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Abstract
Faber series are used extensively in the application of complex variable methods to two-dimensional elasticity theory, for
example, in the mechanical analysis of composite materials where Faber series representations of complex potentials lead
to convenient expressions for the corresponding displacement and stress distributions. In many cases, the use of the
Faber series is combined with conformal mapping techniques which ‘‘transfer’’ a boundary value problem defined in the
elastic body (physical plane) to a simpler problem posed in an imaginary plane characterized by the conformal mapping. In
several instances in the literature, however, little attention has been paid to the domain of definition of the Faber series in
the imaginary plane leading often to misunderstandings and erroneous conclusions regarding the concept and feasibility
of the use of the Faber series. In this paper, we present a thorough and rigorous examination of the representation of the
Faber series in both the physical (occupied by the material) and imaginary (defined by the conformal mapping) plane. In
addition, we show that replacing a truncated Faber series by a truncated Taylor series does not induce any additional
errors in the numerical analysis of the corresponding boundary value problem. We anticipate that the discussion in this
paper will help clarify any existing misinterpretations regarding the application of the Faber series and help further extend
their use to a range of problems in composite mechanics.
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1. Introduction

The use of Faber series continues to attract considerable attention in the literature, particularly in the
area dealing with composite materials whose phases include arbitrarily shaped elastic inhomogeneities
(see, for example, studies [1–6]). Much of the enthusiasm for the use of the Faber series can be attrib-
uted to the fact that they allow for simple representation of complex potentials which, in turn, lead to
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convenient expressions for the corresponding displacement and stress distributions in the material. In
many cases, the use of the Faber series is combined with conformal mapping techniques which ‘‘trans-
fer’’ a boundary value problem defined in the elastic body (physical plane) to a simpler problem posed
in an imaginary plane characterized by the conformal mapping. In such cases, to facilitate computa-
tions, many authors choose to represent the Faber series in the imaginary plane as opposed to the (real)
physical plane, but in doing so fail to provide/clarify the corresponding domain of definition of the
Faber series in the imaginary plane. This has often led to confusion and misunderstanding among engi-
neering scientists working in this area. For example, Chen [7] remarks that in the paper by Luo and
Gao [3], the Faber series representation for the complex potential of the inhomogeneity in the imaginary
plane is invalid since the conformal mapping is valid only for the physical region occupied by the matrix
and not that occupied by the inhomogeneity. Luo and Gao [8] subsequently responded to the comments
made by Chen, but in doing so introduced only simple definitions of Faber polynomials and Faber
series which, in the present authors’ opinion, do not adequately answer the concerns detailed by Chen
[7]. In this paper, we present a detailed clarification of the properties of Faber polynomials and Faber
series in both their original (physical) plane of definition and in the imaginary plane resulting from the
use of conformal mapping. In addition, we examine the relation between Faber and Taylor series and
their use in numerical computations.

The paper is organized as follows. We review the definition of Faber polynomials and Faber series in
section 2. In section 3, we present the original form of Faber polynomials (already available in the litera-
ture but often neglected by researchers in applied mechanics) and clarify their corresponding representa-
tion in the imaginary plane defined via a conformal mapping. The relationship between Faber series and
Taylor series is discussed in section 4. Finally, our main results are summarized in section 5.

2. Faber polynomials and Faber series: concepts

The fundamental concepts behind Faber polynomials and Faber series as well as a comprehensive dis-
cussion of their defining properties are given in Curtiss [9]. For completeness, we review the most rele-
vant (for our purposes) properties here and refer the reader in Curtiss [9] for further information. In the
infinite Cartesian x1 2 x2 plane or complex z-plane (z=x1 + ix2 in which i denotes the imaginary unit),
we consider a simply connected finite (open) region S1 (bounded by an arbitrary smooth closed simple
curve L) and the infinite region S0 exterior to S1 (see Figure 1). We can always guarantee the existence of
a conformal mapping that transforms S0 in the (physical) complex z-plane to the exterior of the unit cir-
cle in the (imaginary) complex j-plane. In particular, this mapping can be described in terms of an infi-
nite series as follows [10]:

