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Ischemic cardiomyopathy (ICM) is a common human heart disease that causes death. No
effective biomarkers for ICM could be found in existing databases, which is detrimental to
the in-depth study of this disease. In the present study, ICM susceptibility biomarkers were
identified using a proposed strategy based on RNA-Seq and miRNA-Seq data of ICM and
normal samples. Significantly differentially expressed competing endogenous RNA (ceRNA)
triplets were constructed using permutation tests and differentially expressed mRNAs, miR-
NAs and lncRNAs. Candidate ICM susceptible genes were screened out as differentially ex-
pressed genes in significantly differentially expressed ceRNA triplets enriched in ICM-related
functional classes. Finally, eight ICM susceptibility genes and their significantly correlated
lncRNAs with high classification accuracy were identified as ICM susceptibility biomarkers.
These biomarkers would contribute to the diagnosis and treatment of ICM. The proposed
strategy could be extended to other complex diseases without disease biomarkers in public
databases.

Introduction
Ischemic cardiomyopathy (ICM) is a common heart disease and a major cause of heart failure as well as
sudden cardiac death with the pathological characteristics of myocardial ischemia and fibrous tissue hy-
perplasia. Pathogenic factors for ICM include genetics, metabolic defect, inflammation, coronary artery
lesion and so on [1]. Increasing evidence exhibited that individualized gene test could better identify indi-
viduals with high ICM risk in order to have early treatment prior to symptom onset [2]. Gene therapy can
be used to target ICM biomarkers to change the myocardium microenvironment and improve heart func-
tion. However, only few ICM biomarkers were found in studies, and none are stored in public databases.
Thus filling the gap that ICM biomarkers are rarely identified at present is of importance for early diagno-
sis and treatment of ICM patients. One of the major challenges in filling this gap is the cost of experimental
approaches in terms of time and labor. Therefore, it is necessary to identify more effective ICM biomarkers
using computational biology strategies.

As the development and popularization of next-generation sequencing technologies, disease-associated
genes or mutations have been identified effectively from lots of sequencing data [3]. Additionally, it was
expected that non-coding RNAs would become promising therapeutic targets for cardiovascular diseases
[4,5]. Over the past several years, increasing lines of evidence suggested that competing endogenous RNAs
(ceRNAs) emerged as an important class of post-transcriptional regulator that altered gene expression
through a miRNA-mediated RNA–RNA interaction mechanism [6–8]. Expression of mRNAs, miRNAs,
and lncRNAs could also be obtained from sequencing data, alternation of which could influence the func-
tion and metabolism of cells through ceRNA triplets. With the development of bioinformatics technology,
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data analysis or mining methods have been applied to studies of ceRNA triplets or networks [9]. For example, lncRNAs
acted as ceRNAs regulating genes were found to be involved in left ventricular systolic function [10]. In addition,
regulatory role of ceRNA cross-talk with cancer-associated genes has been reported in the progression of various
types of cancer [11–13].

In the present paper, ICM susceptibility biomarkers were identified using a proposed strategy from expression,
functions and regulation relationships of mRNAs, miRNAs, and lncRNAs based on RNA-Seq and miRNA-Seq data
of ICM and normal samples. First, significantly differentially expressed ceRNA triplets composed of significantly
differential correlated pairs among mRNAs, miRNAs, and lncRNAs were constructed. Then, functional enrichment
analysis was conducted for differentially expressed genes in these significantly differentially expressed ceRNA triplets
to select candidate ICM susceptibility genes. Finally, ICM susceptibility biomarkers, including ICM susceptibility
mRNAs, miRNAs, and lncRNAs, were further identified based on classification performance (Figure 1).

Materials and methods
Data
The RNA-Seq and miRNA-Seq data (GSE46224) based on the platform of GPL11154 were downloaded from the
Gene Expression Omnibus database (https://www.ncbi.nlm.nih.gov/geo/) [14], in which eight ICM and eight normal
samples were used for ICM biomarker identification. Reference human genome (hg38.9) and genome annotation
information were downloaded from Ensemble (ftp://ftp.ensembl.org/pub/release-91/) [15].

RNA-Seq data were processed using the following pipeline. Fastq files were converted with the SRA ToolKit for
paired-end sequencing runs. Sequencing reads were mapped to reference human genome (hg38.9) using HISAT2.
Then, sequence alignment/map (.SAM) format files were converted into binary alignment/map (.BAM) format using
SAMTools [16]. StringTie was used for transcript assembling [17]. Counts for mRNAs and lncRNAs were obtained
by htseq-count [18]. For miRNA-Seq data, the miRDeep2 software package was employed to mine miRNAs and
the quantifier module in this package for miRNA read counts [19]. The read counts were further normalized into
fragments per kilobase of transcript per million (FPKM) values for mRNAs, miRNAs, and lncRNAs by Ballgown and
then compiled into a matrix [20]. The expression data of 18281 mRNAs, 1049 miRNAs and 8996 lncRNAs for every
sample were extracted after the preprocessing step.

