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ABSTRACT
Rapid release of biopharmaceutical products enables a more efficient drug manufacturing process. 
Multi-attribute methods that target several product quality attributes (PQAs) at one time are an 
essential pillar of the rapid-release strategy. The novel, high-throughput, and nondestructive multi- 
attribute Raman spectroscopy (MARS) method combines Raman spectroscopy, design of experiments, 
and multivariate data analysis (MVDA). MARS allows the measurement of multiple PQAs for formulated 
protein therapeutics without sample preparation from a single spectroscopic scan. Variable importance 
in projection analysis is used to associate the chemical and spectral basis of targeted PQAs, which assists 
in model interpretation and selection. This study shows the feasibility of MARS for the measurement of 
both protein purity-related and formulation-related PQAs; measurements of protein concentration, 
osmolality, and some formulation additives were achieved by a generic multiproduct model for various 
protein products containing the same formulation components. MARS demonstrates the potential to be 
a powerful methodology to improve the efficiency of biopharmaceutical development and manufactur-
ing, as it features fast turnaround time, good robustness, less human intervention, and potential for 
automation.
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Introduction

Formulated protein therapeutics make up the largest and 
fastest growing therapeutic market in the past two decades.1,2 

Increases in product development costs, loss of revenue to 
emerging biosimilars and growing diversity of therapeutic 
formats have placed increasing pressure on biomanufacturing 
to be more cost-efficient and productive.3 A typical quality 
control (QC) system for a formulated protein therapeutic 
comprises a panel of assays, with each responsible for mon-
itoring product quality attributes (PQAs) for release and 
stability (Table 1) and all labor intensive, time consuming, 
and cost ineffective. Advanced analytical solutions are needed 
to increase efficiency and enable cost-effective monitoring of 
PQAs throughout the lifecycle of a product while still ensur-
ing desired product quality.

One well-known rapidly emerging analytical technique 
for PQA monitoring of therapeutic proteins is the liquid 
chromatography mass spectrometry (LC-MS)-based multi- 
attribute method (MAM).4,5 MAM allows the characteriza-
tion and relative quantification of multiple post-transla-
tional modifications in a single MS run, thus offering 

higher specificity and efficiency for PQA monitoring during 
the biomanufacturing process than existing methods. MAM 
is used at different development stages and process steps to 
enable a better understanding of the impact of process 
parameters on PQAs. While the LC/MS-based MAM has 
demonstrated the value of using multi-attribute methods 
for protein therapeutics, it cannot measure all required 
PQAs in biopharmaceutical production, thus motivating 
the development of additional complementary multi-attri-
bute analytical techniques.

Raman spectroscopy has the potential to be a valuable 
multi-attribute method for characterizing biotherapeutics.6 

Raman spectroscopy is a nondestructive vibrational spectro-
scopic method that requires little to no sample preparation 
and is suitable for measuring aqueous samples. Raman 
spectroscopy measures the energy of the inelastic scattering 
of photons by analytes. The wavelength shifts from the 
excitation wavelength of a monochromatic light source 
correlate to the vibrational energies of chemical bonds. A 
molecule can have multiple vibrational modes, each causing 
characteristic scattering and resulting in multiple Raman 
peaks that provide rich spectral information. Raman 
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spectroscopy can simultaneously quantify the components 
of mixtures and provide insight into sample composition, 
structure, and conformation of analytes.7,8 The relationship 
between all the components with Raman responses and 
each wavenumber measurement in the Raman spectra can 
be modeled by multivariate data analysis (MVDA), which 
enables the predictions of multiple analytes or attributes in 
a complex mixture through the acquisition of a single 
spectrum.9–11

In biopharmaceutical development, Raman spectroscopy is 
increasingly being used as a process analytical technology (PAT) 
for bioprocess monitoring,6,12,13 with many established applica-
tions such as evaluating the components of the cell culture media,-
14,15 glucose and lactate concentration,16,17 antibody titer,18 and 
glycan occupancy.19 Raman spectroscopy has also been used to 
evaluate protein product identification,20,21 protein aggregation,-
22–24 protein oxidation,25 and protein–protein interaction,26 as 
well as for stressed material characterization.27 McAvan et al. 
demonstrated the capability of using Raman spectroscopy to dif-
ferentiate between force-degraded monoclonal antibody with dif-
ferent levels of PTMs.28 While Raman spectroscopy has been 
implemented as a quality control (QC) method in small-molecule 
drug development and manufacturing,29–32 and as a PAT and 
protein characterization tool in biopharmaceutical development, 
there is limited information regarding extensive PQA monitoring 
in formulated protein therapeutics using Raman spectroscopy 
because of the complexity of decoupling all the formulation com-
ponents (i.e., protein and excipients) in the Raman spectra. As an 
example, Figure 1a shows a representative spectrum acquired from 
a formulated monoclonal antibody therapeutic, mAb A, at the 
concentration of 30 mg/mL along with the individual spectra of 
each formulation component (20 mM histidine acetate, 240 mM 
sucrose, 0.06% polysorbate 20 (PS20), and 10 mM methionine). 
The convoluted fingerprint of all spectral contributions from the 
protein and formulation components shown in the spectrum 

makes it extremely challenging to identify a single peak correlated 
with a specific PQA. Therefore, as with other spectroscopic meth-
ods, MVDA models are required when using Raman spectroscopy 
to predict certain PQAs in a complex system such as a formulated 
protein.