z = v jð Þ= z0 + R j +
X+ ‘

k = 1

akj�k

 !
, jj jø 1, ð1Þ

where z0 is a specific point inside S1 which depends on the overall position of S1 in the z-plane, while the
constants R and ak (k=1,2,3,...) are determined by the size and shape of S1 in the z-plane. In particular,
equation (1) maps the entire curve L in the z-plane to the entire unit circle in the j-plane. The Faber
polynomials Pj(z) (j=0,1,2,...) defined in S1 are introduced via the following Laurent series expansion
of the function jv0(j)=½v(j)� z� holomorphic outside the unit circle in the j-plane:

jv0 jð Þ
v jð Þ � z

=
X+ ‘

j = 0

Pj zð Þj�j, jj jø 1, z 2 S1ð Þ, ð2Þ

where, clearly, P0(z)=1. In particular, the boundary values Pj(t) (t 2 L, j = 0, 1, 2, :::) on the curve L are
defined by the limit of Pj(z) (j=0,1,2,...) as z tends towards t 2 L. Using the Faber polynomials Pj(z)
(j=0,1,2,...), we can find the Faber series expansion of an arbitrary holomorphic function u(z) in S1

whose boundary value is denoted by u(t) (t 2 L). In fact, it follows from Cauchy’s integral formula that
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u zð Þ= 1

2pi

þ
L

u tð Þ
t � z

dt, z 2 S1, ð3Þ

which, from equations (1) and (2), becomes

u zð Þ=
X+ ‘

j = 0

bjPj zð Þ, z 2 S1, ð4Þ

with

bj =
1

2pi

þ
sj j= 1

u v sð Þð Þs�j�1ds: ð5Þ

Here, equation (4) gives the Faber series of u(z) whose coefficients are defined by equation (5).

3. Original form of Faber polynomials

As noted above, the use of the Faber series continues to attract considerable attention in the literature
particularly in the area dealing with composite materials whose phases include arbitrarily shaped elastic
inhomogeneities (see, for example, studies [1–6]). In most investigations in which Faber series are uti-
lized, the Faber polynomials Pj(z) (j=1,2,3,...) are taken in the imaginary j-plane (in the context of con-
formal mapping (1)) as

Pj zð Þ= jj +
X+ ‘

k = 1

bj, kj�k, j = 1, 2, 3, ::: ð6Þ

where

b1, k = ak ,bj + 1, k = aj + k + bj, k + 1 +
Xk�1

l = 1

ak�lbj, l �
Xj�1

l = 1

aj�lbl, k ,

j, k = 1, 2, 3, :::

ð7Þ

Here, the ak (k=1,2,3,...) in equation (7) are again given in the prescribed mapping (1). Since the
Faber polynomials Pj(z) (j=1,2,3,...) are defined in the entire region S1, it is necessary to identify the

Figure 1. A finite simply connected region in an infinite plane.
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corresponding range of validity of the argument j in equation (6). Unfortunately, for over a decade this
requirement has never been fully clarified in any of the relevant papers in this area where either the issue
has been ignored completely (see studies [1–4]) or dealt with incorrectly (see Sudak [5] and McArthur
and Sudak [6]). In particular, in Sudak [5] and McArthur and Sudak [6], the range of j in equation (6)
was mistakenly taken to be jj j. 1 which does not, in fact, correspond to the domain of definition S1 of
the Faber polynomials but to some other region S0 of the z-plane which makes no sense in the context
of the physical problem. It is our opinion that the failure to clarify the range of j in equation (6) may
not only lead to further misunderstandings (see, for example, Chen [7] and Luo and Gao [8]) but also
hinder further application of the Faber series to interesting problems in two-dimensional elasticity the-
ory. In what follows, we seek to clarify the original form of Faber polynomials with emphasis on the
origin of equation (6).

In fact, as suggested in Curtiss [9], if we multiply both sides of equation (2) by the term (v(j)� z) and
then compare coefficients of j�j (j=–1,0,1,2,3,...) on both sides of the resulting equation, it is not diffi-
cult to obtain the following recurrence relation:

Pj + 1 zð Þ= P1 zð ÞPj zð Þ �
Xj�1

l = 1

alPj�l zð Þ � j + 1ð Þaj, j = 1, 2, 3, ::: ð8Þ

with

P0 zð Þ= 1,P1 zð Þ= z� z0

R
: ð9Þ

Here, from equations (8) and (9), it is clear that the Faber polynomial Pj(z) is no more than a jth order
polynomial in z with leading term (z� z0)j=Rj. When z lies on the curve L, it follows from the mapping
(1) that

z = v sð Þ= z0 + R s +
X+ ‘

k = 1

aks�k

 !
,

z 2 L,s = eiu, 0 ł u\2p
� �

:

ð10Þ

Substituting equation (10) into equations (8) and (9) results in the equation

Pj zð Þ= sj +
X+ ‘

k = 1

bj, ks�k, z 2 L, j = 1, 2, 3, :::ð Þ, ð11Þ

where bj, k (j, k=1,2,3,...) appear as exactly those introduced from equation (7). It is clear that to date,
the so-called Faber polynomials (6) used in papers on this subject are, in fact, only the boundary values
of the actual Faber polynomials (given by equations (8) and (9)) on the boundary L of S1 in the z-plane.
However, since the mapping (1) cannot generally associate the region S1 in the z-plane with a specific
region in the j-plane, it is not possible to derive a formula similar to equation (10) for a general point z
inside S1. Consequently, equation (6) is generally valid only when the argument j falls on the unit circle
in the j-plane so that it becomes necessary to use equations (8) and (9) to calculate the actual values of
the Faber polynomials Pj(z) (j=1,2,3,...) in the entire region S1.

4. Replacement of the Faber series by Taylor series

In numerical investigations concerning the deformation of finite elastic bodies (see, for example, Dai
et al. [11]), it is preferable to use truncated Faber series. Specifically, the unknown complex potential of
an arbitrarily shaped elastic body (occupying a simply connected region S1) is usually described (approx-
imately) by a truncated Faber series as
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f zð Þ=
XN

j = 0

cjPj zð Þ, z 2 S1, ð12Þ

where cj (j=0,1,...)) are some unknown coefficients. Since each Faber polynomial Pj(z) in equation (12)
is only an ordinary jth order polynomial with respect to z (see equations (8) and (9)), the truncated series
(12) is equivalent to the following (truncated) ‘‘Taylor series’’:

f zð Þ=
XN

j = 0

djz
j, z 2 S1, ð13Þ

where dj (j=0,1,...)) are some other unknown coefficients usually distinct from those in equation (12).
Here, it is worth noting that when the number N of the truncated terms in the series (12) or (13)
increases, the coefficients cj (j=0,1,2,...) determined from certain boundary conditions definitely con-
verge while the coefficients dj (j=0,1,2,...) determined from the same boundary conditions usually do
not. Despite this observation, for any given N, it follows from the equivalency of the series in equations
(12) and (13) that the same function f(z) in the entire region S1 will be obtained whether we use the
series in equation (12) or that in equation (13). Consequently, when the emphasis of the investigation is
on numerical analysis, it is reasonable to use Taylor series instead of the actual Faber series. In fact, the
replacement of the Faber series by Taylor series has already been adopted in a number of related inves-
tigations (see, for example, studies [12–14]), although without a convincing explanation (such as the one
presented here).

Finally, we mention that the idea of replacing Faber series with Taylor series is particularly useful
when applying complex variable methods to two-dimensional anisotropic elasticity. In fact, for a finite
anisotropic elastic body of given shape, since the domain of definition of its complex potential usually
differs from the given physical region, it is generally difficult to derive the corresponding conformal map-
ping (1) for the domain of definition of the complex potential and thus give expressions for the corre-
sponding Faber polynomials (as in equation (8)). Consequently, when complex variable methods are
applied to the case of a finite anisotropic elastic body, the use of Taylor series in place of the Faber series
is often more practical and convenient than in the corresponding case of isotropic elasticity.

5. Conclusions

We present a clarification of the use of Faber polynomials and Faber series with particular emphasis on
their representation in both the original (physical) plane of definition and in the corresponding imagin-
ary plane (defined via a conformal mapping). We note that in most of the associated published
researches involving the complex potential of a finite elastic body, the so-called Faber series given in the
imaginary plane, in fact, represents only the specific value of the complex potential on the boundary of
the elastic body and cannot generally be used to describe the complex potential in the entire elastic
body. We believe that such a clarification will serve to eliminate many of the misunderstandings and
misinterpretations of the use of the Faber series in two-dimensional elasticity. In addition, we discuss
the relationship between Faber series and Taylor series and show that truncated Faber series can indeed
be simply replaced by truncated Taylor series without inducing any errors in the corresponding numeri-
cal analysis.
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