Between ICM and normal samples, 4736 mRNAs, 21 miRNAs, and 952 lncRNAs were identified to be differentially
expressed by edgeR [21] with P<0.05 using read counts as input.

Construction of significantly differentially expressed ceRNA triplets
Correlation relationships between mRNAs, miRNAs and lncRNAs were used to construct significantly differentially
expressed ceRNA triplets. Pearson correlation coefficients were employed to evaluate the relationships, which were
calculated for pairs among mRNAs, miRNAs, and lncRNAs for ICM and normal samples, respectively (eqn 1).

rij = cov
(

Xi , X j
)

σXi σX j

= E
⌊(

Xi − μXi

) (
X j − μX j

)⌋

σXi σX j

(1)

where Xi and Xj are expression values for one mRNA, miRNA, or lncRNA i and another mRNA, miRNA, or lncRNA
j. σXi and σX j are standard deviations, and μXi as well as μX j are mean values for Xi and Xj, respectively. cov(Xi,Xj)
is the covariance between Xi and Xj. E represents expectation.

Significantly correlated mRNA–miRNA, mRNA–lncRNA, and miRNA–lncRNA pairs were screened out by the
significantly negative correlation between miRNAs and mRNAs or lncRNAs, and positive correlations between mR-
NAs and lncRNAs (P<0.05).

In the present study, lncRNA–miRNA and mRNA–miRNA interactions were further determined according to
mirCode (http://www.mircode.org).

Permutation tests were conducted to screen out significantly differential correlated pairs. Differences of Pearson
correlation coefficients of mRNA–miRNA, mRNA–lncRNA, or miRNA–lncRNA pairs between ICM and normal
samples were calculated and compared with 1000000 random selected differences, respectively. The statistical signif-
icance was determined by P-value, which was calculated as follows:

P = N (Rrandom > Rreal)
1000000

(2)

where Rreal represents the real difference of Pearson correlation coefficients between ICM and normal samples,
Rrandom represents a random one, and N(Rrandom > Rreal) represents the frequency of the random difference larger
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Figure 1. A schematic representation of the ICM biomarker identification strategy adopted in the present study

than the real one. Significantly correlated pairs with FDR-adjusted P-values < 0.05 were considered as significantly
differential correlated pairs.

The mRNAs, lncRNAs, and their common significantly correlated miRNAs could form ceRNA triplets
(mRNA–miRNA–lncRNA). Then from these significantly differential correlated pairs, significantly differential
ceRNA triplets were built. Taking expression of mRNAs, miRNAs, and lncRNAs into consideration, significantly
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Table 1 The number of significantly differentially expressed ceRNA triplets and differentially expressed elements

Significantly differentially
expressed ceRNA triplets

Differentially expressed
mRNA

Differentially expressed
miRNA

Differentially expressed
lncRNA

NT1 2643 178 9 227

T1 2112 151 9 0

NT2 275 115 6 153

T2 507 101 8 154

NT3 1 1 1 1

T3 25 13 3 14

Total 5563 240 17 363

NT1, NT2, and NT3 represent significantly differentially expressed ceRNA triplets with one, two, and three differentially expressed mRNAs,
miRNAs, or lncRNAs of the normal samples, respectively; T1, T2, T3 represent those of the ICM samples, respectively.

differential ceRNA triplets containing differentially expressed mRNAs, miRNAs, or lncRNAs were selected as signif-
icantly differentially expressed ceRNA triplets.

Candidate ICM susceptibility genes
For complex diseases, the disease-related genes were expected to be from differentially expressed genes [22]. Thus,
candidate ICM susceptibility genes were selected from differentially expressed genes.

For differentially expressed genes in significantly differentially expressed ceRNA triplets containing at least one
differentially expressed miRNA or lncRNA, the gene ontology (GO) enrichment analyses using biological process
(BP) were conducted to identify the significantly overrepresented GO terms using hypergeometric tests (eqn 3):

P = 1 −
k−1∑
i=0

⎛
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(3)

where N is the number of genes in all functions, n is the number of differentially expressed genes in significantly
expression differential triplets including at least one differentially expressed miRNA or lncRNA, M is the number of
genes in a specific function, and k is the number of overlapping genes. The FDR-adjusted P-value < 0.05 was set as
the criterion.

Differentially expressed genes enriched in ICM-related functional classes were regarded as candidate ICM suscep-
tibility genes.

Identification of ICM susceptibility biomarkers
Classifiers are frequently constructed for predicting samples of various statuses [23,24] to assess the reliability of iden-
tified genes [25,26]. Here, support vector machine (SVM) classifiers based on four kernel functions (linear, sigmoid,
polynomial, radial basis) with gene expression values as classification features was constructed to distinguish ICM
and normal samples. The performance of the classifiers was evaluated by the leave-one-out cross-validation method.
The classification accuracy was assessed by the area under the receiver operating characteristic curve (AUC), which
was a popular metric widely used. The genes with individual and joint classification accuracy higher than 0.75 were
identified as ICM susceptibility genes. ICM susceptibility miRNAs or lncRNAs were identified in the same way. These
ICM susceptibility genes, miRNAs and lncRNAs were ICM susceptibility biomarkers.

