this complete genome
sequence have been deposited at DDBJ/EMBL/GenBank under
accession no. CP015124. The version described in this paper is the
first version, CP015124.1.
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