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ABSTRACT

Motivation: Identification of differential expressed genes has led to

countless new discoveries. However, differentially expressed genes

are only a proxy for finding dysregulated pathways. The problem is

to identify how the network of regulatory and physical interactions

rewires in different conditions or in disease.

Results: We developed a procedure named DINA (DIfferential

Network Analysis), which is able to identify set of genes, whose

co-regulation is condition-specific, starting from a collection of condi-

tion-specific gene expression profiles. DINA is also able to predict

which transcription factors (TFs) may be responsible for the pathway

condition-specific co-regulation. We derived 30 tissue-specific gene

networks in human and identified several metabolic pathways as the

most differentially regulated across the tissues. We correctly identified

TFs such as Nuclear Receptors as their main regulators and demon-

strated that a gene with unknown function (YEATS2) acts as a negative

regulator of hepatocyte metabolism. Finally, we showed that DINA

can be used to make hypotheses on dysregulated pathways during

disease progression. By analyzing gene expression profiles across

primary and transformed hepatocytes, DINA identified hepatocarci-

noma-specific metabolic and transcriptional pathway dysregulation.

Availability: We implemented an on-line web-tool http://dina.tigem.it

enabling the user to apply DINA to identify tissue-specific pathways or

gene signatures.
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Supplementary information: Supplementary data are available at
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1 INTRODUCTION

Gene Expression Profiles (GEPs), measured in different condi-

tions and cell types via microarrays or, more recently, next gen-

eration sequencing, have been extensively used in computational

systems biology to reverse engineer gene regulatory networks

(Bansal et al., 2007; Marbach et al., 2010). The main use of

reverse engineering has been the identification of unknown regu-

latory or functional interactions among genes, microRNAs and

proteins from large datasets (Belcastro et al., 2011; Sumazin

et al., 2011).

State-of-the-art reverse-engineering methods model gene net-

works as static processes, i.e. regulatory interactions among

genes in the network (such as direct physical interactions or

indirect functional interactions) do not change across different

conditions or tissue types. However, different cell types, or the

same cell type but in different conditions, may carry out different

functions, and it is expected that their regulatory networks reflect

these differences.
Several methods have been proposed to identify active sub-

networks across different conditions from changes in gene

expression. One of the first attempts is a general method to

search for ‘active sub-networks’ connecting genes with unexpect-

edly high levels of Differential Expression (Ideker et al., 2002).

This method requires in input a single network, and it identifies

a set of genes (i.e. subnetwork) whose expression changes

across two conditions. However, changes in expression may

be mild or absent, even when the subnetwork is active. Hence,

looking only at the differential expression levels of genes could

be not sufficient. Therefore, more recent approaches at-

tempted to identify Differential Co-regulation (DC) of genes

in the subnetwork (Choi et al., 2009; Kostka et al., 2004;

Langfelder et al., 2011; Leonardson et al., 2010; Ma et al.,

2011; Odibat et al., 2012; Reverter et al., 2006; Watson et al.,

2006; Yinglei et al., 2004). By differentially co-regulated (DC)

genes, we mean set of genes, which are co-regulated only in a

specific condition but not in others (de la Fuente, 2010; Ideker

et al., 2012).
The main differences among all of these approaches are in how

the genes to be tested are selected, how co-regulation is measured

(i.e. Pearson Correlation Coefficient or Mutual Information) and

how DC across the conditions is quantified.
Some of the most advanced methods go beyond pair-wise

co-regulation and aim at automatically identifying de-novo sub-

network(s) containing genes whose co-regulation changes the

most across two or more conditions (Langfelder et al., 2011;

Ma et al., 2011; Odibat et al., 2012). This is achieved by advanced

optimization techniques such as genetic algorithms, which, how-

ever, are computationally intensive (Kostka et al., 2004), as they

require checking all of the possible subnetworks to identify the

ones that are most dysregulated. Hence, these methods are

limited in the number of different conditions that can be com-

pared (Choi et al., 2009; Langfelder et al., 2011; Watson et al.,

2006), and they may require fine tuning of the algorithm param-

eters (Ma et al., 2011).*To whom correspondence should be addressed.

� The Author 2013. Published by Oxford University Press

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/

by-nc/3.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial

re-use, please contact journals.permissions@oup.com



Here, we developed and applied a simple but powerful pro-
cedure named DINA (DIfferential Network Analysis), which

differently from other methods does not aim at identifying

de novo subnetworks of genes but rather at identifying whether

a known pathway is differentially coregulated across a set of
conditions. DINA is also able to predict which transcription

factors (TFs) may be responsible for the condition-specific co-

regulation. DINA requires in input a set of N networks and a set

of M genes, and it aims to identify whether co-regulation among
the M genes in the set changes significantly across the N different

conditions.