Results
Significantly differentially expressed ceRNA triplets
Significantly differential correlated pairs between ICM and normal samples were screened out with permutation
tests (FDR < 0.05), which contained 674850 mRNA–miRNA pairs, 303790 miRNA–lncRNA pairs, and 7416284
mRNA–lncRNA pairs. Based on these significantly differential correlated pairs, significantly differential ceRNA
triplets were built, of which 6464 were selected from disease samples and 7738 from normal samples.
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Table 2 Classification efficiency of candidate susceptibility genes in ICM-related functional classes

ICM-related functional class
The number of candidate susceptibility

genes AUC

Inflammation immunity 10 0.97

Metabolism 12 0.95

Cell polarity 8 0.88

Cardiovascular diseases 6 0.86

Chondroitin sulfate 2 0.69

Cell apoptosis 6 0.66

Significantly differentially expressed ceRNA triplets were selected from significantly differential ceRNA triplets as
those with differentially expressed mRNAs, miRNAs, or lncRNAs (Table 1). Only a few differentially expressed miR-
NAs and a large number of differentially expressed mRNAs and lncRNAs were contained in significantly differentially
expressed ceRNA triplets. More significantly differentially expressed ceRNA triplets with two or three differentially
expressed mRNAs, miRNAs, or lncRNAs were constructed from the ICM samples.

Candidate ICM susceptibility genes
To screen out candidate susceptibility genes, differentially expressed genes in significantly differentially expressed
ceRNA triplets including at least one differentially expressed miRNA or lncRNA were used for further screening.
Functional enrichment analysis was carried out to 68 differentially expressed genes in these triplets. Thirty-seven
GO terms were significantly enriched by these genes (FDR-adjusted P-value < 0.05), 20 of which were involved in 6
ICM-related functional classes, including cardiovascular disease, cell apoptosis, metabolism, inflammatory immunity,
chondroitin sulfate, and cell polarity (Figure 2).

Due to ICM, ‘cardiovascular disease’ remains the leading cause of death among women globally [27]. Engrafted
cardiac stem cells are subjected to acute ‘cell apoptosis’ in the ischemic microenvironment, attenuation of which
suggested a new clue enhancing the survival rate in the infarcted myocardium for cell therapy in ICM [28]. Ko et
al. found that myocardial glucose uptake could discriminate between viable and non-viable myocardium, and may
be prognostic predictors of cardiovascular death in patients with ICM, after prospectively quantifying the rate of
myocardial glucose uptake in myocardium with different perfusion-‘metabolism’ patterns [29]. ICM is in part an
immune-mediated disease [30]. The immune system was reported to play a central role in ‘inflammatory immunity’
aimed at repairing ischemic myocardium [31]. Disruption of the ‘cell polarity’ complex could cause loss of polarized
cardiomyocyte division and loss of normal myocardial trabeculation [32]. The oligosaccharide ‘chondroitin sulfate’
could promote the proliferation of normal myocardial cells [33].

In these ICM-related functional classes, 37 differential genes were regarded as candidate ICM susceptibility genes.
With expression values of these candidate ICM susceptibility genes as classification features, ICM and normal samples
could be classified accurately based on the SVM classifier using four kernel functions. The SVM classifier using linear
and sigmoid kernel functions had the best classification accuracy (Figure 3).

ICM susceptibility biomarkers
ICM and normal samples were classified based on the SVM classifier using the linear kernel function with candidate
ICM susceptibility genes in each ICM-related functional class as classification features (Table 2). It was showed that
candidate ICM susceptibility genes in four ICM-related functional classes could classify samples of different statuses
with high accuracy (AUC > 0.85).

Furthermore, each candidate ICM susceptibility gene in these four functional classes was used as a classification
feature to classify samples with an SVM classifier, respectively. Eight genes with AUC values > 0.75 were identified
to be ICM susceptibility genes (Table 3).

Each lncRNA or miRNAs in significantly differentially expressed ceRNA triplets including ICM susceptibility genes
was further used as a classification feature to classify samples with an SVM classifier, respectively. Eight lncRNAs with
AUC values > 0.75 were identified to be ICM susceptibility lncRNAs (Table 3). miRNAs could not distinguish between
disease and normal samples very well (AUC < 0.75). Therefore, no miRNAs were identified as ICM susceptibility
miRNA.
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Figure 2. Functional enrichment analysis of differentially expressed genes in significantly differentially expressed ceRNA

triplets

ICM-related functional classes (the outer ring) and GO terms (the inner ring) significantly enriched by differentially expressed genes

in significantly differentially expressed ceRNA triplets including at least one differentially expressed miRNA or lncRNA. The axis

indicates FDR-adjusted P-value of the enrichment analyses.

