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Abstract

Motivation: By testing for associations between DNA genotypes and gene expression levels, expression quantita-
tive trait locus (eQTL) analyses have been instrumental in understanding how thousands of single nucleotide var-
iants (SNVs) may affect gene expression. As compared to DNA genotypes, RNA genetic variation represents a
phenotypic trait that reflects the actual allele content of the studied system. RNA genetic variation at expressed SNV
loci can be estimated using the proportion of alleles bearing the variant nucleotide (variant allele fraction, VAFRNA).
VAFRNA is a continuous measure which allows for precise allele quantitation in loci where the RNA alleles do not
scale with the genotype count. We describe a method to correlate VAFRNA with gene expression and assess its
ability to identify genetically regulated expression solely from RNA-sequencing (RNA-seq) datasets.

Results: We introduce ReQTL, an eQTL modification which substitutes the DNA allele count for the variant allele
fraction at expressed SNV loci in the transcriptome (VAFRNA). We exemplify the method on sets of RNA-seq data
from human tissues obtained though the Genotype-Tissue Expression (GTEx) project and demonstrate that ReQTL
analyses are computationally feasible and can identify a subset of expressed eQTL loci.

Availability and implementation: A toolkit to perform ReQTL analyses is available at https://github.com/HorvathLab/
ReQTL.

Contact: lfspurr@gwmail.gwu.edu or horvatha@gwu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Quantitative trait loci (QTL)-based approaches have served as a major
tool to uncover genetic variants regulating phenotypic features. QTL
methods have been successfully applied to a variety of molecular traits,
including gene expression (eQTL), splicing (sQTL), protein expression
(pQTL), methylation (meQTL), chromatin accessibility (chQTL/caQTL)

and histone modification (hQTL/cQTL) (Aguet et al., 2017; De Almeida
et al., 2018; Albert and Kruglyak, 2015; Atak et al., 2013; Brandt and
Lappalainen, 2017; Heinig, 2018; Ko et al., 2017; Li et al., 2015;
Odhams et al., 2017; Weiser et al., 2014; Winter et al., 2018). To correl-
ate genetic variants with a trait of interest, the vast majority of these
methods utilize the genotypes obtained through DNA analysis for each
single nucleotide variant (SNV) locus.
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With the recent advances in methods to call SNVs from RNA-
seq data (Van der Auwera, et al., 2013; Deelen et al., 2015;
Horvath, et al., 2013; Piskol et al., 2013), eQTL studies using geno-
types inferred from RNA-seq have emerged. These studies have
demonstrated sufficient power to identify genetically regulated ex-
pression and have generated valuable sets of genetic data (Tung
et al., 2015). Importantly, such approaches enable QTL analyses
using only RNA-seq data, making it possible to explore datasets for
which matched DNA data is not available.

For diploid genomes, a commonly used measure for quantitation
of variant alleles at expressed SNV loci in RNA is the variant allele
fraction (VAFRNA). VAFRNA can be estimated from RNA-seq data
(VAFRNA ¼ nvar/(nvar þ nref)), where nvar and nref, are the variant
and reference sequencing read counts, respectively (Movassagh
et al., 2016). In contrast to the categorical genotypes (DNA-variant
allele count of 0, 1 and 2, corresponding to homozygous-reference,
heterozygous and homozygous-variant genotype, respectively),
VAFRNA is a continuous measure which allows for precise allele
quantitation in loci where the RNA alleles do not scale with the
genotype count. These include SNV loci under allele specific expres-
sion (ASE-SNVs, which are often subject to expression regulation,
or are co-allelic with expression regulatory SNVs) and loci subjected
to RNA-editing. Both ASE and RNA-editing can be extensively
regulated through RNA-binding molecules, including those involved
in transcript generation, processing, stability and structural mainten-
ance (Casamassimi et al., 2017; Chess, 2016; Do et al., 2017;
Eisenberg and Levanon, 2018; Gagnidze et al., 2018; Imprialou
et al., 2017; Moreno-Moral et al., 2017; Vandiedonck, 2018).
Assessment of correlations between VAFRNA and gene expression
can be potentially used to assess the above regulatory relationships.

Herein, we propose a method to assess SNV-gene expression
relationships based on VAFRNA-derived information on genetic vari-
ation; we call the method ReQTL (RNA-eQTL). We have based our
model on the same assumption underlying eQTLs: if a given variant
affects the expression of a given gene, the expression of this gene
scales with the number of alleles harboring the variant of interest.
This assumption intuitively encompasses both DNA-mediated
effects, where the RNA allele abundance scales with the DNA-allele
count, and effects resulting from solely RNA-mediated interactions.
We note that ReQTL analyses are confined to expressed SNVs and
do not identify transcriptionally silent regulatory loci. As a result,
ReQTL analyses are expected to capture only a subset of the eQTL
loci, and are likely to highlight SNVs that are co-allelic (in phase)
with an actual regulatory or causative variant.