The aim of this study was to explore the potential of 
Raman spectroscopy as a new type of multi-attribute method 
for PQA monitoring in formulated protein therapeutics. A 
novel multi-attribute Raman spectroscopy (MARS) workflow 
(shown in Figure 1b) was developed to measure and charac-
terize multiple PQAs. Both the feasibility and limitations of 
using Raman spectroscopy combined with MVDA as an alter-
native to the methods currently used for characterization and 
quantification of a variety of PQAs (Table 1), including for-
mulation components and post-translational modifications 
(PTMs) were assessed.

Results

MARS method optimization

The method optimization of MARS was performed on a set 
of mAb A samples (N = 55) with various levels of protein 
aggregation. Three factors, acquisition method optimiza-
tion, reference method variability assessment, and prepro-
cessing method optimization, were studied. Increasing total 
acquisition time improves the signal-to-noise ratio of the 
spectra. As shown in Figure 2a, the noise level reduces, 
while the number of scans increases. The partial least 
square (PLS) model on protein aggregation shows that the 
increasing number of scans also improves the model pre-
dictivity (Figure 2b). Therefore, all subsequent measure-
ments were generated using averaged spectra of 90 scans, 
resulting in an analysis time of 22.5 minutes for each 
sample.

Table 1. Feasibility assessment of using MARS for measuring the PQAs on a typical control system of formulated monoclonal antibody therapeutics.

Category Critical quality attribute Current analytical method
MARS 

feasibility

Appearance Color Visual Inspection N/A**
Clarity/Opalescence Instrumental turbidimetry N/A**
Physical State Visual Inspection N/A**

Formulation Components pH pH meter Yes
Osmolality Osmometer (Freezing point or vapor pressure) Yes*
Polysorbate 20 concentration High Performance Liquid Chromatography – Evaporating Light Scattering Detector 

(HPLC-ELSD)
Yes

Protein Concentration UV Spec Scan Yes*
Methionine Concentration Reversed-Phase Liquid Chromatography (RPLC) Yes*
N-acetyl Tryptophan 

Concentration
Reversed-Phase Liquid Chromatography (RPLC) Yes

Purity High Molecular Weight Forms Size Exclusion Chromatography (SEC) Yes
Low Molecular Weight Forms Yes
Acidic Region Ion exchange chromatography (IEC)/Imaged Capillary Isoelectric focusing (iCIEF) No
Basic Region
Afucosylation Hydrophilic Interaction Chromatography (HILIC) No
Galactosylation
High Mannose
Oxidation Reversed-Phase Liquid Chromatography (RPLC) Yes

Impurity Microbiological Purity Bioburden N/A**
Bacterial Endotoxin Bacterial Endotoxin N/A**

Bioactivity Potency Potency N/A**

* Multiproduct MARS models apply to these PQAs. 
** Not feasible for MARS. No assessment
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The variability of the reference methods significantly 
affect the model quality. While 15% differences in HMW 
forms was observed for the same sample between the 
duplicate measurements by size-exclusion chromatography 
(SEC) (Figure 2c), including both sets of SEC assay data 
into the model incorporated assay variability and reduced 
both Q2 and Root Mean Square Error from cross-validation 
(RMSEcv) (Figure 2d). The predictive power of the model 
depends on not only the size of the calibration set and the 
quality of the Raman spectra but also on the accuracy of 
the reference method values. Therefore, to improve the 
method quality, the mean values of duplicate reference 
method measurements were used for all the MARS models.

The preprocessing of the Raman spectra includes multiple 
filters such as the second-order Savitzky-Golay (SG) smoothing33 

for noise reduction, followed by standard normal deviation 
(SNV) for normalization, and finally a first-order derivative filter. 
The first-order derivative reduces the risk from the systematic 
offset in baseline between instruments, which is essential for low 

abundant excipients, such as PS20 and N-acetyl tryptophan 
(NAT). As shown in Figure 2e, a significant bias between two 
Raman instruments is observed with a set of PS20 solution range 
from 0 to 1.2 mg/mL without derivative filter. After treating with 
a first-order derivative filter, the same set of data shows a good 
correlation between signal intensity and PS20 concentration.