Table 3 Classification accuracy of ICM susceptibility genes and lncRNAs

mRNA AUC values lncRNA AUC values

CD38 1 HAND2-AS1 0.9688

PKD1 0.875 DBH-AS1 0.8594

PSMB1 0.8594 LINC00900 0.8438

FLT4 0.8125 AC099778.1 0.8438

CELSR3 0.8125 SLC16A1-AS1 0.8282

EPHA3 0.8125 LINC00884 0.8125

CLK1 0.75 AL021368.2 0.7969

DVL2 0.75 TGFB2-AS1 0.75
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Figure 3. Classification accuracy of 37 candidate ICM susceptibility genes

ROC curves of the SVM classifier with 37 candidate ICM susceptibility genes as classification features using four kernel functions:

(A) the linear kernel, (B) the polynomial kernel, (C) the sigmoid kernel, and (D) the radial basis function kernel.

In total, eight ICM susceptibility genes (CD38, PKD1, PSMB1, FLT4, CELSR3, EPHA3, CLK1, and DVL2) and
eight ICM susceptibility lncRNAs (TGFB2-AS1, AL021368.2, LINC00884, LINC00900, AC099778.1, DBH-AS1,
HAND2-AS1, and SLC16A1-AS1) were identified as ICM susceptibility biomarkers.

Similarly, SVM classifiers based on the other three kernel functions (sigmoid, polynomial, radial basis) with these
ICM susceptibility genes and lncRNAs were also built. AUC values of susceptibility biomarkers were also higher than
0.75, suggesting high classification accuracy and stable classification efficiency of these susceptibility biomarkers.

To further validate the disease correlation of ICM susceptibility biomarkers, the classification accuracy of these ICM
susceptibility biomarkers (mRNAs and lncRNAs) was compared with the same number of randomly selected mRNAs
and lncRNAs from those differentially expressed or in significantly differential correlated pairs, respectively. Both the
ICM susceptibility genes and lncRNAs we identified had the highest classification accuracy (Figure 4). These results
indicated that the ICM susceptibility biomarkers were more correlated with ICM than other mRNAs or lncRNAs.

No ICM susceptibility genes or lncRNAs were verified to be directly associated with ICM by literature. However, five
ICM susceptibility genes and two ICM susceptibility lncRNAs were found to be involved in heart-related processes
or functions. Activation of PKD1 was shown to be as obligatory for contraction-induced glucose transporter type-4
translocation in cardiac muscle, which was essential to stimulate cardiac glucose uptake during increased energy
demand [34]. EPHA3 was associated with reduced bromodeoxyuridine incorporation in cardiomyocytes [35]. CD38
plays an essential role in cardiac hypertrophy since the cardiac hypertrophy was much more severe in wild-type
mice compared with CD38 knockout mice. Thus, CD38 could be a novel target for treating cardiac hypertrophy
[36]. The cell surface marker FLT4 specifically identify and enrich for a cardiovascular progenitor cell with trilineage
cardiovascular potential in vitro and the robust ability for differentiation into mature adult cardiomyocytes in vivo
[37]. DVL2, involved in outflow tract development, is a direct target of miR-138. Further, the functional variant
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Figure 4. Classification accuracy comparison of ICM susceptibility biomarkers

Classification accuracy of ICM susceptibility biomarkers (mRNAs and lncRNAs) and randomly selected mRNAs and lncRNAs from

those differentially expressed or in significantly differential correlated pairs.

rs139365823 in pre-miR-138 enhanced the miR-138-mediated inhibitory regulation of DVL2 and conferred the risk
for congenital heart disease in a Chinese population [38]. LncRNA LINC00884 was one of the top five lncRNAs with
the largest numbers of ICM associations in the study of He et al. [39].

Other three ICM susceptibility genes, CLK1, PSMB1, and CELSR3, were enriched in ICM-related functional
classes, metabolism, inflammatory immunity, and cell polarity, respectively. And one ICM susceptibility lncRNA
HAND2-AS1 was involved in energy metabolism, an ICM-related functional class since its knockdown promoted
the expression level of a serious of enzymes that involved in energy metabolism [40]. Subsequently, these three ICM
susceptibility genes and one ICM susceptibility lncRNA might participate in the pathogenesis and progression of
ICM. Further validation of other lncRNAs is necessary to confirm their importance in the context of ICM.

Discussion
ICM is a common heart disease that causes death in humans. No ICM biomarkers were deposited in existing dis-
ease associated databases. To identify ICM susceptibility biomarkers, in the present paper, a susceptibility biomarker
identification strategy based on significantly differentially expressed ceRNA triplets was proposed. For ICM and nor-
mal samples, significantly differentially expressed ceRNA triplets composed of significantly differential correlated
pairs among mRNAs, miRNAs, and lncRNAs were constructed. Differentially expressed genes in these significantly
differentially expressed ceRNA triplets were enriched in ICM-related functional classes. Combining functional in-
formation, ICM susceptibility biomarkers, including eight ICM susceptibility mRNAs and eight ICM susceptibility
lncRNAs, were further identified based on classification performance.