ReQTL analyses can be run directly on computational platforms
designed for eQTL analysis. We exemplify an implementation of
ReQTL using the popular software Matrix eQTL (Shabalin, 2012)
on RNA-seq data obtained from the Genotype-Tissue Expression
(GTEx) project (www.gtexportal.org, phs000424.v7), from three
different tissue types: Nerve-Tibial, Skin-Sun-Exposed (lower leg)
and Skin-Not-Sun-Exposed (suprapubic). The proposed pipeline
(Fig. 1) employs publicly available packages for processing of
sequencing data, and a toolkit for ReQTL-specific data transform-
ation (https://github.com/HorvathLab/ReQTL). In addition, we
apply and compare two parallel strategies to correct for allele-
mapping bias, known to affect VAFRNA estimation: mapping to an
SNV-containing index using HISAT2 (Kim et al., 2015), and re-
moval of reads mapped ambiguously after re-mapping with the al-
ternative allele (WASP, Van de Geijn et al., 2015). Finally, we
systematically compare ReQTL and eQTL analyses performed on
the same datasets, and analyze the subsets of variants identified by
both and exclusively by either of the methods.

2 Materials and methods

2.1 Samples
The data and analyses presented in the current publication are based
on the use of study data downloaded from the dbGaP web site,
under dbGaP accession phs000424.v7.p2 (Genotype-Tissue
Expression, GTEx). A total of 659 raw RNA-seq datasets from three

different body sites—Nerve–Tibial (NT, 197 samples), Skin-
Exposed, (SkE, 243 samples) and Skin-Non-Exposed (SkN, 216
samples)—were downloaded on 06/10/18 (Supplementary Table
S1). The samples were selected based on the availability of directly
estimated genotypes (for eQTL comparisons). All the RNA-seq
libraries were generated using non-strand specific, polyA-based
Illumina TruSeq protocol and sequenced to a median depth of 78
million 76-bp paired-end reads. The selection of tissue types was
based on the availability of more than 150 samples with genotypes,
and consideration for assessment of both distinct (NT versus Skin)
and related (SkE versus SkN) tissue types.

2.2 RNA-seq data processing
SNV-aware alignment was performed using two strategies in paral-
lel: (1) HISAT2 with an SNV index (Kim et al., 2015), and (2)
STAR alignment (Dobin, et al., 2013) followed by removal of am-
biguously aligned reads using WASP (Van de Geijn et al., 2015).
The alignments were processed downstream in parallel, and identi-
cal sets of genes and SNVs were used for between-pipelines com-
parative analyses (Fig. 2).

2.2.1 Alignment using HISAT2 with SNV index

RNA-seq reads were aligned to the latest release of the human refer-
ence genome (hg38/GRCh38, Dec 2013) using HISAT2 (v. 2.1.0)
with a SNV and transcript annotation index (Kim et al., 2015). The
SNV index was pre-built using DbSNP 144, and downloaded from
the HISAT2 reference repository; (https://ccb.jhu.edu/software/-
hisat2/index.shtml). The generated alignments were sorted by coor-
dinates, indexed (Li et al., 2009) and used for estimation of both
gene expression (GE) and variant calling with subsequent VAFRNA

assessment.

2.2.2 Alignment using STAR-WASP pipeline

First, we aligned the RNA-seq reads to GRCh38, using STAR
v.2.6.1c in 2-pass mode with transcript annotations from assembly
GRCh38.79. We called SNVs on the alignments (see below) and
combined the SNVs called across all samples from a tissue type into
a list of unique SNV positions. This list was then used as an input to

Fig. 1. Major steps of the ReQTL analyses (differences from eQTL analysis are out-

lined in red). SNV-aware alignments are used to generate gene expression data;

TPM values are quantile transformed and used to generate the gene expression

matrix (exemplified by build_gene-exp_matrix.R). Lists of genomic positions can be

built using any custom set of positions of interest (i.e. dbSNP). Alternatively, lists of

genomic positions can be generated through variant call and subsequent retainment

of the unique variant genomic loci across the sample set. At each genomic position

in the list, the reference and variant number of RNA-seq reads are counted from the

alignments and used to estimate VAFRNA in each individual sample from the set

(https://github.com/HorvathLab/NGS/tree/master/readCounts). The VAFRNA esti-

mations are used to build the VAF matrix (exemplified by build_VAF_matrix.R).

Covariates can be accounted for by using approaches similar to the ones used in

eQTL analyses. The three matrices are then used as input for Matrix eQTL (exem-

plified by run_matrix_ReQTL.R). (Color version of this figure is available at

Bioinformatics online.)
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WASP (Van de Geijn et al., 2015) to test for allele mapping bias and
to remove reads with ambiguous mapping due to an SNV. The gen-
erated alignments were processed for GE and VAF estimation in par-
allel with the HISAT2-generated alignments.

2.2.3 Variant call

To call variants from RNA-seq data we used GATK (v. 4.0.8.0) and
followed the provided best practices (Van der Auwera et al., 2013).
Briefly, we first marked duplicates to clean the data, then used the
module SplitNCigarReads to reformat intron-spanning reads, fol-
lowed by Base Quality Recalibration to re-adjust the base quality val-
ues. The datasets were then subjected to variant calling using the
module HaplotypeCaller. Indel calls, and mitochondrial and contig
variants were filtered-out. Using this pipeline, we called between 214
043 and 685 959 (average 355 201) SNVs in the individual samples
from the HISAT2 alignments, and between 225 117 and 716 640
(average 371 610) from the STAR-WASP alignments. To retain high-
quality SNV calls, we applied the VariantFiltration GATK module
using as hard filters QUAL (Phred quality score) >100 and MQ (map-
ping quality) >60, and combined the filtered SNVs into a list of
unique SNV positions per tissue (HISAT2/STAR-WASP: NT—1 038
361/1 204 315, SkE—950 858/1 076 441, SkN—932 665/966 812).
After annotation (SeattleSeq v.14, DbSNP151), we retained SNVs pre-
sent in the HISAT2 index, positioned outside repetitive regions, and
with genotypes available from GTEx. These SNV lists were used for
WASP re-alignment (see above) and for VAFRNA estimation and sub-
sequent ReQTL and eQTL analyses.