Multiproduct MARS assessment on quantitation of 
formulation-related PQAs

From the calibration set composed of 384 samples from five 
protein molecules, three samples were excluded as outliers 
during the principal component analysis (PCA) analysis. The 
remaining samples demonstrated that the multiproduct 
model is appropriate for measuring protein concentration, 
osmolality, and methionine concentration from cross valida-
tion and an external validation set of 55 samples. However, 
the multiproduct model is not appropriate for measuring pH 
and PS20 due to protein interference.

Figure 1. (a) Sample Raman spectra for a formulated protein (red) at 30 mg/mL concentration and all formulation components, including 20 mM histidine acetate 
(green), 240 mM sucrose (blue), 10 mM methionine (yellow), and 0.06% (w/v) PS20 (purple) in the finger-printing region. (b) The overall workflow of developing, 
validating and application of the MARS method. (c) Experimental design process of MARS for formulated protein.
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Figure 2. Optimization of the MARS method. (a) Heat map of absolute difference in intensity between each cumulative spectrum and the 90-scan spectrum with 15 s 
exposure per scan. The color scale indicates the magnitude of variability when compared to the longest acquisition spectrum at each wavenumber. Arbitrary units apply 
to the intensity after normalization and differentiation. (b) Root Mean Square Error from cross-validation (RMSEcv) plot compares the prediction ability of models with 
different acquisition times in the units of the product quality attribute. Statistics are shown for models generated from spectra with between 10 and 90 scans. (c) 
Observed values vs. predicted values of the response variable (Blue: data from measurement 1; Red: data from measurement 2). (d) RMSEcv based on the best PLS 
models using data only from measurement 1, data only from measurement 2, or combined data set in the units of protein aggregation. (e) Comparison of overlaid 
preprocessed spectra without (top) and with (bottom) first-order derivative. The color of the spectra indicates the concentration of the PS20. The bias between two 
instruments were eliminated with first-order derivative filter.
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Protein concentration, osmolality, and methionine 
concentration
Among the PQAs assessed, protein concentration (Figure 3a, B), 
osmolality (Figure 3d, e) and methionine concentration (Figure 
3g, h) correlate well with Raman spectra. Models for each attribute 
featured high R2

Y and Q2, low RMSEcv for the calibration set, and 
low root mean square error of prediction (RMSEP) for the valida-
tion set (Table S1). Prediction scores and Hotelling’s T2 of valida-
tion set shown in Figure S1A and S1B are helpful tools in 
identifying outliers and flagging potential errors occurred during 
the measurement. The outlier identified from Figure S1B is shown 
to be a true outlier from a failed acquisition of the spectrum 
(Figure S1C). The Raman shifts with major contributions to the 
protein concentration model as identified through variable impor-
tance in projection (VIP) analysis are those associated with amide 
backbones, aromatic amino acids (Tyr, Phe and Trp), and disulfide 
bonds (Figure 3c), which are chemical structures unique to pro-
teins. For osmolality, the contributing Raman shifts observed 
correspond to the C–O and C–C bond vibrations of sucrose (figure 
3f), which is the major contributor to osmolality in this 

formulation condition. The peak at 702 cm−1 is the only region 
showing significant contributions in the methionine model, which 
corresponds to the unique C–S stretch of methionine (Figure 3i).

pH and PS20
The models of pH and PS20 concentration show good correlation 
with high R2

Y and Q2 (both >0.85) for the calibration set (Figure 
S2A and S3A) but failed in predictions for validation-set samples 
containing proteins not included in the calibration set (Figure S2B 
and S3B). The RMSEP is significantly higher than RMSEcv for 
these two PQAs in the multiproduct model (Table S1). In the PLS 
model, pH is measured by protonated and deprotonated pairs of 
histidine (Figure S2C). PS20 can be distinguished by the CH2 
rocking from the alkyl chain in the polymer (Figure S3C). Both 
pH and PS20 models predict moderately well for samples contain-
ing proteins within the calibration set, but predict poorly for those 
containing proteins outside the calibration set, which strongly 
supports the existence of protein interference due to variations 
in the levels of histidine and CH2 groups present in different 
proteins. In addition, proteins acting as buffering agents also 

Figure 3. Multiproduct PLS model based on the Raman spectra of formulation-related PQAs. (a) Correlation between MARS and protein concentration in the calibration 
set through PLS model. (b) Correlation between MARS and protein concentration in the validation set through PLS model. (c) Overlaid pre-processed Raman spectra of 
all the calibration samples. Red circles highlight the wavenumbers with the highest VIP weight of protein concentration in the model shown in Figure 3a and labeled 
with the identified chemical structure. (d) Correlation between MARS and osmolality in the calibration set through PLS model. (e) Correlation between MARS and 
osmolality in the validation set through PLS model. (f) Overlaid pre-processed Raman spectra of all the calibration samples. Red circles highlight the wavenumbers with 
the highest VIP weight of osmolality in the model shown in Figure 3d and labeled with the identified chemical structure. (g) Correlation between MARS and free 
methionine concentration in the calibration set through PLS model. (h) Correlation between MARS and free methionine in the validation set through PLS model. (i) 
Overlaid pre-processed Raman spectra of all the calibration samples. Red circles highlight the wavenumbers with the highest VIP weight of free methionine in the model 
shown in Figure 3g and labeled with the identified chemical structure.