The ICM susceptibility genes enriched in four ICM-related functional classes could classify samples accurately, in-
cluding cardiovascular disease, which was associated with coronary angiogenesis and vascular endothelial growth fac-
tor receptor [41]; inflammatory immune, which was capable of causing myocardial ischemic injury [42]; metabolism,
which was related to the phosphorylation of PI3K and Akt in myocardial tissue of cardiomyopathy [43], and cell po-
larity, one of the fundamental causes of congenital heart disease [44].

The ICM susceptibility biomarkers we identified had high classification accuracy (AUC > 0.75) and had the poten-
tial to be diagnostic markers. These susceptibility biomarkers formed 10 significantly differentially expressed ceRNA
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Figure 5. Classification performance of five significantly differentially expressed ceRNA triplets from the ICM samples

ROC curves of significantly differentially expressed ceRNA triplets composed of (A) FLT4+mir-4635+LINC00900,

(B) FLT4+mir-6869+AC099778.1, (C) PKD1+mir-674+TGFB2-AS1, (D) PSMB1+mir-3619+AL021368.2, and (E)

PSMB1+mir-6801+AL021368.2.

triplets, 7 of which were identified from the ICM samples, and 3 were from the normal samples. The classification
efficiency of each of the 10 significantly differentially expressed ceRNA triplets was further evaluated. AUC values of
seven triplets were higher than 0.75, of which five were from the ICM samples (Figure 5) and two from the normal
samples (Figure 6). These seven triplets contained three ICM susceptibility genes (FLT4, PSMB1, and PKD1) and six
susceptibility lncRNAs. It was worth highlighting that FLT4 was in four of these significantly differentially expressed
ceRNA triplets, which was enriched in cardiovascular and metabolic functional classes and shown to be associated
with the development of the heart aorta [45]. So changes that have taken place in this gene itself and its regulatory
elements may disorder myocardial function. Other two significantly differentially expressed ceRNA triplets from the
normal samples (Figure 6) showed similar and good classification accuracy while two differentially expressed miR-
NAs with poor classification accuracy were contained. This indicated that mRNAs and lncRNAs might play vital roles
in the classification.

To exhibit the generalizability of our susceptibility biomarker identification strategy, it was performed on an-
other complex disease, chronic obstructive pulmonary disease (COPD). The data (GSE57148) based on the plat-
form of GPL11154 was downloaded from the GEO database, which contained 98 ICM and 91 normal samples. Eight
COPD susceptibility genes (CBX5, MIDN, FAM136A, NUFIP2, HMGN2, MPLKIP, MICA, and RLIM) and seven
COPD susceptibility lncRNAs (LINC00654, AC020978.8, AP006284.1, AC145207.5, NPTN-IT1, PSMD6-AS2, and
ADAMTSL4-AS1) were identified as COPD susceptibility biomarkers. Classification accuracy of these COPD suscep-
tibility biomarkers as classification features was evaluated. COPD susceptibility mRNAs (AUC = 0.827) or COPD sus-
ceptibility lncRNAs (AUC = 0.853) could distinguish between COPD and normal samples accurately. Moreover, more
than half of these COPD susceptibility genes were validated to be associated with COPD in literature of COPD-related
researches.
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Figure 6. Classification performance of two significantly differentially expressed ceRNA triplets from the normal samples

ROC curves of significantly differentially expressed ceRNA triplets composed of (A) FLT4+mir-6505+LINC00884 and (B)

FLT4+mir-4315-2+DBH-AS1.

The present study has several limitations that need to be addressed in future studies. First, the sample size of the
RNA-Seq data we used was relatively small. Second, RNA-Seq data were mapped to hg38.9 using HISAT in the present
study, which might cause the missing of important reads/genes and introducing more errors since HISAT is not
robust enough. Third, the relationships between mRNAs and lncRNAs were yet to be confirmed. Furthermore, no
experimental confirmation was performed for the identified biomarkers. Therefore, in the future work, with more
RNA-Seq data and reliable mRNA-lncRNA interactions generated, more confident ICM susceptibility biomarkers
could be identified, which would be further confirmed by other means, such as experiments.

Conclusions
In summary, combining ceRNA triplets and functional information, eight ICM susceptibility mRNAs and eight
ICM susceptibility lncRNAs identified by our susceptibility biomarker identification strategy could be susceptibil-
ity biomarkers and potential therapeutic targets for ICM. Given related ICM disease genes are rarely reported and
stored in public disease associated databases at present, the ICM susceptibility biomarkers identified in the present
study will contribute to the diagnosis and treatment of ICM. The proposed strategy based on significantly differen-
tially expressed ceRNA triplets would contribute to other complex diseases without diseases biomarkers in public
databases.