2.2.4 Variant allele fraction (VAFRNA) estimation

Within a tissue type, we estimated nvar and nref and computed
VAFRNA for each of the positions in the list in each of the individual
samples using the module readCounts previously developed in our
lab (http://github.com/HorvathLab/NGS/tree/-master/readCounts;
Movassagh et al., 2016). Briefly, readCounts employs the pysam
Python module to assess the read counts at every SNV position of
interest in each of the alignments (samples) from a studied group
(i.e. tissue). ReadCounts then filters aligned reads based on align-
ment quality metrics including length, gaps and mapping quality,

and categorizes the remaining reads as having either the reference
or the variant nucleotide. For ReQTL analyses, we retained only
positions covered by a minimum of 10 total sequencing reads
(ReQTL-fit VAFRNA); samples with VAFRNA estimated from <10
reads were assigned NA in the input matrices. Additionally, we
excluded SNV positions with a monoallelic or missing (NA) signal
in more than 80% of the samples from each tissue.

2.2.5 Gene expression estimation

Gene expression was estimated from the alignments using Stringtie
(version 1.3.4.) (Kim et al., 2015; Pertea et al., 2016), and TPM (tran-
scripts per million) values were used for the ReQTL analyses.
Pseudogenes were identified based on ensembl annotations (https://
useast.ensembl.org/-info/data/biomart/index.html), and excluded from
the analysis. Furthermore, within each tissue, we filtered out genes
with a TPM value <1 in more than 80% of the samples. The TPM dis-
tribution was quantile-transformed using the average empirical distri-
bution observed across all samples in the corresponding tissue (Aguet
et al., 2017). The effects of unobserved confounding variables on gene
expression were quantified using probabilistic estimation of expression
residuals (PEER), with 25 PEER factors (Stegle et al., 2012).

2.2.6 eQTL analyses

We performed eQTL for comparative analysis with ReQTL, using
HISAT2 and STAR-WASP pipelines in parallel. The genotypes for
each individual were obtained from DbGaP (phs000424.v7.p2), and
the gene expression data, covariates and regression model were
same as those used for the ReQTL analyses (see below). Following
Aguet et al., we identified significant associations after P-value cor-
rection using false discovery rate of 5% for the cis-associations, and
10% for the trans-associations.

3 Results

3.1 ReQTL approach
The overall approach for ReQTL analyses and comparative assess-
ments is presented in Figure 2. We performed the ReQTL analyses
separately for the three tissues, using a linear regression model as
implemented in the package Matrix eQTL (Shabalin, 2012). Lists of
SNV loci were generated based on the combined variation calls in
each tissue after filtering for quality and position in repetitive
regions. In addition, loci covered by fewer than 10 sequencing reads
or with a monoallelic signal in more than 80% of the samples were
excluded from the analyses. For direct comparisons between the
HISAT2 and STAR-WASP pipelines, and with the eQTLs, we used
the same input lists of SNV loci per tissue, which were generated
based on: (i) accessibility for ReQTL analysis (as described above),
(ii) presence in the pre-built HISAT2 SNV index and, (iii) availabil-
ity of genotypes from the GTEx portal. This resulted in 104 054, 92
776 and 94 321 SNVs for the NT, SkE and SkN, respectively.

Similarly, for all ReQTL and eQTL analyses, we used the same
input gene lists selected based on expression value above 1 TPM
estimated from both HISAT2 and STAR-WASP alignments in at
least 20% of the samples per tissue. This resulted in 17 955, 17 398
and 17 586 genes for the NT, SkE and SkN, respectively (Fig. 2). To
account for covariates, we corrected for the top 25 PEER factors
(Stegle et al., 2012), reported race, sex and the top three VAFRNA or
genotype principal components (PCs), for ReQTL and eQTL, re-
spectively. To be considered cis-ReQTL, a variant was required to
reside within 1 megabase of the transcription start site of a gene. We
retained for further analysis significant cis-associations using a false
discovery rate cutoff of 5% (FDR<0.05); to allow for direct com-
parison with the eQTL reported by Aguet et al., (2017), for trans-
associations we used an FDR cutoff of 10%.

3.2 Overall ReQTL findings
The numbers of significant cis- and trans-ReQTL correlations iden-
tified using HISAT2 and STAR-WASP pipelines in the individual tis-
sues are shown in Table 1.

Fig. 2. Approach to select input SNV loci and genes and comparative analyses

between SNV-aware alignment strategies and ReQTL versus eQTL
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Across the three tissues, ReQTL analyses identified 33 596 signifi-
cant cis- and 658 significant trans-correlations using the HISAT2 pipe-
line (Supplementary Table S2). The cis-correlations were composed of
a total of 20 804 SNV loci and 5882 genes, while the trans-correla-
tions involved 382 SNV loci and 316 genes. When using STAR-WASP
alignments, ReQTL analysis resulted in a comparatively higher num-
ber of significant findings: 47 954 cis- and 784 trans-correlations
(Supplementary Table S3). The cis-correlations included 27 873 SNV-
loci and 7870 genes and the trans-correlations included 493 SNV loci
and 337 genes. Quantile-quantile (QQ) plots are shown in Figure 3a,
and shared and tissue-specific ReQTLs are presented in Figure 3b.
Percent explained variation by the top 10 PCs for VAFRNA and geno-
types is shown in Supplementary Figure S1.