MABS e2007564-5



contribute to the pH model, which can cause interference.34 The 
protein interference observed for pH and PS20 concentration 
affects the predictability of the models and resulted in failure of 
the multiproduct approach for both PQAs. Therefore, we per-
formed a product-specific study to assess the feasibility of using 
MARS to measure pH and the concentration of low abundant 
formulation excipients like PS20.

Product-specific MARS assessment on quantitation of 
formulation-related PQAs

Product-specific model parameters were explored to determine 
whether improvements in the model performance for some 
PQAs were possible. First, for all concentration-related PQAs, 
the reference methods were switched from assay measurement 
to theoretical values calculated by the dilution because of the 
assay variability observed with some reference methods. 
Sample-size planning is another important aspect of any 
MVDA method.35 To determine the most cost-effective cali-
bration sample set size, the data in the previous multi-product 
model study (N = 384) was used to create and evaluate models 
using mini-calibration sets through the following 4-step pro-
cedure: 1) Randomly create a mini-calibration set of predefined 

size from a subset of the multiproduct dataset; 2) Build PLS 
models to predict protein concentration, osmolality, pH, and 
methionine concentration using the mini-calibration set; 3) 
Repeat Steps 1 and 2 for 14 different levels of mini-calibration 
set size; and 4) Calculate the RMSEcv for each PLS model and 
plot the RMSEcv as a function of the number of calibration 
samples. As shown in Figure S4, the flattened RMSEcv curve 
illustrates that significantly diminishing returns in decreasing 
RMSEcv occur typically above 100 samples. Based on this 
observation, a cost-effective calibration set size of 96 samples 
and a validation set size of 48 samples were chosen for the 
product-specific study.36 Compared to the multiproduct study, 
this study included assessment of an additional buffer compo-
nent, N-acetyl tryptophan (NAT) that was added to the for-
mulation as an anti-oxidant.37 By narrowing the study 
parameter ranges, the calibration set samples were closer to 
the target formulation condition of the molecule, and thus 
better model accuracy could be achieved.

The product-specific PLS models performed well for the 
prediction of protein concentration and osmolality (Figures S5 
and S6) with improved accuracy compared to the multiproduct 
models (Table S2). For pH, PS20 concentration and NAT con-
centration, the product-specific PLS models demonstrate good 

Figure 4. Product-specific PLS model based on the Raman spectra of formulation-related PQAs. (a) Correlation between MARS and pH in the calibration set through PLS 
model. (b) Correlation between MARS and pH in the validation set through PLS model. (c) Overlaid pre-processed Raman spectra of all the calibration samples. Red 
circles highlight the wavenumbers with the highest VIP weight of pH in the model shown in Figure 4a and labeled with the identified chemical structure. (d) Correlation 
between MARS and PS20 concentration in the calibration set through PLS model. (e) Correlation between MARS and PS20 concentration in the validation set through 
PLS model. (f) Overlaid pre-processed Raman spectra of all the calibration samples. Red circles highlight the wavenumbers with the highest VIP weight of PS20 
concentration in the model shown in Figure 4d and labeled with the identified chemical structure. (g) Correlation between MARS and n-acetyltryptophan (NAT) 
concentration in the calibration set through PLS model. (h) Correlation between MARS and NAT in the validation set through PLS model. (i) Overlaid pre-processed 
Raman spectra of all the calibration samples. Red circles highlight the wavenumbers with the highest VIP weight of NAT concentration in the model shown in Figure 4g 
and labeled with the identified chemical structure.
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correlation and accuracy (Figure 4a,b,d,e,g,h). The statistical 
properties of the product-specific PLS models are summarized 
in Table S2, with RMSEcv and RMSEP close to or lower than the 
variability of the current reference method. The plot of predic-
tion scores and Hotelling’s T2 of validation set is shown in 
Figure S7A and S7B, with no outlier identified. In this experi-
ment, the target pH (5.8) was close to the pKa2 of histidine (6.0); 
thus, the histidine in solution was present in its both protonated 
and deprotonated forms. The pH of the solution is related to the 
abundance of both forms, which appear in the Raman spectra 
corresponding to spectral changes at 1600 cm−1 due to the 
imidazole ring stretch (Figure 4c).38,39 Multiple spectral regions 
have significant contributions in the PS20 model, which align 
with the pure PS20 spectra described in prior studies.40,41 The 
region of 1000–1700 cm−1 corresponding to C–C and C–H 
vibrations from the alkyl chain did not contribute significantly 
to the multiproduct model, but contributes strongly in the 
product-specific model because of the interference from the 

amide peaks from the protein backbone (Figure 4f). The char-
acteristic Raman peaks of tryptophan around 1580 cm−1 and the 
acetyl group around 1215 cm−1 are heavily weighted in the PLS 
model for NAT concentration (Figure 4i). The tryptophan peak 
corresponds to the tryptophan portion of NAT’s structure and 
the acetyl group peak differentiates free NAT in solution from 
the tryptophan residues in the protein.