Author Contribution
Conceptualization, L.C. and W.L.; methodology, Y.Z.; software, Y.Z. and Y.W.; validation, Z.R., B.W., Y.L., Z.S., and W.L.; formal
analysis, Y.Z.; investigation, Y.H. and J.L.; resources, E.H. and G.D.; data curation, Y.W.; writing—original draft preparation, Y.Z.;
writing—review and editing, W.L.; visualization, Y.Z. and W.L.; supervision, L.C. and W.L.; project administration, L.C.; funding
acquisition, W.L. and L.C.

Competing Interests
The authors declare that there are no competing interests associated with the manuscript.

Funding
This work was supported by the National Natural Science Foundation of China [grant numbers 61702141, 61272388, 81627901];
the Fundamental Research Funds for the Provincial Universities in Heilongjiang Province [grant number 2017-KYYWF-0303];
the Innovative Scientific Research Funding Project of Harbin Medical University [grant number 2017JCZX46]; the Heilongjiang
Postdoctoral Funds for Scientific Research Initiation [grant number LBH-Q17132]; the Health and Family Planning Commission
Scientific Research Subject of Heilongjiang Province [grant number 2018478]; the National College Student Innovation and En-
trepreneurship Training Program [grant number 201710226011]; the University Student Innovation and Entrepreneurship Training

10 © 2020 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons
Attribution License 4.0 (CC BY).



Bioscience Reports (2020) 40 BSR20191731
https://doi.org/10.1042/BSR20191731

Program in Heilongjiang Province [grant number 201810226035]; the University Student Innovation and Entrepreneurship Train-
ing Program in Harbin Medical University [grant numbers 201810226080, 201810226082]; and the Harbin Applied Technology
Research and Development Project [grant number 2016RQQXJ105].

Abbreviations
ceRNA, competing endogenous RNA; COPD, chronic obstructive pulmonary disease; ICM, ischemic cardiomyopathy; SVM,
support vector machine.

References
1 Mueller, K.A.L., Heinzmann, D., Klingel, K., Fallier-Becker, P., Kandolf, R., Kilias, A. et al. (2017) Histopathological and immunological characteristics of

tachycardia-induced cardiomyopathy. J. Am. Coll. Cardiol. 69, 2160–2172, https://doi.org/10.1016/j.jacc.2017.02.049
2 Wray, N.R., Goddard, M.E. and Visscher, P.M. (2007) Prediction of individual genetic risk to disease from genome-wide association studies. Genome

Res. 17, 1520–1528
3 Li, W., Li, L., Zhang, S., Zhang, C., Huang, H., Li, Y. et al. (2016) Identification of potential genes for human ischemic cardiomyopathy based on

RNA-Seq data. Oncotarget 7, 82063–82073
4 Lu, Y.W. and Wang, D-Z. (2018) Non-coding RNA in ischemic and non-ischemic cardiomyopathy. Curr. Cardiol. Rep. 20, 115,

https://doi.org/10.1007/s11886-018-1055-y
5 Zhang, T., Tan, P., Wang, L., Jin, N., Li, Y., Zhang, L. et al. (2016) RNALocate: a resource for RNA subcellular localizations. Nucleic Acids Res. 45,

D135–D138
6 Das, S., Ghosal, S., Sen, R. and Chakrabarti, J. (2014) lnCeDB: database of human long noncoding RNA acting as competing endogenous RNA. PLoS

ONE 9, e98965, https://doi.org/10.1371/journal.pone.0098965
7 Zhang, Y., Liu, T., Chen, L., Yang, J., Yin, J., Zhang, Y. et al. (2019) RIscoper: a tool for RNA–RNA interaction extraction from the literature.

Bioinformatics 35, 3199–3202, https://doi.org/10.1093/bioinformatics/btz044
8 Lin, Y., Liu, T., Cui, T., Wang, Z., Zhang, Y., Tan, P. et al. (2020) RNAInter in 2020: RNA interactome repository with increased coverage and annotation.

Nucleic Acids Res. 48, D189–D197
9 Fang, X.N., Yin, M., Li, H., Liang, C., Xu, C., Yang, G.W. et al. (2018) Comprehensive analysis of competitive endogenous RNAs network associated with

head and neck squamous cell carcinoma. Sci. Rep. 8, 10544, https://doi.org/10.1038/s41598-018-28957-y
10 Pang, L., Hu, J., Zhang, G., Li, X., Zhang, X., Yu, F. et al. (2016) Dysregulated long intergenic non-coding RNA modules contribute to heart failure.

Oncotarget 7, 59676–59690, https://doi.org/10.18632/oncotarget.10834
11 Chen, S., Fan, X., Gu, H., Zhang, L. and Zhao, W. (2018) Competing endogenous RNA regulatory network in papillary thyroid carcinoma. Mol. Med. Rep.