We first applied DINA to identify tissue-specific pathways,
and their TF regulators, starting from a collection of �3000

GEPs across 30 different tissues. DINA correctly discovered

that the amino acid and fatty acid metabolic pathways are

specifically active in liver and kidney (Hakvoort et al., 2011;
Jagoe et al., 2002), despite the level of expression of these en-

zymes being similar across the tissues. DINA correctly identified

TFs of the nuclear receptor family as the main regulators of these

pathways. DINA also revealed a novel candidate negative regu-
lator of metabolic pathways, YEATS2, a gene not well charac-

terized (Wang et al., 2008). We experimentally verified its

association to metabolic pathway regulation using starvation

response in primary hepatocytes (Ding et al., 2009).
We then applied DINA to three different hepatocyte cell lines,

from different stages of hepatocarcinoma (HCC).DINA correctly

predicted that the main metabolic pathways, as well as the p53
transcriptional program, get severely dysregulated in HCC.

2 METHODS

2.1 Database of GEPs

We implemented a GEP database in the open source DataBase

Management System PostgreSQL environment. We downloaded all the

MicroArray Gene Expression Markup Language (Brazma et al., 2001)

annotation files present in the ArrayExpress repository and extracted the

relevant information on the tissue or cell type for each experiment.We then

re-annoted each experiment in a semi-automaticway using the tissue ontol-

ogy eVOC (Hide et al., 2003).

2.2 Reverse engineering of tissue-specific gene

co-regulation networks

We classified 2930 microarrays (Affymetrix HG-U133A and HG-

U133plus2) extracted from ArrayExpress in 30 different tissues. We nor-

malizedmicroarrays independently for each tissue usingRobustMultichip

Average as implemented in the R package Bioconductor (Rafael et al.,

2003) (SupplementaryMaterial).We computed the Spearman Correlation

Coefficient (SCC) (Hardin et al., 2007) for each pair of probes in each

tissue, obtaining a correlation matrix of dimension 22 215� 22215 (we

excluded control probes) for each tissue. We estimated the SCC signifi-

cance for each pair of probes by computing t statistics of each SCC value

and then using a Student’s t-test distribution to estimate the P-value. To

control the number of False Positives owing to themultiple hypotheses test

problem, we estimated the degrees of freedom of the t-test distribution

from the data by fitting the parameters of a Student’s t-location-scale dis-

tribution to the t statistics computed for all the probe pairs. We estimated

the parameters by minimizing the squared error between the theoretical

and the empirical distribution (Supplementary Material).

In the construction of the SCC matrices, we did not apply any pre-

filtering step to exclude low-variance probe-sets; however, we applied a

stringent threshold (corrected P � 0:001) to call a SCC value significant,

thus reducing the number of False Positive co-regulatory interactions.

To obtain gene-wise SCC matrices starting from the probe-wise SCC

matrices, we first excluded probes that were associated to more than one

gene using the Affymetrix platform HG-U133A Ballester et al. (2010),

but keeping genes associated to more than one probe.

Specifically, we mapped 12161 genes from the probes in the HG-

U133A Affymetrix platform (Ballester et al., 2010). Of these 12161

genes, 68% of the genes were associated to only one probe, and only

11% of genes were associated to42 probes (Supplementary Fig. S1).

Hence, for the same pair of genes, there could be multiple values of the

SCC because the same gene can be associated to multiple probes in the

microarray. In this case, we chose to assign to the gene-pair, the ‘signed’

maximal absolute value of SCC across all the different probe pairs. At the

end of the procedure, we thus derived 30 gene-wise networks from the

30 probe-wise networks.

An alternative way to transform the probe-wise SCC matrices to gene-

wise SCC matrices would have been to apply a ‘gene centered’ normal-

ization (Ferrari et al., 2007) of the microarrays using a custom CDF,

before the SCC computation, thus eliminating the problem of multiple

SCC values. We however decided to preserve information on possible

alternative transcripts for future work and for experimental validation.

To demonstrate that our probe-wise to gene-wise network transformation

was robust and comparable with the custom CDF approach, we chose as

a case of study the three cancer cell line networks presented in the Section

3.8. We applied a ‘gene centered normalization’ method recently pro-

posed (Ferrari et al., 2007). Finally, we measured the similarity between

the ‘gene centered’ SCC matrices and the one we obtained with our strat-

egy by computing the 2D correlation (Supplementary Table S1). The

results show that the two approaches yield similar SCC values.

2.3 DINA

DINA requires in input a known set ofM genes (i.e. genes belonging to a

known pathway, or known targets of a TF), and it aims at assessing

whether the co-regulation among the genes in the set changes significantly

across N networks.

We downloaded the full manually curated list of 186 Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathways from MsigDb

(Liberzon et al., 2011). We selected only those pathways consisting of

genes that were present in our gene networks (i.e. at least 80% of the

genes had to be present) obtaining a final list of 110 KEGG pathways

(Supplementary Table S2).