Product-specific MARS assessment on characterizing 
protein purity-related PQAs

The overall PLS model performances of using MARS for pro-
tein purity-related PQAs are summarized in Table S3. The five 
pure stressed materials were originally included in the sample 
set, but identified as outliers during the PCA. Thus, the pure 
stressed materials are not included in the PLS modeling. For 
size variants, good correlations with R2Y > 0.85 and Q2 > 0.75 
(Table S3) between measurements by MARS and SEC were 

Figure 5. Product-specific PLS model based on the Raman spectra of protein purity-related PQAs. (a) Correlation between MARS in PLS prediction and protein 
aggregation measured by size exclusion chromatography (SEC). (b) Overlaid pre-processed Raman spectra of all the calibration samples. Red circles highlight the 
wavenumbers with the highest VIP weight of protein aggregation in the model shown in Figure 5a and labeled with the identified chemical structure. (c) Correlation 
between MARS in PLS prediction and protein fragments measured by SEC. (d) Overlaid pre-processed Raman spectra of all the calibration samples. Red circles highlight 
the wavenumbers with the highest VIP weight of protein fragments in the model shown in Figure 5c and labeled with the identified chemical structure. (e) Correlation 
between MARS in PLS prediction and protein oxidation measured by reversed-phase liquid chromatography (RPLC). (f) Overlaid pre-processed Raman spectra of all the 
calibration samples. Red circles highlight the wavenumbers with the highest VIP weight of protein oxidation in the model shown in Figure 5e and labeled with the 
identified chemical structure.
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shown in PLS models for both protein aggregation and frag-
mentation (Figure 5a and c). Within this dataset, there are 
multiple mechanisms of protein aggregation, including nuclea-
tion dominated, chain polymerization, and associated poly-
merization, which might cause change in multiple regions on 
the Raman spectra.24 In this experiment, since the dominant 
form of aggregate is dimer, the primary mechanism of aggre-
gate formation is nucleation dominated. The amide III region 
near 1200 cm−1 corresponds to the formation of the β-sheet.42 

The disulfide structural change reflected in the region between 
500 and 700 cm−1 is expected during the formation of the 
protein aggregation (Figure 5b).42,43 The heat-induced aggre-
gation from thermal stress leads to higher-order structure 
change, which leads to the spectral changes associated with 
C–H deformation at around 1320 cm−1, C=N stretching at 
1450 cm−1, and phenylalanine (Phe) near 1000 cm−1.23,44 The 
region between 770 and 900 cm−1 was also found to be critical 
for detecting protein aggregation formation with tyrosine 
(Tyr)- and tryptophan (Trp)-associated Raman shifts, espe-
cially aggregation changes related to protein folding and 
unfolding.22,28,44,45 Protein fragments measured by SEC also 
correlated well with Raman spectra (Figure 5c). Protein frag-
ments detected by SEC are primarily attributed to antibody 
antigen-binding and Fc domains, which are captured in the 
Raman spectra as the C–S stretch band between 650 and 700 
cm−1, indicating disulfide reduction and protein higher-order 
structure changes reflected in the amide I region and other 
regions associated with multiple aromatic amino acids.

The oxidation level measured by MARS correlates well with 
the protein oxidation level measured by RPLC (Figure 5e, 
Table S3). The oxidation model showed strong dependence 
on the 702 cm−1 band associated with the C–S stretch, which 
indicates Raman spectroscopy is capable of probing methio-
nine oxidation in proteins as shown in prior literature.25 In 
addition, the highly weighted tryptophan peak near 880 cm−1 

corresponds to changes in the hydrogen bonds in tryptophan, 
which indicates that tryptophan is oxidized through radical 
reactions during 2,2ʹ-azobis(2-amidinopropane) dihydrochlor-
ide (AAPH) and light stress.28,46

Charge variants and glycosylation variants show poor correla-
tion to Raman spectra (Figures S8 and S9, Table S3). The R2Y and 
Q2 are both low for all charge and glycan PQAs. The charge 
variants contain a variety of protein modifications, including 
deamidation, isomerization, glycation in acidic variants and C- 
terminal lysine, and terminal valine-histidine-serine in basic var-
iants and potential protein conformational variants. Decoupling 
all of the different types of modifications separated by ion- 
exchange chromatography or imaged capillary isoelectric focusing 
may require a much larger sample set or may be impossible using 
MARS. The basic variants have relatively better correlation, which 
may come from their more defined components (e.g., C-terminal 
lysine). For glycosylation variants, the current benchtop Raman 
spectroscopic system might not have sufficient sensitivity to dis-
tinguish different structural compositions of the complex glycan 
structure. In addition, the chemical bonds in glycan could be 
heavily outweighed by protein and sucrose in the formulation. 
Therefore, MARS is not a suitable method for measuring the 
charge and glycosylation variants for protein therapeutics, while 
LC/MS-based MAM is a more suitable method for that purpose.

