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Abstract: Deep learning methods have been widely applied to visual and acoustic technology. In this
paper, we propose an odor labeling convolutional encoder–decoder (OLCE) for odor identification in
machine olfaction. OLCE composes a convolutional neural network encoder and decoder where the
encoder output is constrained to odor labels. An electronic nose was used for the data collection of
gas responses followed by a normative experimental procedure. Several evaluation indexes were
calculated to evaluate the algorithm effectiveness: accuracy 92.57%, precision 92.29%, recall rate
92.06%, F1-Score 91.96%, and Kappa coefficient 90.76%. We also compared the model with some
algorithms used in machine olfaction. The comparison result demonstrated that OLCE had the best
performance among these algorithms.

Keywords: machine olfactions; odor identifications; electronic nose; neural networks; encoder-decoder

1. Introduction

Machine olfaction is an advanced technology that captures odorous materials and iden-
tifies them by distinguishing the differences in response patterns. Usually, electronic noses
(e-noses) are used, which consist of an array of gas sensors and intelligent identification
algorithms mimicking biological noses, to ‘smell’ and ‘sense’ odors [1,2].

Gas sensors typically detect gases by measuring the change in electrical conductivity.
Sensitivity, selectivity, response time, and recovery time are the major specifications to eval-
uate the performance of a gas sensor [3]. There are different types of gas sensors: catalytic
combustion, electrochemical, thermal-conductive, infrared absorption, paramagnetic, solid
electrolyte, and metal oxide semiconductor sensors [3]. In recent years, paper-based sensors,
which are a new type of gas sensor fabricated by cellulose paper, have the characteristics
of flexibility, tailorability, being low-cost, lightweight, and environmentally friendly [4].
The response of a gas sensor detecting an odor is a synthetic process since the sensor may
be sensitive to a group of different molecules, which is usually called ’cross-sensitivity’.
Cross-sensitivity is a characteristic of gas sensors that arises because of poor selectivity [5].
It is an issue when measuring the gas concentration using a single gas sensor. However, it
can be utilized as a feature to identify odors when an array of gas sensors is used. Response
patterns of sensor signals are different from various odors. It is difficult to interpret sensing
responses due to the synthetically non-linear sensing process of gas sensors. Most gas
sensors are fabricated for detecting industrial gases or volatile organic chemicals (VOCs).

Developments in odor identifications have progressed in recent years and have been
applied to specific fields. However, such methods ignore the essence of odors. An odor is
usually composed of a group of odorous compounds. We human beings sniff the odorous
mixture, discriminate, and identify the odor if people are trained to recognize the odor. We
have difficulties describing an unknown odor without prior knowledge. Instead, we
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describe it by using some semantic words. Accordingly, is there a method to describe the
odor space so that odor can be recorded and encoded in some general forms?

It is a challenge to determine the dimensionality of the olfactory perceptual space
because there are still a lot of efforts required in the investigation of the mechanism of
olfactory perceptions. Physiological studies had identified that the human olfactory system
consists of around 400 odorant receptor types [6]. An odor activates some of these odorant
receptor types to generate a specific pattern so that humans can discriminate against it.
The number of odorant receptor types sets the upper bound on the dimensionality of the
perceptual space. There is no dedicated vocabulary to describe odors in major languages.
Instead, words about objects, for example, flowers and animals, or emotions such as
pleasantness are applied to describe olfactory perceptions. J. E. Amoore claimed that odors
were divided into seven groups which were regarded as primary odors [7]. Markus Meister
suggested that olfactory perceptual space may contain around 20 dimensions or less [8],
and Yaara and Noam reviewed that humans are good at odor detection and discrimination,
but are poor at odor identification and naming [9]. Semantic descriptors profiled from a
list of defined verbal words are rated by human sniffers. Up to now, there is no universal
list of odor semantic descriptors yet.