DINA uses an entropy like measure to identify in which tissue(s) a

pathway is active. In information theory, entropy is a measure of the

uncertainty associated to a random variable. If V is a discrete random

variable, then the entropy H(V) can be computed as:

HðVÞ ¼
XN

i¼1

P V ¼ ið Þ log
1

P V ¼ ið Þ

Hence, the entropy H reaches its maximum value when each event is

equi-probable and its minimum, i.e. HðVÞ ¼ 0, when there is no uncer-

tainty. In our settings, V assumes N categorical values, representing the

N condition-specific networks. To compute PðV ¼ iÞ, we first computed

the number of edges ni connecting the M genes in the ith network (adding

a pseudo-count of 1) for i 2 f1, . . . , ng, and we then computed

P V ¼ ið Þ ¼ niPN

j¼1
ðnjÞ
: PðV ¼ iÞ can be interpreted as a probability because

it is a number greater than 0 and it sums to 1 across all the N condition-

specific networks by definition. PðV ¼ iÞ will be equal to 1 only when

the genes in the pathway are specifically co-regulated (i.e. connected) in

network i and not co-regulated (connected) in any other network. Thus,

P(V¼ i) represents the probability that M genes in a pathway are

co-regulated only in the ith network and not in the other networks.
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We also developed and tested a slightly modified version of the

entropy H(V), which also takes into account the pathway topology

(i.e. which genes are connected to which in the known pathway) (Sales

et al., 2012) as described in Supplementary Material. However, in the fol-

lowing analyses, we always used the H(V) formula previously described.

We applied a permutation test in order to assess the entropy signifi-

cance for each one of the KEGG pathways. The null distribution of

H(V) was approximated by selecting a set of N random networks,

with the same density as the original networks, and a set of M random

genes. Random networks were obtained from the original network

by randomly shuffling the gene labels. This procedure was repeated

10 000 times to estimate the H(V) P-value for each pathway. The

P-value was then corrected using the Benjamini–Hochberg method

(Benjamini et al., 1995).

2.4 Identification of transcriptional regulators of

tissue-specific pathways

We selected 1358 TFs including putative TFs (Supplementary Table S3)

from a list of 1988 human DNA-binding TFs compiled using information

from public repositories (Ravasi et al., 2010). We mapped the TFs onto

the HG-133A Affymetrix platform using only the probe sets associated to

a single gene.

For each TF, we computed the number of edges connecting it to the

genes in the pathway of interest in each of the 30 Tissue Specific

Co-regulatory Networks. We then assigned a P-value to each TF using

the non-parametric Fisher’s exact test, by comparing, in each tissue,

the number of edges between the TF and the genes in the pathway

with the number of all the possible edges between the TF and the

genes minus the real number of edges. The P-value was corrected using

the Benjamini–Hochberg correction (Benjamini et al., 1995).

2.5 Animals and tissues

Primary cultures of mouse hepatocytes were obtained from two wild-type

mice using the Pichard’s protocol (Pichard et al., 2006). Following col-

lagenase perfusion and sedimentation, primary hepatocytes were washed

and seeded at a density of 105 per well in gelatin-coated dishes (0.1%

Gelatin Type I from porcine skin, Sigma). Cells were cultured in Williams

E medium (Gibco, 12551) supplemented with 10% heat-inactivated fetal

bovine serum (FBS, Invitrogen), 50U Penicillin–Streptomycin 100�

Solution (P/S Gibco 15140-122), 1% L-glutamine. After 5 h, the

medium was replaced with Williams E medium supplemented with

Hepatozyme-sfm medium (Gibco 17705-021) with 5% heat-inactivated

FBS (Invitrogen), 50U Penicillin—Streptomycin 100� Solution (P/S

Gibco 15140-122), 1% L-glutamine and ITS 1� (Insulin Transferrin

Selenium -Sciencell 0803). HeLa cells were seeded at a density of 105

per well in a 6 wells multi-well cultured in complete medium,

Dulbecco’s modified Eagle’s medium (GIBCO BRL) supplemented

with 10% heat-inactivated FBS (Invitrogen) and 1% antibiotic/antimy-

cotic solution (GIBCO BRL) and 1% L-glutamine. Primary hepatocytes

and HeLa cells were maintained at 37�C in a 5% CO2-humidified incu-

bator over-night. After 24 h, the medium was removed and replaced with

starvation medium, Hank’s Balanced Salt Solution (Gibco 14025-050)

supplemented with HEPES solution 10 mM.

The cells were collected at different times points from starvation (30

min, 1 h, 2 h, 4 h, 6 h and 8 h). The primary hepatocytes used as control

were seeded at a density of 105 cultured in Williams E medium supple-

mented with Hepatozyme-sfm medium (Gibco 17705-021) with 5% heat-

inactivated FBS (Invitrogen), 50U Penicillin–Streptomycin 100�

Solution (P/S Gibco 15140-122), 1% L-glutamine and ITS 1� (Insulin

Transferrin Selenium -Sciencell 0803). HeLa cells used as control were

seeded at a density of 105 and were cultured in complete medium,

Dulbecco’s modified Eagle’s medium (GIBCO BRL) supplemented

with 10% heat-inactivated FBS (Invitrogen)and 1% antibiotic/

antimycotic solution (GIBCO BRL) and 1% L-glutamine. Animal use

and analyses were conducted in accordance with the guidelines of the

Animal Care and Use Committee of Cardarelli Hospital in Naples and

authorized by the Italian Ministry of Health.