Representative examples of ReQTL are shown in Figure 4. In the
cis-ReQTLs, we observed two major types of correlation patterns:
eQTL-like, where the distribution of VAFRNA values resembled the
genotype distribution (Fig. 4a), and patterns where the intermediate
VAFRNA values are spread along the regression line (Fig. 4b). In the

Table 1. Total and shared number of ReQTLs identified in each

tissue

Tissue Number ReQTL Shared ReQTLs

HISAT2 STAR-WASP Total N % HISAT2 % STAR-WASP

Cis

NT 19 602 30 623 15 660 79.8 51.1

SkE 17 239 24 776 13 324 77.3 53.8

SkN 13 161 19 897 10 346 78.6 52

trans

NT 262 301 159 60.7 52.8

SkE 267 406 137 51.3 33.7

SkN 369 490 220 59.6 44.9

Note: The percentage values indicate the proportion of shared correlations

out of the total number identified with the corresponding approach.

Fig. 4. Correlation patterns identified by ReQTL analyses. (a) cis-ReQTL eQTL-like patterns. (b) cis-ReQTL patterns with non-extreme VAFRNA values spread along the re-

gression line. (c) Trans-ReQTLs—a characteristic pattern with most of the VAFRNA values spread along the regression line

(a) (b)

Fig. 3. (a) QQ-plots of the ReQTL P-values: from left to right: NT, SkE, SkN, top: HISAT2 pipeline, bottom: STAR-WASP pipeline. (b) Relative representation of tissue-specif-

ic and shared ReQTLs. On each graph, the three plots on the left represent exclusive NT, SkE and SkN, ReQTLs, respectively; the 3-tissue overlapping ReQTLs are shown on

the most-right
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trans-ReQTLs, typical patterns had most of the VAFRNA values
spread along the regression line (Fig. 4c).

4 Comparative analyses

We assessed the differences between the ReQTLs produced through
HISAT2 and STAR-WASP aligners and evaluated the proportion of
eQTLs identifiable through ReQTL analysis. To do this, we per-
formed eQTL analysis on the same input datasets of genes, SNV loci
and covariates, replacing VAFRNA with genotypes obtained from
GTEx. In each tissue, we analyzed overlapping and exclusive
ReQTL and eQTL outputs, as well as differences between the
HISAT2 and STAR-WASP pipelines.

4.1 HISAT2 versus STAR-WASP ReQTLs
We first assessed the differences between ReQTLs called in HISAT2
and STAR-WASP alignments. For the cis-ReQTLs, a higher number
of significant correlations was called using the STAR-WASP align-
ments (1.56-, 1.43- and 1.51- fold increase for the NT, SkE and
SkN, respectively). The cis-ReQTLs identified by both pipelines rep-
resented more than 75% of all cis -ReQTLs called in the HISAT2
alignments, and a little over 50% of the cis-ReQTLs called in the
STAR-alignments (Table 1). Trans-ReQTLs were found in substan-
tially lower numbers, and showed a lower overall rate of agreement
between HISAT2 and STAR-WASP.

To estimate the contribution of VAFRNA and GE to the differences
in the ReQTLs between the two approaches, we assessed the relative
differences of VAFRNA and GE estimated from HISAT2- and STAR-
WASP alignments. To do this, we performed min-max scaling on the
VAFRNA and GE values separately to bring the values into the same nu-
meric range. We then computed the absolute difference between
VAFRNA values estimated in each variant from the two alignments and
compared to the corresponding differences in the GE estimation. This
assessment showed a greater median difference between the STAR and
HISAT GE values as opposed to VAFRNA. (P<10e�22, Wilcoxon rank
sum test, Supplementary Fig. S2), suggesting a larger contribution of
GE to the differences in the two ReQTL estimations (See 4.2 below).
This is also consistent with the very similar pattern observed in the
comparative eQTL analyses between HISAT2 and STAR-WASP,
where the only difference between the inputs is the GE estimation.
Differences in GE estimation between alignments, including HISAT2
and STAR, are acknowledged and analyzed elsewhere (Baruzzo et al.,
2017; Raplee et al., 2019). We note that the size of the STAR-WASP
alignments was on average 32% larger than the corresponding
HISAT2 alignment. Notably, VAFRNA estimations from the two align-
ments were generally consistent, with the HISAT2 VAFRNA values
showing slightly higher variance (Supplementary Fig. S3).

4.2 eQTL-ReQTL exclusive and overlapping correlations
4.2.1 Cis-correlations

For direct comparisons with eQTL analyses, the three genotypes
corresponding to homozygous reference, heterozygous and

homozygous variant genotype (0, 1 and 2, respectively) were con-
verted to 0, 0.5 and 1. To parallel the ReQTL analyses, we first
assessed the differences between HISAT2 and STAR-WASP eQTLs.
While the absolute numbers of significant cis-eQTLs were higher
than the ReQTLs, we observed a strikingly similar overlap between
the HISAT2 and STAR-WASP eQTL calls (Supplementary Table
S4). For the cis-eQTLs, the STAR-WASP pipeline produced a 1.54-,
1.39- and 1.51- fold greater number of significant correlations for
the NT, SkE and SkN, respectively).