Currently, there is no odor space to describe the variety of odors in nature. Some
studies revealed a significant relationship between odor molecular structure information
and olfactory perceptions [10]. Functional groups and hydrocarbon structural features were
considered to be factors influencing olfactory perceptions. A hypothesis demonstrated that
odorants possessing the same functional groups activate the same glomerular modules [11]
which generate similar perceptual patterns so that humans identify them as the same type
of odor. Recent studies revealed that 3D structure information of odorous molecules has
a more noticeable impact on olfactory perceptions [12]. Considering the complexity of
molecular structure information, the mapping to odor space may be non-linear.

Several studies investigated the map between odor responses and odorous perceptual
labels. T. Nakamoto designed an odor sensing system that consisted of a mass spectrum
and large-scale neural networks to predict odor perceptual information [13]. R. Haddad
et al. investigated the relationship between odor pleasantness and e-nose sensing responses
by modeling a feed-forward back-propagation neural network [14]. D. Wu et al. designed
a convolutional neural network for predicting odor pleasantness [15]. These models used
in predicting odor perceptual descriptors perform decently in some particular datasets.
However, machine percepts and describes odors using distributed representation is still a
challenge for us.

It is worth establishing some forms of odor space to describe a sufficiently complete
group of odors in nature. An odor space should be some form of numerical values
with definite dimensionality. The odor space should be a linear space for convenient
interpretation because of the non-linear map. Those semantic olfactory descriptors are only
some points in the quantization, just as the color “red” is quantified to (255, 0, 0) in RGB
color space. The importance of such odor space is a quantization form so that odors can be
converted to information for data storage or transmission. The odors can be reproduced by
blending some similar odorants to generate the odor.

Machine olfactions have been applied widely to many fields in recent years. Some
linear methods such as principal component analysis (PCA), linear discriminant analysis
(LDA), support vector machines (SVM), etc., were used in the analysis of odor discrimi-
nation [16]. PCA is an unsupervised method ignoring discriminant information, which
is a popular method for dimensionality reduction [17]. LDA is a supervised method for
classification by finding decision surfaces and calculating the signed orthogonal distance of
data points. It has been used in the identification of Chinese herbal medicines [18]. SVM is
a kind of regularization in which the aim is to find the maximum margin between classes. K.
Brudzewski applied SVM as the classification tool for identifying tobacco [19]. Classifiers
using linear methods can be transferred to convex problems which have the advantages
of mathematical interpretability. Non-linear methods such as artificial neural networks
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(ANN) were also introduced in machine olfactions. In recent years, deep learning methods
have been dramatically developing and widely used in various fields such as computer
visions, speech processing, automatic driving, etc. They also have been introduced in
machine olfaction for odor identification [15,20].

There are several advantages that mean that machine olfaction technology applies
to many fields. Firstly, it is a non-destructive technique to detect volatiles released from
the surface of objects [21]. Secondly, e-nose is usually portable, which is convenient to
detect odors anywhere and anytime [22]. Thirdly, e-noses have the capacity of extending
out olfactory perception scopes since gas sensors are capable of detecting those chemicals
which humans are unable to smell and sense [23]. Furthermore, e-noses can be used in
some unpleasant environments [24,25].

Linear methods for classifications usually require highly correlated features and high
calibration costs, which limit the number of training data [16]. Non-linear methods have
difficulties in interpretation. Nonetheless, non-linear methods, especially deep learn-
ing methods, have a higher capacity of odor identification. In this paper, we borrowed
the idea from an auto-encoder and proposed a novel deep learning algorithm for odor
identification—Odor Labeling Convolutional Encoder–Decoder (OLCE). OLCE consists of
an encoder and a decoder, where the encoder output is constrained to odor labels. OLCE
has a decoder structure which offers some clues on how the model learns features. In the
following paragraphs, we will first describe the experimental setups and the modeling of
OLCE. After that, the performance of the model, comparison with other methods, and an
overview of decoded response results will be illustrated. Furthermore, the perspective of
machine olfaction will be discussed.