18, 695–704
12 Shao, T., Wu, A., Chen, J., Chen, H., Lu, J., Bai, J. et al. (2015) Identification of module biomarkers from the dysregulated ceRNA–ceRNA interaction

network in lung adenocarcinoma. Mol. Biosyst. 11, 3048–3058, https://doi.org/10.1039/C5MB00364D
13 Chen, Q.-F., Huang, T., Si-Tu, Q.-J., Wu, P., Shen, L., Li, W. et al. (2020) Analysis of competing endogenous RNA network identifies a poorly

differentiated cancer-specific RNA signature for hepatocellular carcinoma. J. Cell. Biochem. 121, 2303–2317, https://doi.org/10.1002/jcb.29454
14 Kai-Chien, Y., Yamada, K.A., Patel, A.Y., Topkara, V.K., Isaac, G., Cheema, F.H. et al. (2014) Deep RNA sequencing reveals dynamic regulation of

myocardial noncoding RNAs in failing human heart and remodeling with mechanical circulatory support. Circulation 129, 1009–1021,
https://doi.org/10.1161/CIRCULATIONAHA.113.003863

15 Aken, B.L., Ayling, S., Barrell, D., Clarke, L., Curwen, V., Fairley, S. et al. (2016) The Ensembl gene annotation system. Database 2016, baw093
16 Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N. et al. (2009) The sequence alignment/map (SAM) format and SAMtools.

Bioinformatics 25, 1653–1654, https://doi.org/10.1093/bioinformatics/btp352
17 Mihaela, P., Pertea, G.M., Antonescu, C.M., Tsung-Cheng, C., Mendell, J.T. and Salzberg, S.L. (2015) StringTie enables improved reconstruction of a

transcriptome from RNA-seq reads. Nat. Biotechnol. 33, 290–295, https://doi.org/10.1038/nbt.3122
18 Anders, S., Pyl, P.T. and Huber, W. (2015) HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169,

https://doi.org/10.1093/bioinformatics/btu638
19 Mackowiak, S.D. (2011) Identification of novel and known miRNAs in deep-sequencing data with miRDeep2. Curr. Protoc. Bioinformatics 36, 12.101.
20 Pertea, M., Kim, D., Pertea, G.M., Leek, J.T. and Salzberg, S.L. (2016) Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie

and Ballgown. Nat. Protoc. 11, 1650, https://doi.org/10.1038/nprot.2016.095
21 McCarthy, D.J., Smyth, G.K. and Robinson, M.D. (2009) edgeR: a bioconductor package for differential expression analysis of digital gene expression

data. Bioinformatics 26, 139–140
22 Grames, M.S., Dayton, R.D., Jackson, K.L., Richard, A.D., Lu, X. and Klein, R.L. (2018) Cre-dependent AAV vectors for highly targeted expression of

disease-related proteins and neurodegeneration in the substantia nigra. FASEB J. 32, 4420–4427, https://doi.org/10.1096/fj.201701529RR
23 Maudsley, S., Devanarayan, V., Martin, B. and Geerts, H. (2018) Intelligent and effective informatic deconvolution of “Big Data” and its future impact on

the quantitative nature of neurodegenerative disease therapy. Alzheimers Dementia 14, 961–975
24 Date, Y. and Kikuchi, J. (2018) Application of a deep neural network to metabolomics studies and its performance in determining important variables.

Anal. Chem. 90, 1805, https://doi.org/10.1021/acs.analchem.7b03795
25 Song, L., Zhuang, P., Lin, M., Kang, M., Liu, H., Zhang, Y. et al. (2017) Urine metabonomics reveals early biomarkers in diabetic cognitive dysfunction. J.

Proteome Res. 16, 3180–3189, https://doi.org/10.1021/acs.jproteome.7b00168

© 2020 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons
Attribution License 4.0 (CC BY).

11

https://doi.org/10.1016/j.jacc.2017.02.049
https://doi.org/10.1007/s11886-018-1055-y
https://doi.org/10.1371/journal.pone.0098965
https://doi.org/10.1093/bioinformatics/btz044
https://doi.org/10.1038/s41598-018-28957-y
https://doi.org/10.18632/oncotarget.10834
https://doi.org/10.1039/C5MB00364D
https://doi.org/10.1002/jcb.29454
https://doi.org/10.1161/CIRCULATIONAHA.113.003863
https://doi.org/10.1093/bioinformatics/btp352
https://doi.org/10.1038/nbt.3122
https://doi.org/10.1093/bioinformatics/btu638
https://doi.org/10.1038/nprot.2016.095
https://doi.org/10.1096/fj.201701529RR
https://doi.org/10.1021/acs.analchem.7b03795
https://doi.org/10.1021/acs.jproteome.7b00168


Bioscience Reports (2020) 40 BSR20191731
https://doi.org/10.1042/BSR20191731

26 Zhou, Z., Shen, X., Tu, J. and Zhu, Z.J. (2016) Large-scale prediction of collision cross-section values for metabolites in ion mobility—mass
spectrometry. Anal. Chem. 88, 11084, https://doi.org/10.1021/acs.analchem.6b03091