We next analyzed the proportion of shared and exclusive cis-
ReQTLs and eQTLs (Table 2). The correlations called by both
methods represented between 89 and 91% of all cis-ReQTL signifi-
cant calls, and between 58.4 and 62.5% of the significant cis-
eQTLs. Accordingly, in a side-by-side setting, up to a half of the
cis-eQTLs are not called significant through ReQTL analyses, while
approximately 10% of the significant cis-ReQTL correlations are
not called through eQTL analyses. The percentage of eQTL-genes
captured by ReQTL was between 72 and 78%, indicating that
ReQTLs capture on average three quarters of the genetically regu-
lated gene expression in transcribed regions.

Our analysis shows that a major contributor to the lower num-
ber of significant ReQTLs (as compared to eQTLs) is the lower pro-
portion of VAFRNA values (relative to the number of genotype
values) available for each SNV locus in the samples from the studied
samples. As mentioned above, for all of our analyses, we used the
same lists of SNV loci to satisfy the requirement to have at least
20% samples from the studied tissue with VARRNA (non-NA) esti-
mated from a minimum of 10 sequencing reads. Indeed, while all of
the loci satisfied the 20% threshold, the actual percentage of sam-
ples with ReQTL-fit VAFRNA estimation was lower than the samples
with genotypes. Specifically, genotypes for each SNV were present
in more than 99.9% of the samples, while VAFRNA values were pre-
sent on average in between 66.9 and 69.6% of the samples for each
locus. Related to that, only up to 20% of the SNVs had VAFRNA

estimations in all samples per group, compared to above 97% for
the genotypes (Supplementary Fig. S4).

In addition, we analyzed the concordance between genotypes and
VAFRNA. To do this, we directly compared homozygous genotypes to
monoallelic VAFRNA calls, and heterozygous GTs to biallelic VAFRNA

calls (Supplementary Fig. S5). The heterozygous GTs and the biallelic
VAFRNA calls were concordant in nearly all of the samples, while the
homozygous GTs had complete concordance in over 85% of the sam-
ples, and, for the over 90% of the discordant positions—within 10%
difference. Further analysis showed that the discordant positions are
largely overlapping between the three tissues and typically include loci
covered by over 50 reads (with one or two sequencing reads bearing
the discordant nucleotide). The mean deviation from the expected
DNA genotype allele count was approximately 0.05 in all three tissue
types (see Supplementary Fig. S5).

Examples of eQTL exclusive correlations, and their correspond-
ing plots using the VAFRNA from the same samples are shown in
Figure 5a. For all three SNVs, genotypes were available for 100% of
the samples in the particular tissue (SkE), while VAFRNA values
were present in between 62.1 and 76.5% of the samples.

Table 2. Total and shared number of cis-ReQTLs and eQTLs identified in each tissue

Tissue Correlations Shared ReQTLs-eQTLs

(HISAT2/STAR-WASP) (HISAT2/STAR-WASP)

ReQTL eQTL Total N % ReQTL % eQTL

NT 19 602/30 623 29 553/45 556 17 681/27 870 90.2/91 59.8/61.2

SkE 17 239/24 776 25 245/35 311 15 338/22 086 89.0/89.1 60.8/62.5

SkN 13 161/19 897 20 285/30 475 11 828/18 069 89.9/90.8 58.4/59.3

Genes

NT 3582/5157 4187/5878 3113/4586 86.9/88.9 74.3/78.0

SkE 3208/4417 3652/4878 2772/3804 86.4/86.1 75.9/78.0

SkN 2652/3729 3164/4364 2280/3257 85.9/87.3 72.0/74.6
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On the other hand, ReQTL-exclusive correlations are frequently
observed for SNVs where one or two of the genotypes are present in
a low number of samples from the studied tissue (Fig. 5b). These
cases include relatively rare SNVs, for which few samples from the
dataset have heterozygous or homozygous variant genotypes, or
common SNVs for which a predominant proportion of the samples
have a heterozygous genotype.

In addition to direct ReQTL-eQTL comparisons, we assessed the
overlap between ReQTL SNV loci called in our study and eQTL loci
reported in the GTEx database (https://gtexportal.org/home-/V7).
For the cis-comparisons, in each tissue, between 91.4 and 93% of
the ReQTL loci were reported in GTEx (Table 3). The correspond-
ing eQTL loci called in our study showed similar (and to a slight ex-
tend higher) overlap with GTEx eQTL loci. For both ReQTL and
eQTL loci, these percentages were slightly higher for the loci called
from the STAR-WASP alignments. We next estimated the propor-
tion of GTEx SNVs called by our ReQTL analysis. The total number
GTEx cis-SNVs participating in correlations with a P-value below
0.05 were 1 704 941, 1 635 959 and 1 520 254 for NT, SkE and
SkN, respectively. From those, below 1% were present in the signifi-
cant ReQTLs and eQTL outcomes from our study in any of the tis-
sues (note that the number of input SNVs used for ReQTL was
approximately 100 K for each tissue, see Fig. 2).