2. Materials and Methods
2.1. Research Scheme

The OLCE model was built, trained, and tested by self-collecting gas response datasets.
In the study, odors from seven non-crushed Chinese herbal medicines were collected by
an electronic nose. We kept experimental settings of gas-response collections by a self-
designed standard procedure to control the detection consistency and data effectiveness.
We built other algorithms that had already been used for odor identification to examine the
performance of OLCE. The experimental procedure is displayed in Figure 1.

Figure 1. Odor Labeling Convolutional Encoder–Decoder (OLCE) workflow.

2.2. Experiment Setup

The instrument and tools used in the experiment included a PEN-3 electronic nose,
beakers, and a computer. Experimental subjects were placed in beakers for data collection.
The PEN-3 electronic nose manufactured by AirSense Inc. was used for collecting gas
sensor responses. The computer with installed with Winmuster, which is the PEN-3 e-nose
control software designed by AIRSENSE Analytics Inc., Schwerin, Gemany, which was
used to connect and control the e-nose. The architecture of the experimental setup is
displayed in Figure 2.
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Figure 2. The architecture of the experimental setup for collecting odor response data. Chinese Herbal medicines were
selected as the experimental materials, and they were placed in clean beakers covered by a sealed film. A needle was
inserted into the bottom for clean-air refilling. Another needle was inserted on the roof of the beaker beneath the sealed film
for collecting headspace gases. The clean-air inlet was connected to the purge gas port on the PEN-3 e-nose for flushing gas
sensors, and the waste-air outlet was connected to the waste port for ejecting waste gases. Response data were collected by
the e-nose and transmitted to a computer via a USB Type-B cable connecting e-nose and computer.

2.3. The Preparation of Experimental Materials

We selected seven Chinese herbal medicines (Betel Nut, Dried Ginger, Rhizoma
Alpiniae Officinarum, Tree Peony Bark, Fructus Amomi, Rhioxma Curcumae Aeruginosae,
Fructus Aurantii) for the experiment. To ensure the consistency of gas sensor responses,
the procedures for preparing these materials were carefully set as follows:

1. Materials in initial conditions are placed in clean beakers separately.
2. Beakers are equilibrated for over 20 min colorredfor enrichment of volatiles released

from the surface of medicines.
3. The temperature is kept around 25 ◦C.
4. The humidity is kept around 75%.

2.4. PEN-3 Electronic Nose

Response data were collected from an e-nose, PEN-3, AirSense Inc. The PEN-3 e-nose
is a general-purpose gas response signal sampling instrument with 10 metal-oxide gas
sensors, each of which has different sensitivity to different gases, as shown in Table 1. With
the combination of these 10 sensors, PEN-3 has the ability to sense various gases, which
makes it a suitable instrument for this research. The settings of the e-nose are illustrated in
Table 2.
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Table 1. Descriptions of the sensor array in PEN-3 e-nose.

Sensor Sensor Sensitivity and General Description

W1C Aromatic compounds.
W5S Very sensitive, broad range of sensitivity, reacts to nitrogen oxides, very sensitive with

negative signals.
W3C Ammonia, used as sensor for aromatic compounds.
W6S Mainly hydrogen.
W5C Alkanes, aromatic compounds, less polar compounds.
W1S Sensitive to methane. Broad range.
W1W Reacts to sulphur compounds, H2S. Otherwise sensitive to many terpenes and sulphur-

containing organic compounds.
W2S Detects alcohol, partially aromatic compounds, broad range.
W2W Aromatic compounds, sulphur organic compounds.
W3S Reacts to high concentrations (>100 mg/kg) of methane–aliphatic compounds.

Table 2. Settings of PEN-3 electronic nose.

Options Settings

Sample interval 1.0 s
Presampling time 5.0 s

Zero point trim time 5.0 s
Measurement time 120 s

Flushing time 120 s
Chamber flow 150 mL/min

Initial injection flow 150 mL/min

2.5. OLCE Modeling

Figure 3 describes the principle of OLCE. OLCE contains a convolutional encoder and
a convolutional decoder. The OLCE input is those responses that have been zero-center
normalized. The OLCE output aims to reproduce the input. The intermediate layer is a
representation that outputs the identification results. The encoder and decoder are trained
together using a training dataset. To verify the model, the results in the representation
layer are used to evaluate the performance of the model.