2.6 mRNA extraction and quantitative real-time PCR

The cells were collected at each time point, and mRNAwas extracted and

retro-transcribed using the RNeasy mini kit and the Quantitec reverse

transcription kit (Qiagen), respectively. We performed a Quantitative

Real Time PCR reaction, set up in duplicates using the LightCycler

480 SYBR green master mix (Roche), and the amplification was per-

formed using a LightCycler 480 Real Time PCR instrument (Roche).

The quantitative real-time PCR (qRT-PCRs) were carried out using dif-

ferent pairs of primers for human and mouse isoforms of Yeats2. Gapdh

was used as control. The primer sequences for all genes are listed in

Supplementary Table S4. Data analysis was performed using the

LightCycler 480 Software(Roche). GAPDH mRNA levels were used

to normalize the amount of mRNA, and �Cts were calculated as the

difference between the average GAPDH Ct and the average of Ct for

each gene.

To asses whether genes change their expression significantly in the

qRT-PCR experiments, we used the software package Bayesian

Analysis of Time Series (Angelini et al., 2008). This method is based on

a Bayesian Approach to automatically identify and rank differentially

expressed genes from time-series data according to a Bayes Factor,

where a Bayes Factor less than one means that the gene is differential

express respect to the control.

3 RESULTS

3.1 Construction of a semantic database for

tissue-specific GEPs

One of the main hurdles in using GEPs from public repositories

is the abysmal state of the experiments’ meta-data containing

information on the biological samples and experimental proto-

cols. To select tissue-specific GEPs, we built a semantic data-

base, structured according to a human tissue ontology (Hide

et al., 2003), to retrieve and classify, in a semi-automatic

fashion, microarrays from ArrayExpress (Parkinson et al.,

2005). We assigned to each GEP the correct tissue, according

to the available meta-data, and kept only GEPs with a reliable

annotation. We were thus able to collect 2930 high-quality GEPs

(Affymetrix HG-U113A and HG-U133 Plus 2.0 platforms)

for 30 different tissues (Section 2 and Supplementary Tables S5

and S6).

3.2 Reverse engineering of tissue-specific gene

co-regulation networks

Although Mutual Information has been shown to be a better

alternative to correlation in identifying co-regulated genes

(Basso et al., 2005; Belcastro et al., 2011), we decided to use

the SCC owing to the limited number of GEPs available in the

different tissues. We also decided not to use network pruning

techniques (Faith et al., 2007; Margolin et al., 2006; Soranzo

et al., 2007), as we were not interested to distinguish between

direct and indirect interactions, but rather in how co-regulation

among genes changes across the different tissues.

We first normalized GEPs within each tissue (Rafael et al.,

2003); we then computed the SSC (Hardin et al., 2007) for
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each pair of probe-sets, retaining only those ones with a signifi-
cant SCC (Section 2). From these 30 probe-set-wise networks, we
built 30 gene-wise networks, by assigning to each probe-set the
corresponding gene (Section 2).

3.3 Validation and analysis of the tissue-specific

gene networks

To verify the biological relevance of the tissue-specific gene
networks, we constructed two ‘Golden Standards’: (i) experimen-
tally verified protein–protein interactions (Bossi et al., 2009;

Xuebing et al., 2008) and (ii) the manually curated Reactome
database of genes and proteins that participate to the same
pathways (Croft et al., 2011).

For each network, we computed the percentage of co-
regulated genes for which a regulatory interaction was confirmed
by one of the two Golden standards [Positive Predictive

Value¼TP/(TPþFP)]. As shown in Supplementary Figures S2
and S3, all of the networks have a PPV significantly higher than
what would be expected by chance (Section 2). As each network

was constructed using a different number of GEPs, we also
verified that the difference in performance across the networks
was not related to the number of experiments used for the
construction of each network (Supplementary Fig. S4).

As a further proof of the biological relevance of the tissue-
specific co-regulation networks, we identified which interactions
were conserved across the majority of the 30 networks

(Supplementary Table S7): 3235 co-regulatory interactions,
involving 993 distinct genes, were conserved in at least half of
the tissue-specific networks. Gene Ontology Enrichment

Analysis of these genes revealed an enrichment for ‘housekeep-
ing’ functions such as ribosomal and cell cycle genes
(Supplementary Fig. S5).