4.2.2 Trans-correlations

Using the described settings, our analysis identified between 262 and
490 trans-ReQTLs in the individual tissues (Table 4). Specifically, a
total of 658 and 784 trans-ReQTLs were called from the HISAT2 and
STAR-WASP alignments across the three studied tissues (See
Supplementary Tables S2 and S3, respectively). In contrast to the cis-
correlations, trans-ReQTLs and trans-eQTLs were identified in simi-
lar (and substantially lower) numbers in our study. The low number
of trans-ReQTLs is expected given the known high tissue-specificity
of trans-eQTLs, and the related confounding effects in bulk tissue
samples with heterogeneous cellular composition (Westra et al.,
2013). For approximately half of ReQTLs in each tissue, the SNV
was positioned on a different chromosome than the paired gene.

The above findings are consistent with the GTEx eQTL analysis,
where only 673 trans-eQTLs are found across 44 studied tissues (at
FDR<0.1), as compared to over 7 million cis-eQTLs (at
FDR<0.05). From the 673 trans-eQTLs in GTEx, only 3 were
called in NT, 16 in SkE, and 1 in SkN. None of the SNVs participat-
ing in these 20 correlations satisfied the criteria for inclusion in
ReQTL analysis.

Fig. 5. (a) eQTL-exclusive correlations (top) and their corresponding ReQTLs (bottom). The plots represent correlations from SkN. The available number of genotypes for the

eQTL computation is 243 for all three SNVs (i.e. genotypes were available for all of the samples), while VAFRNA values were present in 151 (62.1%) for the 1:

119031964_C>T locus, 186 (76.5%) for the 21: 46301825_A>C locus and 173 (71.2%) for the 5: 436866_A>G locus. (b) ReQTL-exclusive correlations (top) and their

corresponding eQTLs (bottom). The examples show: (left) an SNV with a low number of homozygous genotype calls (1: 16624385_T>C, average heterozygosity in the

human population: 0.494 6 0.055); (middle): an SNV with relatively low number homozygous variant genotype calls (chr14: 103695329_G>A, average heterozygosity in

the human population: 0.362 6 0.224); (right) an SNV with relatively low number heterozygous and homozygous variant genotype calls (chr19: 52618966_A>G, average

heterozygosity in the human population 0.294 6 0.246). All the P-values are calculated based on the input for the plot and do not represent the ReQTL/eQTL FDR—

corrected values

Table 3. Proportion of SNV loci participating in significant cis-corre-

lations and reported in the GTEx database

Tissue Alignment Tissue N_Loci N Loci

in GTEx

% Loci

in GTExCis

ReQTL HISAT2 NT 9177 8389 91.4%

SkE 6650 6127 92.1%

SkN 5990 5486 91.6%

STAR-WASP NT 13 227 12 275 92.5%

SkE 9015 8388 93.0%

SkN 8482 7845 92.5%

eQTL HISAT2 NT 11 627 10 921 93.9%

SkE 8089 7637 94.4%

SkN 7512 7097 94.5%

STAR-WASP NT 16 511 15 618 94.6%

SkE 10 592 10 053 94.9%

SkN 10 281 9774 95.0%

Table 4. Total and shared number of trans-ReQTLs and eQTLs iden-

tified in each tissue

Tissue Correlations Shared ReQTLs-eQTLs

(HISAT2/STAR-WASP) (HISAT2/STAR-WASP)

ReQTL eQTL Total N % ReQTL % eQTL

NT 262/301 162/188 162/188 61.8/62.5 68.9/56.1

SkE 267/406 168/351 118/240 44.2/59.1 70.2/69.4

SkN 369/490 257/425 190/282 51.5/57.6 73.9/66.4

Genes

NT 85/91 34/41 23/27 27/29.7 67.6/65.9

SkE 103/96 24/39 19/29 18.4/30.2 79.2/74.4

SkN 116/123 25/42 13/27 11.2/22.0 52.0/64.3

SNVs

NT 172/184 185/243 135/156 78.5/84.8 73.0/84.8

SkE 136/274 133/296 97/209 71.3/76.3 72.9/70.1

SkN 216/293 218/353 168/238 77.8/81.2 77.1/67.4
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To investigate the types of SNVs correlated with gene expression
in a trans mode, we performed comparative gene ontology (GO)
analysis of the genes bearing ReQTL- and eQTL-exclusive trans-act-
ing SNVs, in the categories protein class and molecular function,
(including at the level of transcription factor) using PANTHER clas-
sification system (http://pantherdb.org, Thomas et al., 2006). This
analysis showed largely similar patterns between the groups. In add-
ition, we intersected the above trans-SNV bearing genes with the list
of annotated long non-coding RNAs (https://lncipedia.org, Volders
et al., 2019), which revealed that up to 5% of the genes with trans-
acting SNV in each of the groups are known lnc-RNAs. The lack of
significant differences between trans-ReQTLs and QTLs is possibly
due to the overall low number of trans-correlations.

To assess potential mechanisms of action of the trans-ReQTLs,
we determined if their SNV loci also participated in significant cis-
ReQTL correlations. In our data, 67 and 70% of the trans-SNVs
(HISAT2 and STAR-WASP pipeline, respectively) were implicated
in a significant cis-correlation at FDR<0.05. This finding is similar
to the GTEx trans-eQTLs and suggests that trans-ReQTLs frequent-
ly reflect gene-gene interactions, including those within their harbor-
ing gene.