Figure 3. The basic principle of OLCE.

The original response data were firstly zero-center normalized, then sent into the
OLCE model. The i-th zero-center normalized response data point x′i is calculated as follows:

x′i =
xi − xmean

xmax − xmin
, (1)

where xi is the i-th original data from e-nose, xmean is the average value of 120 data points
collected from a gas sensor, and xmax and xmin are the maximum and the minimum value
of the 120 data points, respectively.
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Suppose the input is X, which here is the sensing response collected by gas sensors.
The labels of Chinese herbal medicines are defined as y, which is one-hot encoding. The
encoder is defined as F (•) and the decoder is defined as G(•). Therefore, the encoder can
be presented as

y = F (X), (2)

and the decoder can be presented as

X′ = G(y), (3)

where X′ is the output of the decoder. The aim of building the encoder–decoder is to gain an
accurate labeling of results y. To achieve this, the re-build responses X′ must approximate
to the original responses X: X′ → X. In other words, the aim of the encoder–decoder can
be illustrated as follows:

minimize y−Y
subject to G(F (X))− X.

(4)

The encoder was designed with a convolutional neural network. The convolutional
layer extract features by computing the product sum of the input variables. ReLU was
used to introduce non-linearity in the convolutional network.

ReLU(x) = max(0, x). (5)

A max-pooling layer was introduced to reduce spatial size of the convolved data.
After that, a fully connected layer was introduced to learn non-linear combinations of the
high-level features. Softmax was implemented through the output layer as a classifier to
identify odor labels. Symmetrically, the decoder was a convolutional neural network with
the same structure. Figure 4 describes the architecture of the encoder and decoder, while
Table 3 shows the network parameters.

Figure 4. Architecture of the odor labeling convolutional encoder–decoder.

2.6. Comparison Models

In order to take a view on the performance of OLCE, several algorithms that had been
applied to machine olfactions were selected for comparison.

• linear discriminant analysis (LDA) [26],
• multi-layer perception (MLP) [27],
• decision tree (DT) [28],
• principle component analysis (PCA) with LDA [29],
• convolutional neural networks (CNN) and support vector machine (SVM) [30].

LDA can be used not only for dimensionality reduction but also for classification.
LDA reduces in-class distances and increases the distances between classes.
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Table 3. Structural parameters of the odor labeling convolutional encoder–decoder.

Layer Type Filter Shape Input Size

Conv1 conv 7 × 1 × 5 10 × 1 × 120
Maxpool 1 × 2 7 × 1 × 116

Conv2 conv 12 × 1 × 3 7 × 1 × 58
Maxpool 1 × 2 12 × 1 × 56

FC3 FC 7 × 336 12 × 1 × 28
Classifier Softmax - 7

FC3 FC 336 × 7 7
Unpool 1 × 2 12 × 1 × 28

Transposed Conv2 Transposed conv2 7 × 1 × 3 12 × 1 × 56
Unpool 1 × 2 7 × 1 × 58

Transposed Conv1 Transposed conv1 10 × 1 × 5 7 × 1 × 116

An MLP classifier is an artificial neural network and has been applied to odor iden-
tification. MLP is a supervised non-linear function approximator that learns a function
f (•) : Rm → Rn, where m = 1200 was a 120× 10 sample and n = 7 is the labels. The MLP
consisted of 4 hidden layers with the ReLU activation function.

DT is a non-parametric supervised learner which classifies data based on already-
known sample distribution probability. It performed decently in odor classification. We
here set the classification criterion to Gini,

H(Xm) = ∑
k

pmk(1− pmk), (6)

where Xm is samples that used the node m. The proportion of class k in node m is
pmk = 1/N ∑xi∈R I(yi = k). It represents a region R with N observations. In order to
prevent overfitting, the maximum depth of a tree was limited to 10.