Discussion
As shown in the results, MARS demonstrates the capability of 
quantitatively measuring multiple formulated protein PQAs 
within a single method and has the potential to be used for 
biopharmaceutical applications. The development of the 
MARS method follows the near IR (NIR) guidance documents 
from the U.S. Food and Drug Administration and European 
Medicines Agency to fulfill the industrial requirements for 
method validation because MARS and NIR are both spectro-
scopy-based chemometirc quantitation methods.47,48 Risk 
assessment for using MARS in place of an existing method 
will be required for each PQA based on the circumstance of the 
usage. In this study, the feasibility of MARS was assessed by 
demonstrating the method comparability with the existing 
method and validating the MVDA model.

The model validation is a critical step to ensure model 
reliability, robustness, and equivalence to the reference 
method. PLS models are prone to over-fitting, which may 
overestimate their predictive ability. During the MARS method 
development, multiple approaches were taken to ensure the 
models are not over-fitted.

First, during the calibration set design, the DOE approach 
was applied to both calibration and validation sets. This 
approach was used to reduce the chances of interference between 
PQAs. In the formulation-related PQA studies, since each com-
ponent is relatively orthogonal, the specificity and robustness of 
the model were improved by co-varying all formulation compo-
nents to fill the multi-dimensional design space. In the protein 
purity-related PQA studies, different stressed materials were 
included to cover various degradation pathways.

During the MVDA method development, the number of 
components (N) in each PLS model were determined by max-
imizing the Q2, which first increases then decrease as N 
increases. In most of our models except one, the N is close to 
or less than 10. Permutation tests with 100 permutations were 
performed for all the models. The permutation plots (Figures 
S10, S11, and S12) demonstrate that the models are founded 
and robust, as all blue Q2 values to the left are lower than the 
original points to the right, and the blue regression line of the 
Q2 points intersects the vertical axis (on the left) at or below 
zero. Finally, the models to be used for quantitation purposes 
were validated by predicting an independent set of validation 
samples. For multi-product models, two proteins outside the 
calibration set were included in the validation set to assess if the 
models could be used across different types of proteins with the 
same buffer platforms. The precision of Raman spectra acqui-
sition was assessed by measuring an unknown sample on both 
instruments three times to calculate the intermediate precision 
(Table S4). The method's robustness was evaluated by measur-
ing one mAb and its thermal-stressed form under the same 
formulation condition to assess the protein interference and by 
measuring the same sample at reduced laser power (Table S5). 
These results demonstrate that MARS is precise and robust for 
quantitation of formulation related PQAs. All the RMSEPs, 
RMSEcvs, and standard deviations are below or similar to the 
variability of the reference methods. Therefore, we conclude 
that the models are validated for use.
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These MVDA models were validated both with statistical 
parameters and by linking the MVDA and physicochemical 
properties of the PQAs. All the wavenumbers with high contri-
butions in the PLS model were found to align with the expected 
chemical structure change caused by PQA. In addition, these 
wavenumbers with high contributions in the MVDA model are 
close to zero in the pre-processed spectra, which includes a first- 
order derivative step. Therefore, in the original Raman spectra 
shown in Figure S13, these regions are PQA-related peaks and 
correctly picked up during the MVDA. This observation pro-
vides strong evidence that MARS is able to differentiate between 
various formulation components and quantitate the PQAs.

The comparison between MARS and each reference method 
is essential to demonstrate the feasibility for MARS replacing 
the existing method. The existing analytical method was used 
as the reference method in training and validation in the 
multiproduct study. The comparison between MARS and the 
existing method was measured by the correlation coefficient of 
the calibration set and the RMSEP of the validation set. 
Although Raman spectra acquisition by itself shows good 
repeatability and intermediate precision, the quality of a 
MARS model also relies on the accuracy and precision of the 
reference method. As shown in the multiproduct formulation 
PQA study, the reference methods with high accuracy and 
precision showed a good MARS model (e.g., SoloVPE method 
for protein concentration); reference methods with relative 
high variability show a low-quality MARS model with high 
number of components and low predictivity (e.g., HPLC- 
ELSD method for PS20 concentration).