27 Laura, D., Anbukarasi, M. and Bhavadharini, R. (2018) Gender differences in ischemic cardiomyopathy. Curr. Atheroscler. Rep. 20, 50
28 Shi, X., Li, W., Liu, H., Yin, D., Jing, Z., Shi, X. et al. (2017) The ROS/NF-κB/NR4A2 pathway is involved in H2O2 induced apoptosis of resident cardiac

stem cells via autophagy. Oncotarget 8, 77634–77648, https://doi.org/10.18632/oncotarget.20747
29 Ko, K.-Y., Wang, S.-Y., Yen, R.-F., Shiau, Y.-C., Hsu, J.-C., Tsai, H.-Y. et al. (2018) Clinical significance of quantitative assessment of glucose utilization in

patients with ischemic cardiomyopathy. J. Nucl. Cardiol., https://doi.org/10.1007/s12350-018-1395-4
30 Prabhu, S.D. (2018) The cardiosplenic axis is essential for the pathogenesis of ischemic heart failure. Trans. Am. Clin. Climatol. Assoc. 129, 202
31 Sánchez-Alonso, S., Alcaraz-Serna, A., Sánchez-Madrid, F. and Alfranca, A. (2018) Extracellular vesicle-mediated immune regulation of tissue

remodeling and angiogenesis after myocardial infarction. Front. Immunol. 9, 2799, https://doi.org/10.3389/fimmu.2018.02799
32 Passer, D., Vandevrugt, A., Atmanli, A. and Domian, I. (2016) Atypical protein kinase C-dependent polarized cell division is required for myocardial

trabeculation. Cell Rep. 14, 1662–1672, https://doi.org/10.1016/j.celrep.2016.01.030
33 Fu, J., Jiang, Z., Chang, J., Han, B., Liu, W. and Peng, Y. (2018) Purification, characterization of Chondroitinase ABC from Sphingomonas paucimobilis

and in vitro cardiocytoprotection of the enzymatically degraded CS-A. Int. J. Biol. Macromol. 115, 737–745,
https://doi.org/10.1016/j.ijbiomac.2018.04.117

34 Luiken, JJFP, Glatz, J.F.C. and Neumann, D. (2015) Cardiac contraction-induced GLUT4 translocation requires dual signaling input. Trends Endocrinol.
Metab. 26, 404–410, https://doi.org/10.1016/j.tem.2015.06.002

35 Li, Y.Y., Mi, Z., Feng, Y., Mctiernan, C.F., Zhou, R., Robbins, P.D. et al. (2001) Differential effects of overexpression of two forms of ephrin-A5 on neonatal
rat cardiomyocytes. Am. J. Physiol. Heart Circ. Physiol. 281, H2738–H2746

36 Guan, X.H., Hong, X., Zhao, N., Liu, X.H., Xiao, Y.F., Chen, T.T. et al. (2017) CD38 promotes angiotensin II-induced cardiac hypertrophy. J. Cell. Mol. Med.
21, 1492–1502

37 Ali, N., Katja, S.L., Ben, V.H., Denis, E., Michael, K., Peng, Z. et al. (2012) Characterization and therapeutic potential of induced pluripotent stem
cell-derived cardiovascular progenitor cells. PLoS ONE 7, e45603, https://doi.org/10.1371/journal.pone.0045603

38 Gao, X., Yang, L., Luo, H., Tan, F., Ma, X. and Lu, C. (2018) A rare Rs139365823 polymorphism in Pre-miR-138 Is associated with risk of congenital
heart disease in a Chinese population. DNA Cell Biol. 37, 109–116

39 He, W., Wei, D., Chen, S., Li, S. and Chen, W. (2017) Altered long non-coding RNA transcriptomic profiles in ischemic stroke. Hum. Gene Ther. 29,
719–732

40 Kang, Y., Zhu, X., Xu, Y., Tang, Q., Huang, Z., Zhao, Z. et al. (2018) Energy stress-induced lncRNA HAND2-AS1 represses HIF1α-mediated energy
metabolism and inhibits osteosarcoma progression. Am. J. Cancer Res. 8, 526

41 Lipiec, P., Wejner-Mik, P., Wdowiak-Okrojek, K., Szymczyk, E., Skurski, A., Napieralski, A. et al. (2016) Fusion of morphological data obtained by
coronary computed tomography angiography with quantitative echocardiographic data on regional myocardial function. Cardiol. J. 23, 264–269,
https://doi.org/10.5603/CJ.a2016.0015

42 Jong, R.C.M., Pluijmert, N.J., Vries, M.R., Pettersson, K., Atsma, D.E., Jukema, J.W. et al. (2018) Annexin A5 reduces infarct size and improves cardiac
function after myocardial ischemia-reperfusion injury by suppression of the cardiac inflammatory response. Sci. Rep. 8, 6753,
https://doi.org/10.1038/s41598-018-25143-y

43 Guo, C.A. and Guo, S. (2017) Insulin receptor substrate signaling controls cardiac energy metabolism and heart failure. J. Endocrinol. 233, R131,
https://doi.org/10.1530/JOE-16-0679
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