PCA–LDA is a combination model and has been applied to odor identification. PCA
implemented dimensionality reduction through orthogonally projecting input data onto
a lower-dimensional linear space by singular value decomposition with scaling each
component. LDA was implemented for the classification.

In the CNN–SVM model, CNN is a typical feed-forward neural network for fea-
ture extraction. SVM is a supervised learning algorithm for classification. The CNN con-
sisted of 2 one-dimensional convolutional layers, fully max-pooling layers, and a fully-
connected layer.

All models were coded in Python and open-source packages scikit-learn [31] and
PyTorch [32] were used to build models.

3. Results
3.1. The Input of OLCE

The input of OLCE is a zero-centered 10× 120 dataset, which is collected by PEN-3 e-
nose. The gas sensor responses were collected by PEN-3 e-nose followed by the experimen-
tal procedure illustrated in the previous section. For each medicine, 100 response samples
were measured so that the total number of samples in the dataset was 7× 100 = 700. Each
sample was actually a 120× 10 matrix.

Figure 5 compares the zero-centered responses to the input of OLCE. We randomly
selected 4 samples from each medicine class. It can be seen that there are some slight
differences in the same medicine class because of different within-class medicine sources
used for the collection experiment. Responses have noticeable differences between classes.
Some sensors show upwards baseline drift because various volatilization rates of some
volatiles and their sensitivities to volatiles. Some sensors show downwards baseline drift
because of the overflow in the sensor chamber. Since an OLCE receives a 10× 120 sample
as an input dataset without feature extraction, these drifts can be ignored.
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Figure 5. Centralized sensing responses of seven types of Chinese herbal medicines (Betel Nut (BN),
Dried Ginger (DG), Rhizoma Alpiniae Officinarum (RAO), Tree Peony Bark (TPB), Fructus Amomi
(FAm), Rhioxma Curcumae Aeruginosae (RCA), Fructus Aurantii (FAu)). We randomly selected four
response samples of each medicine. All response data were implemented by centralized normalization.

3.2. OLCE Evaluation

The OLCE model was executed 10 times and several performance evaluation indexes
(accuracy, precision, recall rate, F-score, Kappa rate, and Hamming loss) were calculated to
view the model effectiveness. Each OLCE model was trained 200 epoches. Figures S1 and
S2 show the accuracy and loss rate of the best OLCE model. Figures S3 and S4 show the
average accuracy and loss rate of the best 5 OLCE models. The results were displayed in
Table 4.
Table 4. Performance evaluation indexes for OLCE model.

No. Accuracy Precision Recall F1 Score Kappa

1 0.9142 0.9269 0.9276 0.9249 0.9130
2 0.8800 0.9635 0.9576 0.9584 0.9533
3 0.9485 0.8858 0.8624 0.8691 0.8520
4 0.9428 0.9312 0.9347 0.9320 0.9197
5 0.9714 0.9163 0.9157 0.9129 0.8998
6 0.9200 0.9333 0.9354 0.9330 0.9196
7 0.8971 0.9599 0.9590 0.9591 0.9532
8 0.9428 0.8397 0.8419 0.8379 0.8193
9 0.9485 0.9404 0.9404 0.9395 0.9264

10 0.8914 0.9317 0.9314 0.9296 0.9198

Average 0.9257 0.9229 0.9206 0.9196 0.9076

OLCE had the maximum accuracy of 0.96 and minimum accuracy of 0.8457. It had a
decent precision rate (between 0.8397 and 0.9635) and recall rate (0.8419 and 0.9576). The
F1 score of the model was between 0.8379 and 0.9591. It demonstrated that OLCE had a
lower false positive and false negative predicting output.

Kappa coefficient was also calculated to evaluate the consistency and classifier precision.