The quality of the MARS model for PS20 concentration was 
improved by using volumetric calculation as the reference 
method. Since the theoretical calculated value was used as a 
reference in the product-specific model development, the exist-
ing method and MARS were used on the same set of qualifica-
tion samples to demonstrate method comparability. The 
comparison between MARS and the existing methods is 
demonstrated by the two-sided t-test (TOST) method with a 
predefined maximum allowable difference (MAD), which is 
based on the current method accuracy, precision, and product 
specification. As two examples shown in Figure 6, the TOST 

test shows MARS is comparable with SoloVPE and HPLC- 
ELSD for measuring protein concentration and PS20 concen-
tration, respectively, at a confidence level of 99%. These results 
demonstrate the advantage of using volumetric calculation as 
an alternative reference value in certain circumstances, while 
the accuracy or precision of the reference methods may be 
impacted by matrix effects. However, the volumetric calcula-
tion also has its own limitation on the reliability of stock 
solution concentration and pipetting accuracy of the auto-
mated platform. For each product and PQA, a case-by-case 
assessment needs to be performed on the choice of reference 
method.

In summary, we report here the development of a rapid, 
noninvasive MARS method for protein therapeutic testing. By 
combining Raman spectroscopy and MVDA, MARS can eval-
uate the relationship between PQAs and individual Raman 
shifts, and measure multiple PQAs of formulated protein ther-
apeutics in one single acquisition. VIP analysis is used to 
identify the spectral basis of the PQA measurements based on 
the weights of each statistical MVDA model, providing a che-
mical basis for interpretation of models that are traditionally 
characterized purely by statistical methods. Initial feasibility 
studies indicate that MARS can quantitate protein concentra-
tion, osmolality, pH, PS20 concentration, methionine concen-
tration, and NAT concentration methods and potentially be 
used in place of existing method for these PQAs. MARS also 
shows substantial potential as a tool for characterizing protein 
modification-related PQAs, including aggregation, fragmenta-
tion, and oxidation. MARS could potentially be a good com-
plementary method comparing with LC/MS peptide map- 
based MAM for the testing of formulated protein therapeutics 
by measuring the formulation- and size-related quality attri-
butes that LC/MS peptide map-based MAM cannot measure. 
In addition, MARS provides a holistic overview of formulated 
protein under native state, while LC/MS peptide map-based 
MAM examines detailed post-translational modifications of 
protein down to single amino acid level. We believe continuous 
technology development will enable MARS to characterize 
protein therapeutics noninvasively under native conditions 
and replace multiple existing QC assays, thereby potentially 

Figure 6. Method comparison between MARS and existing analytical method with the product-specific models (N = 48). (a) Method comparison between MARS and 
SoloVPE for protein concentration. MARS performance is comparable with SoloVPE (b) Method comparison between MARS and HPLC-ELSD for PS20 concentration. 
MARS shows superior accuracy to HPLC-ELSD.
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saving substantial costs and resources for biopharmaceutical 
development and manufacturing and shorten the testing time 
by several days. With the parallel technology advance to speed 
up the biological assays such as bioactivity and bioburden, the 
multi-attribute methods and rapid biologic testing can form a 
complete landscape of rapid release of protein therapeutics.

Materials and methods

Materials

The proteins used in this study were manufactured through the 
Chinese hamster ovary (CHO) cell culture process followed by 
downstream purification at Genentech Inc. (South San 
Francisco, CA, USA).49 Five stressed proteins (AAPH oxida-
tion, low pH, high pH, light, and thermal stresses) were pre-
pared in the Pharmaceutical Development department at 
Genentech (South San Francisco, CA, USA). All other chemi-
cals and reagents were purchased from MilliporeSigma 
(Burlington, MA, USA).

MARS data acquisition and data analysis

All Raman spectroscopic analyses were carried out using two 
Kaiser RamanRXN2 instruments (Kaiser Optics, Ann Arbor, 
MI, USA) with identical setup. Both instruments were 
equipped with a 785 nm excitation laser source with the laser 
power at its maximum output, 400 mW. A sample volume of 
200 μL of formulated protein without any sample preparation 
was loaded into a 500 μL quartz cuvette with a 10 mm light 
path (Hellma Analytics, Plainview, NY, USA) and placed inside 
the enclosed sample compartment (Kaiser Optics, Ann Arbor, 
MI, USA). The laser power in the sample ranges between 200 

and 250 mW on different instruments. The scattered light was 
detected by a contactless RamanRXN probe with a NCO-0.4- 
NIR optic. The distance between the probe and cuvette and 
focal plane was optimized prior to the experiment to maximize 
the signal. The laser was controlled by Invictus Laser control. 
Spectra in the range of 150–3425 cm−1 were acquired with a 1 
cm−1 resampling interval. Each spectrum was collected for 
22.5 minutes (90 scans of 15 second exposure time per scan) 
with cosmic ray correction with iCRaman (Kaiser Optics, Ann 
Arbor, MI, USA). Additional experimental details of the opti-
mization of the acquisition method are included in 
Supplemental material S1.1.