3.4 DINA for the identification of condition-specific

pathways

Our working hypothesis is that genes belonging to a condition-
specific pathway are actively co-regulated only in specific

conditions when the pathway is active, but not in others,
independently of their absolute level of expression.
To this end, we developed a network-based algorithm, DINA,

which is able to identify whether genes in a known pathway are

significantly co-regulated only in specific conditions, but not in
others (Fig. 1A and Supplementary Fig. S6). The algorithm
starts with a set of M genes (i.e. genes belonging to a known

pathway) and a set of N networks (i.e. the 30 tissue-specific gene
networks). It then computes a ‘co-regulation probability’ for the
M genes in each of the N networks; this probability is propor-

tional to the number of edges among the genes in each network.
DINA then quantifies how variable the co-regulation probability
is across the N networks. Variability is quantified using an

entropy-based measure (H), and its significance is estimated
using a permutation test (Section 2). If the M genes in the set
have a similar co-regulation probability across the N networks,
then the entropy H will be high; on the other hand, if the

M genes have a high co-regulation probability only in one (or
few) networks (i.e. the pathway activity is condition-specific)
than the entropy H will be low (hence, we are interested in path-

ways associated to a low H).

3.5 Identification of tissue-specific pathways using DINA

To test whether DINA was able to identify tissue-specific path-

ways, i.e. pathways that are actively regulated only in specific

tissues, we used the full manually curated list of 186 KEGG

pathways from MsigDb (Kanehisa et al., 2002; Liberzon et al.,

2011) including signaling, metabolic and regulatory pathways.
A pathway in KEGG is a set of genes known to function as a

module according to the literature. From this list, we deleted

disease pathways and pathways not well represented in our net-

works (Section 2), thus obtaining a final list of 110 pathways.
By applying DINA to the tissue-specific networks, we

obtained 22 significant pathways (with corrected P� 0.01,

Supplementary Table S8). One of the most significant pathways

(i.e. the one with lowest entropy H) was the Glycine, Serine and
Threonine metabolic pathway (KEGG hsa00260). This pathway

was correctly identified by DINA to be mainly regulated in liver

and kidney, where most of the glycine to serine metabolism

occurs (van de Poll et al., 2004). Interestingly, among the 22

significant pathways, nine are metabolic pathways enriched in

liver and kidney (Supplementary Table S8 pathways in bold).
Figure 2A shows the co-regulation probability of the 32 genes

in the Glycine, Serine and Threonine metabolic pathway in

each of the 30 tissues, as previously defined; for comparison,
Figure 2B shows the average expression level of the genes in

the pathway in each of the tissues. Expression levels do not

change significantly across the tissues, whereas the co-regulation

probabilities (Fig. 2A) are strikingly different.
We checked for the expression level of the genes encoding for

the enzymes involved in this pathway also in the Gene Atlas

Dataset (Su et al., 2004), a compendium of normal tissues used

to identify where genes are expressed. Using the canonical ex-
pression level threshold of 200 (Su et al., 2004), we found that

only 13 of 32 genes are expressed in liver, and only 2 of 32 are

expressed in Kidney (Supplementary Fig. S7).
Similar considerations applied to the other significant meta-

bolic pathways identified by DINA (with corrected P� 0.01,

Supplementary Table S8 pathways in bold). Hence, an approach

based on expression levels (and not co-regulation) would not

Fig. 1. Differential network analysis. (A) Graphic description of the

DINA method to quantify the variability of co-regulation among the

genes in a pathway across multiple networks. (B) Graphic description

of the method used to identify the transcriptional regulators of the

genes in a pathway across multiple networks
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have been able to identify these tissue-specific metabolic path-
ways (for the other significant metabolic pathways refer to
Supplementary Figs. S8 and S9).

3.6 Identification of transcriptional regulators of

tissue-specific pathways

We wondered whether it was possible to identify TFs regulating
tissue-specific pathways identified by DINA. We reasoned that a
TF, controlling a tissue-specific pathway, may be co-regulated

with its target genes only in that tissue but not in others
(Fig. 1B). As the regulation of metabolic pathways has been
well studied in the past, we decided to identify TFs involved
in the regulation of the nine metabolic pathways previously iden-

tified by DINA.
To this end, we used a list of 1358 human genes including both

genes, whose protein product has a verified TF activity (Ravasi

et al., 2010), as well as genes encoding proteins with an indirect
transcriptional activity, such as co-factors or scaffolding proteins
(Stella et al., 2010). For each of the nine metabolic pathways

previously identified as tissue-specific, and for each TF in the
list, we applied the Fisher’s exact test (Section 2) to select TFs
sharing a significant number of edges with the genes in the path-

way only in the tissue(s) where the pathway is active, as shown
in Figure 1B. The regulators identified for each pathway are
reported in Supplementary Tables S9–S17 [together with the
Benjamini–Hochberg corrected P-value (Benjamini et al., 1995)].