Kappa =
Po − Pe

1− Pe
, (7)

where Po is the accuracy and Pe is calculated as follows:

Pe =
a1 ∗ b1 + a2 ∗ b2 + ... + a7 ∗ b7

n ∗ n
, (8)

where i = 1, 2, ..., 7 is the class index, ai represents the accumulated amount of samples of
each class in the dataset, bi represents the accumulated number of samples in each class
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after the classification, and n is the total number of samples. The Kappa revealed that
OLCE has excellent consistency.

3.3. Comparison

Several algorithms used in machine olfactions were built to compare OLCE. Each
model was executed 10 times, and the accuracy scores of each model are illustrated in
Table 5. It can be seen that the highest and lowest accuracy of LDA was 0.9314 and 0.8686.
CNN–SVM has the highest and lowest scores of 0.9371 and 0.8514. MLP and PCA–LDA
has relatively lower scores which the best scores were 0.4342 and 0.5200, respectively. The
decision tree yielded relatively good scores between 0.7600 and 0.8857. It can be seen from
the ‘Max.’ and ‘Min.’ columns that OLCE has the best scores (the highest score was 0.9714
and the lowest was 0.8800). Moreover, OLCE had the best average score (0.9257). The
‘Var.’ column describes the variances of the accuracy scores from the 10 models of each
algorithm. It can be seen that LDA had the highest consistency because it had the lowest
accuracy variance (0.0005) between 10 LDA models. On the contrary, the PCA–LDA model
obtained the highest variance of 0.0141, which reveals the worst training consistency. It can
be noted that OLCE had the third-lowest accuracy variance that was 0.0009.

Overall, as the results illustrate above, LDA, CNN–SVM, and OLCE had a decent
performance for machine olfaction according to better average predicting accuracy and
stable consistency. Moreover, considering the comprehensive advantages in accuracy,
precision, recall rate, F1 score, and Kappa coefficients, OLCE was suitable to discriminate
odors from gas responses collected by e-nose.

3.4. Overview of Decoded Responses

OLCE is an encoder–decoder structure model, and the representation layer consists of
several odor labels. It is interesting to take a view on decoded responses. We randomly selected
one original response and one decoded response from both the training set and test set.

Figure 6a,b shows the comparison of encoder input and decoder output. Firstly,
OLCE reproduces response signals in the response state. Some small response changes
in the response states are decoded as some fluctuating signals. For instance, in Figure 6a,
row 4, some baseline drifts are decoded as some fluctuating signals. Secondly, OLCE
focuses on positive or negative baseline drift. For example, in Figure 6b, row 5, when the
signal changes accumulate exceed a certain level, the decoder generates some fluctuations.
It is possible that some response changes may activate OLCE to generate fluctuating
waves. These fluctuations can be regarded as ‘feature stamps’. These feature stamps
reveal some clues of which features OLCE focuses on. Furthermore, the model ignores
response fluctuations from one single gas sensor. For instance, as shown in Figure 6a, the
“W3S” response (brown line) in subfigure “Fructus Amomi” (row 5, column 1) fluctuates
obviously, but the decoder did not take it as a feature.

Figure 6c describes a typical decoded response. It can be seen that OLCE learns
features using one or more small windows in a response dataset. The response state is the
most significant feature for OLCE, as shown in the red dotted box. Moreover, the OLCE
regards some gentle changes in steady state as some features. The intersections of curves
can also be some significant features, as shown the green dotted box. OLCE may also
concentrate on changes accumulated in the steady state, as shown in the blue dotted box.
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Table 5. Accuracy scores of 6 models (linear discriminant analysis (LDA), multi-layer perception (MLP), decision tree (DT), rinciple component analysis (PCA)+LDA, convolutional neural
networks and support vector machine (CNN+SVM), OLCE). In the PCA–LDA model, grid search for finding the best number of dimensions using PCA, which reduced to 49 dimensions.