5 Functional Re-QTL annotations

We also assessed the Re-QTL- and eQTL-exclusive SNV loci with
respect to function, position and annotation, using the Variant
Effect Predictor (VEP) https://www.ensembl.org/vep (Fig. 6). Due to
the small number of ReQTL-exclusive findings, the distribution of
functional annotations was assessed on the combined numbers of
cis-acting SNVs across the three tissues. The two major annotation
categories with significant differences in their distribution were
exonic, which represented a higher proportion of ReQTL-exclusive
SNVs (both synonymous and missense, separately analyzed), and in-
tronic, which represented a higher proportion of eQTL exclusive
SNVs (P<0.001, chi-square test; all the differences were within
10%). In addition, we performed an analysis of the effect sizes in the
above annotations. When all significant ReQTLs and eQTLs were

analyzed, the mean and median values of the effect sizes were general-
ly similar, with slightly higher effect sizes in the ReQTLs in most of
the functional categories (Supplementary Fig. S6). This effect was
stronger in the groups of ReQTL-exclusive and eQTL-exclusive SNVs
(large annotation categories shown on Supplementary Fig. S7).

6 Cis- and Trans- ReQTL annotations

In the above results, for direct comparisons between eQTL and
ReQTL, we distinguished cis- from trans-associations based on the
commonly used in the eQTLs relative position of the SNV in regards
to the gene chromosomal interval [measured as genetic distance in
nucleotides (nt)]. In contrast to the DNA-estimated eQTLs, ReQTLs
are assessed directly from transcripts. Accordingly, an alternative
cis-annotation is based on the co-location of the SNV locus within
the transcribed gene.
To enable this annotation, we provide an option in the
run_matrix_ReQTL.R script to perform the analysis without cis/
trans annotation after which annotate_cis_trans.R can be run to an-
notate the significant correlations as described above.

7 ReQTL application

We note several considerations for the application of ReQTL analy-
ses. First, because ReQTLs are based on VAFRNA, they are confined
to expressed SNV loci in the studied sample-set and are not designed
to capture variants in transcriptionally silent genomic regions.
Related to that, SNV loci with low expression levels (below the
required threshold for minimum number of RNA-seq reads) are not
fit for ReQTL analyses. The threshold for minimum RNA-seq reads
is critical for reliable estimation of VAFRNA. In our study, we have
selected a threshold of 10 RNA-seq reads to determine positions
suitable for ReQTL analysis, based on considerations for sequencing
depth and confidence in the VAFRNA assessment. Our experiments
with various minimum thresholds show that higher thresholds in-
crease the accuracy of the VAFRNA estimation, but naturally retain a
lower number of variants for analysis (Movassagh et al., 2016). In
the readCounts package (https://github.com/HorvathLab/NGS/tree/
master/readCounts), this threshold is flexible and can be set at the
desired level depending on the depth of sequencing and required
confidence in the assessment of VAFRNA.

Second, even when SNVs are expressed and accessible for
ReQTL analyses, ReQTL identifies a lower number of significant
correlations as compared to eQTL. In a side-by-side application,
ReQTL captures on average around 60% of the eQTL-identifiable
correlations. Our analysis shows that this is mainly due to the fact
that, for many loci, ReQTL VAFRNA values are available for only a
proportion of the samples (a minimum of 20% is used in this study),
as compared to genotypes which are typically available for the vast
majority of the studied samples. At the same time, due to the fact
that ReQTLs typically capture multiple SNVs from the same gene,
this method can identify a large proportion of the eQTL-identifiable
genes (approximately three quarters in our analysis). This is mostly
due to the fact that most of the ReQTL genes were significantly cor-
related with multiple SNVs, which largely agreed in regards to effect
size and also showed strong concordance in VAFRNA values
(Supplementary Fig. S8). Regarding the above considerations, the pro-
portions of ReQTL-identifiable correlations and genes are expected to
increase with the sequencing depth of RNA-seq datasets.

Third, it is important to note that even when a genetically regu-
lated gene is captured by ReQTL analysis, the SNVs correlated to
this gene may not include the actual causative SNV, but its co-allelic
(in linkage disequilibrium, LD) SNVs. This is particularly the case
for regulatory SNVs positioned outside the gene transcribed region.
While eQTL analyses also capture variants in LD with the actual
causative variant, in the eQTLs this effect can be controlled for by
using the genome-wide estimated effect sizes. In the ReQTLs, due to
the restriction of the SNV input sets to transcribed regions, causality
analyses require careful consideration of potentially missed co-
allelic expression regulators.

Fig. 6. Distribution of functional annotations of SNVs participating in ReQTL-ex-

clusive and eQTL-exclusive correlations. missense_total: missense þ missense-near-

splice; synonymous_total ¼ synonymous þ synonymous-near-splice; intron_total ¼
intron þ intron-near-splice
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On the other hand, ReQTL analyses identify about 10% more cor-
relations in addition to those found through eQTL analyses. These in-
clude correlations where the significance of the eQTL association is
diminished by asymmetric distribution of genotypes (Fig. 5b).