Table 1 lists the TFs controlling the majority (i.e. seven of
nine) of the metabolic pathways according to our analysis
(Section 2). Considering only genes encoding proteins with a

known TF activity (Table 1 in bold), we correctly identified
many nuclear receptors as specific regulators of these pathways
(NR1H4, NR1I3, ESRRG, HNF4A). The nuclear receptor

super-family is one of the largest group of TFs involved in the
regulation of different metabolic processes (Francis et al., 2003),
such as the regulation of liver metabolism (Elfaki et al., 2009).
For example, one of the six receptors is HNF4A, probably the

most famous nuclear receptor in liver, whose mutations are re-
sponsible for monogenic autosomal dominant non-insulin-de-
pendent diabetes mellitus type I (Desvergne et al., 2006). The

protein encoded by this gene controls the expression of several
genes, including hepatocyte nuclear factor 1 alpha, a TF that
regulates the expression of several hepatic genes.

When we considered also genes encoding proteins indirectly
involved in transcription (Ravasi et al., 2010) (Table 1 not in
bold), we identified, among others, SIRT4 (sirtuin 4), a

member of the sirtuins’family that plays a key role in metabolic

Table 1. Transcription Factors identification

Symbol Name Role Citations

NR1H4 nuclear receptor subfamily 1, group H, member 4 activator (Forman et al., 1995; Makishima et al., 2005; Vazquez, 2012)

ESRRG estrogen-related receptor gamma activator (Makishima et al., 2005; Sanoudou et al., 2010)

TRPS1 trichorhinophalangeal syndrome I inhibitor

NR1I3 nuclear receptor subfamily 1, group I, member 3 activator (Bauer et al., 2004; Makishima et al., 2005; Miao et al., 2006)

HNF4A hepatocyte nuclear factor 4, alpha activator (Makishima et al., 2005; Rommel et al., 2003)

ZNF394 zinc finger protein 394 inhibitor

TBR1 T-box, brain, 1 activator

DAB2 disabled homolog 2 activator

DIP2C disco-interacting protein 2 activator

TRIM15 tripartite motif-containing 15 activator

ASB9 ankyrin repeat and SOCS box-containing 9 activator

YEATS2 YEATS domain containing 2 inhibitor

SIRT4 sirtuin 4 activator (Chalkiadaki et al., 2012; Nargis et al., 2010; Nidhi et al., 2007)

Note: List of TFs regulating the majority (i.e. seven of nine) of the tissue-specific metabolic pathways. In bold genes with know TF activity, in normal text genes encoding

protein indirectly involved in transcription.

Fig. 2. Differential network analysis of the Glycine pathway (KEGG

hsa00260). (A) Co-regulation probability of the 32 genes in the Glycine

pathway (hsa00260) across the 30 tissues. (B) Average expression level of

the 32 genes in the Glycine pathway (hsa00260) across the thirty tissues

(error bars represent one standard deviation)

1780

G.Gambardella et al.



response (Chalkiadaki et al., 2012; Nargis et al., 2010; Nidhi

et al., 2007).

3.7 YEATS2: a negative transcriptional regulator of

metabolic pathways

YEATS2 was predicted to be the most significant negative regu-

lator shared by most of the metabolic pathways (Table 1).

YEATS2 is expressed at low levels in both liver and kidney

(Wu et al, 2009), and little is known about its function.

Recently, it has been demonstrated that YEATS2 interacts

with the Ada-Two-A-Containing complex (Wang et al., 2008),

which, together with Spt-Ada-Gcn5-Acetyl-Transferase, is able

to modulate transcription, both by causing chromatin modifica-

tion and by interacting with the TATA-binding proteins (Krebs

et al., 2011; Wang et al., 2008).
To validate our prediction about the involvement of YEATS2

in the transcriptional regulation of metabolism in liver, we

decided to further investigate its function by perturbing hepato-

cytes homeostasis by starvation (Ding et al., 2009).
During starvation, a switch from anabolism to catabolism

occurs (Caro-Maldonado et al., 2011): cells start to mobilize

stored nutrients, such as glycogen and triglycerides, cell growth

is arrested and autophagy is promoted (Ding et al., 2009; Levine

et al., 2008). During starvation, there are large changes in gene

expression that affect specific metabolic pathways. For example,

genes involved in fatty acid �-oxidation are upregulated (Bauer

et al., 2004), whereas genes involved in biosynthesis are down-

regulated (Sokolovic et al., 2008).
We performed a starvation time-course experiment for 8h in

both primary murine hepatocytes and in HeLa cells, by switching

cells from a nutrient-rich medium to a starvation medium

(Section 2). Cells were collected at different time points dur-

ing starvation (30 min, 1 h, 2 h, 4 h, 6 h, 8 h). Cells grown in

nutrient-rich medium were used as control.
We measured by qRT-PCR the variation in the expression

level of YEATS2 in response to starvation in primary hepato-

cytes and HeLa cells (Fig. 3 and Supplementary Fig. S10).