The spectral data were exported and aligned with the refer-
ence method results through an R script50 developed in-house. 
MVDA was carried out using SIMCA Version 15.0.2 (Sartorius 
Stedim, UMEA, Sweden). The outliers were identified by PCA 
and the quantitative model was established by PLS regression. 
The VIP analysis was used for spectral interpretation and 
identification of key Raman wavenumber shifts, which corre-
spond to chemical bond changes in the PQA. Both cross 
validation and external validation were used to validate the 
quantitative models. Additional experimental details of data 
analysis are included in Supplemental material S1.2.

Feasibility assessment of MARS on measuring the PQAs for 
formulated protein therapeutics

To assess the feasibility of MARS to measure protein PQAs, 
several studies were performed to evaluate all the PQAs that 
Raman spectroscopy has the potential to detect (Table 1). 
Formulation-related PQAs and purity-related PQAs were 
split into two individual studies to decrease the number of 
samples to fill the design space of the training model to a 

Table 2. Experimental Design of the Multiproduct Models for the protein formulation PQAs.

Formulation components Target Calibration set range Validation set range

Protein Type N/A mAb B (96 samples) 
mAb C (96 samples 
mAb D (48 samples) 
BsAb A (96 samples) 
BsAb B (50 samples)

mAb B (4 samples) 
mAb C (2 samples) 

mAb E (19 samples) 
BsAb A (12 samples) 
Fab A (18 samples)

Protein Concentration Varies 0–100 mg/mL 10–70 mg/mL
pH 5.5 4.5–6.5 5–6.5
PS20 Concentration 0.6 mg/mL 0–2.0 mg/mL 0.4–1 mg/mL
Sucrose Concentration 240 mM 0–360 mM 60–300 mM
Histidine Acetate Concentration 20 mM 10–30 mM 20 mM
Methionine 10 mM 0–20 mM 4–16 mM

The variety of osmolality is introduced by adjusting the concentration of all components in the formulation including sucrose, histidine acetate, methionine, PS20, and 
protein.

Table 3. Experimental design of the product-specific models for the protein formulation PQAs.

Formulation components Target Calibration set range Validation set range

Protein Concentration 30 mg/mL 20–40 mg/mL 24–36 mg/mL
pH 5.8 5.0–6.5 5.2–6.2
PS20 Concentration 0.6 mg/mL 0.2–1.2 mg/mL 0.2–1.0 mg/mL
Sucrose Concentration 240 mM 120–360 mM 180–300 mM
Histidine Acetate Concentration 15 mM 10–20 mM 10–20 mM
Osmolality 249–349 mOsmo/kg 162–485 mOsmo/kg 235–409 mOsmo/kg
NAT Concentration 0.3 mM 0–0.5 mM 0.1–0.5 mM
Methionine Concentration 10 mM 5–15 mM 10 mM

The variety of osmolality is introduced by adjusting the concentration of all components in the formulation including sucrose, histidine acetate, methionine, PS20, NAT, 
and protein.
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reasonable size. In the formulation-related PQA study, both 
multi-product study and product-specific study were 
performed.

DOEs were used to introduce sufficient variation and pre-
vent interference between PQAs. The experimental design 
concepts are summarized in Figure 1c. For each component, 
the range of the validation set was designed to cover the desired 
specification and the range of the calibration set was designed 
to cover the validation range (Tables 2 and 3). The calibration 
and validation sets were generated based on DOE methodology 
with custom design using JMP 11 software (SAS Institute, 
Cary, NC, USA).

To assess the feasibility of using MARS to quantitate 
formulation-related PQAs, one multi-product study and 
one product-specific study were performed at the target 
formulation of 20 mM histidine acetate, 240 mM sucrose, 
10 mM methionine, and 0.06% (w/v) PS20, with protein 
concentrations between 0 and 100 mg/mL and pH between 
5–6 selected. The assessed formulation-related PQAs were 
protein concentration, osmolality, pH, PS20 concentration, 
methionine concentration, and NAT concentration. 
Supplemental material S2.1 and Table 2 show the detailed 
design of the multi-product study and Supplemental mate-
rial S2.2 and Table 3 show the detailed design of the 
product-specific study. Although both designs target the 
same formulation platform in this study, formulations 
from other buffer systems should follow the same concept 
and methodology for the experimental design.

To assess the feasibility of using MARS to characterize 
purity-related PQAs, four representative categories of the pro-
tein purity-related PQAs were assessed: size variants, charge 
variants, glycosylation variants, and oxidation variants. 
Supplemental material S2.3 shows the detailed designs of pro-
tein purity-related PQA studies. The purity-related PQAs were 
only assessed on the product-specific model because the com-
plex structural heterogeneity of monoclonal antibody product 
variants made the multi-product model almost impossible.
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