With respect to gene expression, ReQTL analysis can use the same
data processing as is used for eQTLs, including adjustment for covari-
ates. In this study, we closely followed the pipeline employed by the
GTEx Consortium, correcting for reported race, sex and hidden con-
founders using the top 25 PEER factors based on sample size (Aguet
et al., 2017). In addition, we quantile-transformed the gene expres-
sion, as is customary in eQTL analyses. As a result, we observed a
strong linear correlation between quantile-transformed, covariate-
adjusted gene expression and VARRNA. To fully explore ReQTLs,
other expression-transformation strategies (Palowitch et al., 2018)
may also be applicable. In addition, the gene expression estimation is
known to strongly depend on the RNA-seq alignment method
(Baruzzo et al. 2017; Raplee et al., 2019). In our study, we test two
popular aligners—HISAT2 and STAR—which show substantial over-
lap, but also considerable differences in the ReQTL estimation
(Table 1). Importantly, for ReQTL applications, the choice of aligner
is also strongly related to the ability to confidently estimate VAFRNA.

(See below). Our analysis shows that the differences in the ReQTL be-
tween the two approaches are driven mostly by the differences in the
estimation of GE, while the VAFRNA comparisons between paired
samples were largely concordant (Supplementary Fig. S2).

VAFRNA estimation can be also affected by technical parameters,
the most important being allele mapping bias (Degner et al., 2009).
While shown to have little to no effect on gene expression estimation
(Panousis et al., 2014), mapping bias can lead to overestimation of
the reference allele fraction (Brandt et al., 2015). For ReQTLs, we
applied the selected alignments in an SNV-aware setting. Specifically,
HISAT2 was used with a genome-wide dbSNP index, and STAR-
alignment was followed by removal of ambiguously mapped reads
after checking for consistent mapping with the read containing the al-
ternative nucleotide against a list of SNVs of interest. In our case, the
list of SNVs of interest was generated by combining the variant call
produced by GATK across all the samples from a tissue. We then sys-
tematically compared the outcomes. First, we did not observe signifi-
cant signs of allele-mapping bias in either of the two outcomes (Figs 4
and 5), but bias was detectable in the ReQTL correlations when non-
SNV-aware versions of the alignments were used. Second, the STAR-
WASP pipeline produced a higher number of significant ReQTLs, as
well as moderate, but consistently higher overlap with eQTL out-
comes (Tables 2–4). On the other hand, the HISAT2 analysis included
fewer steps and was significantly faster and more memory efficient.

Additional factors, including hidden confounders, can also impact
the assessment of VAFRNA. To minimize such effects, we apply highly
conservative settings to the alignment, variant calling and the read
count assessment, correct for VAFRNA PCs, and closely follow the best
practices for data processing in allelic analysis (Castel et al., 2015). In
the presented results, we used the top 3 PCs to enable comparisons to
eQTLs from the GTEx database. We have also tested ReQTL analyses
with 5, 7 and 10 PCAs and observed that the number of significant
ReQTLs slightly decreases with the number of PCs used.

Importantly, in contrast to the genotypes, VAFRNA varies be-
tween different tissues and cell types, often due to tissue-specific
regulatory mechanisms (Savova et al., 2016). Furthermore, due to
the dynamic nature of RNA transcription, it is expected that
VAFRNA (together with gene expression) will vary depending on
conditions, disease state and random factors. Therefore, interpret-
ation of ReQTL findings requires consideration of the dynamics of
the correlation, similar to interpretation of gene expression.

For ReQTL applications, it is important to note that ReQTLs do
not necessarily require prior variant calls and can be run on custom
pre-defined lists of genomic positions such as those in dbSNP or a
database of RNA-editing sites.

8 Discussion

Traditional eQTLs assess the number of variant-harboring alleles
estimated from DNA data (N 2 {0, 1, 2} for diploid genomes), in

correlation with RNA-derived gene or transcript abundance across a
population of individuals/samples. The recent advances in the
approaches to infer genotypes form RNA-seq data have have
enabled eQTL analyses using RNA-estimated genotypes (Tung
et al., 2015). While such approaches are confined to expressed SNV
loci, they bring with them the benefit of using a single type of data
(RNA-seq), which makes it possible to analyze large datasets across
species and conditions, while reducing the costs and challenges asso-
ciated with manipulating large volumes of data.

In our method—ReQTL—the genotypes are substituted for the
VAFRNA at expressed SNV loci; both VAFRNA and the gene expres-
sion are assessed from the same sets of RNA-seq data. Compared to
using the DNA-allele count, correlation of VAFRNA with gene ex-
pression holds several technical advantages. First, as mentioned
above, VAFRNA constitutes a continuous measure and allows for
precise quantitation of the allele representation. Second, since
VAFRNA and gene expression levels can be retrieved from a single
source of transcriptome sequencing data alone, ReQTL analyses
naturally avoid sample-specific and batch effects.

We envision several useful ReQTL applications with considerable
potential to facilitate the discovery of novel molecular interactions.
First, for sets where matched DNA is not available, ReQTL can be
used to identify a subset of variation-expression relationships.
However, it is important to note that ReQTL is not a direct replace-
ment for eQTLs. Second, ReQTL can be applied to study regulatory
SNVs, such as those residing in splicing factors binding sites, stop-
codon altering SNVs and other motif-altering SNVs that are posi-
tioned in expressed regions. For the latter, we expect that ReQTL will
be useful for assessing variants which alter motifs recognizable by
RNA-binding molecules. Third, due to the continuous nature of
VAFRNA, ReQTL can be used to study RNA-editing sites for which
the VAFRNA is highly variable (RNA-editing sites are excluded from
the current analysis due to their position in repetitive genomic
regions). Finally, there are a variety of potential future applications of
ReQTL, including estimation of splicing QTLs from RNA-seq (i.e.
RsQTL), and protein-level correlations (i.e. RpQTL).
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