Yeats2 is an early response gene, quickly downregulated on star-

vation during the first 2 h in primary hepatocytes, as shown

in Figure 3.

We also analyzed the expression profiles of a subset of genes

whose expression levels increase following starvation (Bauer

et al., 2004; Yoon et al., 2001): Pgc1a, Acaa1a, Acot2,

Cyp4a10, Cyp4a14 and ApoA4 (Fig. 3). Moreover, we measured

the expression profiles of CRAT, CTSB and PLIN2 in HeLa

cells as shown in Supplementary Fig. S10.
These selected genes were up-regulated, as expected, during the

first 4 h of starvation, as shown in Figure 3: Pgc1a (Peroxisome

proliferator-activated receptor gamma, co-activator 1 alpha)

encoding for a transcriptional co-activators that plays a key

role in the regulation of both carbohydrate and lipid metabolism

(Leone et al., 2005); Acaa1a (Acetyl-CoA acyltransferase 1A)

encoding a peroxisomal thiolase operating in catabolism of

fatty acid (Bauer et al., 2004) together with ACOT2 (Acyl-

CoA thioesterase 2), which is localized in peroxisomes(Hunt

et al., 2002); Cyp4a10 (Cytochrome P450, family 4, subfamily

a, polypeptide 10) and Cyp4a14 (Cytochrome P450, family 4,

subfamily a, polypeptide 14) encoding two members of

Cytochrome P family able to oxidize a variety of structural com-
pounds, as well as fatty acids (Bauer et al., 2004; van den Bosch
et al., 2007). Genes involved in lipid transport showed an upregu-

lation as well, such as ApoA4 (Apolipoprotein A4), which
enhances lipid absorption by promoting the assembly and secre-

tion of Chylomicrons (Bauer et al., 2004; Yao et al., 2011).
To probe further the role of Yeats2 and its involvement in

regulation of metabolism in liver, we analyzed an existing

in vivo time-series microarray experiment (ArrayExpress ID
E-MEXP-748) from liver, muscle and adipose tissue of

ApoE3Leiden transgenic mice, exhibiting a humanized lipid
metabolism, treated with high-fat diet (HFD) for 0, 1, 6, 9, or
12 weeks (Kleemann et al., 2010). On HFD feeding, genes

involved in metabolic pathways, such as lipid metabolic pro-
cesses, were found to be upregulated in liver (Kleemann et al.,

2010). Based on these observations, we decided to investigate the
expression of Yeats2 in this mouse model considering only the
liver tissue, and we found that Yeats2 expression is strongly

downregulated in HFD mouse liver (P-value of 3:38e10�8)
(Kapushesky et al., 2010; Kleemann et al., 2010).
Our results support a previously unreported role of the

scaffolding protein YEATS2 in transcriptional control of the
metabolic response and demonstrate that DINA can be applied

to identify regulators of tissue-specific pathways.

3.8 Identification of disease-specific pathways

dysregulation using DINA

Gene expression alteration is a common molecular hallmark of
cancer progression. The identification of cancer genetic signa-
tures has been successfully exploited for understanding the mech-

anisms of cancer development (Watters et al., 2006), as well as

Fig. 3. Yeats2 expression in hepatocyte cells during starvation. Real-time

quantitative PCR measurements of the expression of Yeats2 and a set of

marker genes at the indicated time-points following starvation. CRT in-

dicates cell in rich medium. BF indicated the Bayes Factor estimated

using Bayesian Analysis of Time Series algorithm. The gray area repre-

sents the standard deviation across the two biological replicates. Gene

expression was quantified using the �CT method with Gapdh used as

normalization gene
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for anticancer therapies selection (Rothenberg et al., 2003) and

diseases prognosis (Dracopoli et al., 2005). Moreover, specific

cancer-regulated gene networks have been identified (Mani

et al., 2008; Stella et al., 2010). We wondered whether DINA

could be successfully used to identify selective alterations of co-

regulated gene networks in cancer. As a study model, we focused

on hepatocellular carcinoma, as several cell-lines modeling HCC

progression are available, as well as GEPs measured in these cell

lines. HCC progression involves alterations in many signaling

pathways, such as EGF-Ras-MAPK, AKT-mTOR, Jak-Stat

and NF-kB cascades (Llovet et al., 2008). In addition, inactivat-

ing mutations of the tumor suppressor p53, or p53 loss of ex-

pression, are among the most frequent genetic events associated

with hepatocyte transformation (Bressac et al., 1990; Hinds et al.,

1987), and the dysregulation of p53-dependent genes have been

observed in HCC (Hailfinger et al., 2007; Hsu et al., 1993).
Here, we collected 161 GEPs (Supplementary Table S18)