Models
Predictions

Max. Min. Ave. Var.1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

LDA 0.9029 0.9257 0.9314 0.8686 0.8971 0.9029 0.9314 0.9200 0.9086 0.8800 0.9314 0.8686 0.9069 0.0005
MLP 0.4342 0.2114 0.1200 0.1542 0.3771 0.2628 0.2285 0.1428 0.1542 0.2800 0.4342 0.1200 0.2365 0.0109
DT 0.8629 0.8114 0.8514 0.7600 0.8514 0.7943 0.8400 0.8229 0.8857 0.8171 0.8857 0.7600 0.8297 0.0013

PCA-LDA 0.2857 0.4342 0.3200 0.5200 0.4057 0.1542 0.4400 0.1828 0.4342 0.3200 0.5200 0.1542 0.3497 0.0141
CNN-SVM 0.9371 0.9085 0.9142 0.9028 0.9314 0.9085 0.9028 0.8514 0.9314 0.9085 0.9371 0.8514 0.9097 0.0006

OLCE 0.9142 0.8800 0.9485 0.9428 0.9714 0.9200 0.8971 0.9428 0.9485 0.8914 0.9714 0.8800 0.9257 0.0009
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(a) Training Set (b) Test set

(c) A typical response
Figure 6. The original responses and decoded responses. In (a,b), the left column shows the input responses of OLCE
encoder, and the right column describes the output responses of OLCE decoder. The subfigure (c) highlights the significant
features extracted by decoder.
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4. Discussion

Using an e-nose to identify odor is a process of detecting and discriminating those
ingredients that gas sensors are sensitive to. It is different from other measuring instruments
such as GC–MS that have the capacity of identifying ingredients of an odor. An E-nose
with an array of gas sensors and a suitable identification algorithm mimics human olfaction
to identify odors, which can be applied to many fields where fast detections are required
because it has advantages of portability, easy-to-design, and low-cost. Hence, a reliable
algorithm to discriminate various response patterns is necessary.

OLCE has an elegant and symmetrical structure using a convolutional neural network,
which makes it easy to build the model. The experimental results show that OLCE performs
decently in odor identification of Chinese herbal medicines according to several perfor-
mance indexes. It may also suggest that OLCE can be used in other odor identifications.
The OLCE encoder encodes sensor responses to odor labels using a convolutional neural
network. The OLCE decoder reproduces sensor responses using a convolutional neural
network with a symmetrical structure. The reproduced responses on the decoder side
reveal some clues on which features OLCE focuses on. The one-hot encoding labels in
the representation layer, the intermediate layer, make the classification more robust than
categorical encoding because of the mutual exclusivity of the encoding bits.

OLCE is a multi-class classifier that uses one-hot encoding codes to output the iden-
tification results. Multi-class classifiers are suitable to be used in the scenario where the
identification category is mutually exclusive. The other type is the multi-label classifier
that an instance may belong to more than one class. It is interesting to consider that the
one-hot encoding labels in the representation layer of OLCE can be replaced by binary
encoding labels so that the model can be used as a multi-label classifier.

5. Conclusions

In this paper, we proposed a novel Odor Labeling Convolutional Encoder–Decoder
(OLCE) for odor identification. OLCE is an encoder–decoder structure using convolutional
neural network where the representation layer, the intermediate layer, is constrained to odor
labels. To evaluate the effectiveness of the model, several performance evaluation indexes
(accuracy, precision, recall rate, F1-score, and Kappa coefficient) were calculated. We also
built some common algorithms used in odor identifications to compare the performance.
Results demonstrated that OLCE had a decent performance according to the performance
evaluation indexes. OLCE has the highest average accuracy score (0.9257) and better
consistency in training models among these algorithms.

Supplementary Materials: The following are available online at https://www.mdpi.com/1424-822
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OLCE Odor Labeling Convolutional Encoder-decoder
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CNN Convolutional Neural Networks
SVM Support Vector Machine
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DG Dried Ginger
RAO Rhizoma Alpiniae Officinarum
TPB Tree Peony Bark
FAm Fructus Amomi
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