for three human cell-lines: primary hepatocytes (40 GEPs),

hepatoblastoma-derived cell line HepG2 (39 GEPs) and

Hepatocarcinona-derived cell line (Huh7) (82 GEPs). We first

tested the ability of DINA to identify DC of p53-dependent

genes across the three cell lines. To this purpose, we built a

gene signature made up by 34 experimentally validated direct

transcriptional targets of p53 (Lim et al., 2007), and we then

applied DINA to this gene signature, as shown in Figure 4.
DINA successfully detected a DC of the p53 target genes

across the three cell lines: the co-regulation probability is high

in normal hepatocytes and to a lesser extent in hepatocellular

carcinoma HEPG2 cell line, carrying a wild-type p53 protein,

and decreases significantly in Huh7 cell line, carrying an inactive

p53 protein (Bressac et al., 1990) (Fig. 4B). Interestingly, the

expression level of the p53-target genes did not correlate with

the functional status of the p53 protein in the different cell lines,

thus supporting our previous observation (Fig. 4A) that an

expression-based method would be less powerful than the
DINA in identifying dysregulated pathways.
We next applied DINA to identify dysregulated pathways

during hepatocytes transformation. The DINA-based analysis

of the 110 KEGG pathways identified at least four pathways
whose co-regulation is significantly disrupted in the HCC cell
lines compared with the normal hepatocytes (Supplementary

Table S19). Similarly to the previous results, the average expres-
sion levels of the genes in these pathways did not change signifi-
cantly between normal and transformed hepatocytes.

Interestingly, the most significant loss of co-regulation
observed in transformed hepatocytes involves the peroxisome
metabolism (KEGG ko04146), the primary bile acid biosynthesis

(map00120) and the glyoxylate and dicarboxylate metabolism
(map00630): these pathways are responsible for fundamental
functions in liver cells such as the synthesis of bile acids, choles-
terol, the oxidation of fatty acid, the metabolism of phenyala-

nine, the glyoxylate and the tyrosine metabolism. Moreover,
among the other dysregulated pathways identified by DINA,
we found disruption of fundamental pathways regulating liver

cancer progression such as the PPAR signaling pathway
(Supplementary Table S19).
To gain further insights into the dysregualtion of the

peroxisome metabolism, we analyzed the changes in the gene
co-regulation network among the corresponding genes across
the three cell lines. Figure 5A and B demonstrates that there
is a major loss of co-regulation among peroxisome-related

genes in both HepG2 and Huh7 HCC cell lines; moreover, this
loss mainly results from dysregulation of genes involved in
peroxisomal fatty acid �-oxidation (e.g. ACOX, EHHADH,

ACAA1) and genes involved in the control of the H202 metab-
olism (e.g. CAT and SOD). Notably, these genes are regulated
by the peroxisome proliferator-activated receptor alpha

(PPARalpha) (Reddy et al., 2001) and the LXR family TFs
(Hu et al., 2005).
Thus, our results indicate that the dysregulation in the activity

of these liver-specific transcription regulators may represent a
recurrent event associated with HCC. Consistent with these
results, peroxisome and PPARalpha pathway alterations have
been definitely associated with liver cell proliferation and with

HCC development (Gonzalez et al., 2008), confirming the effi-
cacy and specificity of DINA algorithm in identifying condition-
specific pathway regulation.

4 DISCUSSION AND CONCLUSION

In this study, we hypothesized that genes belonging to a
tissue-specific pathway are actively co-regulated, and hence

co-regulated, only in specific tissues where the pathway is
active, but not in others, independently of their absolute level
of expression. We proposed an approach (DINA) based on

quantifying the variability in the co-regulation probability of
genes across tissues or conditions. DINA is based on detecting
differences in the number of edges among genes in a pathway

across a set of networks, and, therefore, it can be applied to any
kind of network, independently of how this is generated. DINA,
however, is not able to detect distinct network topologies that
have equal density. Differently from other methods, DINA does

not aim at identifying de novo subnetworks of genes, but rather

Fig. 4. Differential Network Analysis of the p53 gene signature in pri-

mary and transformed heptocytes. The gene signature consists of 34 bona

fide transcriptional targets of p53. (A) p53 expression level in the three

cell-lines for the two probes present in Affy HG-U133A platform. (B)

Comparison between the co-regulation probability of the genes in the

signature (black) and their average expression level
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at identifying whether a known pathway (or a set of genes of

interest) is differentially coregulated across a set of conditions.
We derived 30 tissue-specific gene co-regulation networks and

identified several metabolic pathways as the most differentially

regulated across the tissues, and specifically active in liver and
kidney. Usually, tissue specificity of a gene, or of a pathway, is

assessed by quantifying the expression level of the genes in the
concerned tissue (Shlomi et al., 2008). However, observing gene

expression only could be not sufficient, as in the case of meta-
bolic pathways (Gille et al., 2010). Here, we show that an alter-
native possibility is to check whether the genes involved in the

same pathway are specifically co-regulated in the concerned
tissue. Of note, a similar approach has been successfully applied

in yeast (Kharchenko et al., 2005).
We also demonstrated that tissue-specific targets of a TF tend

to be co-regulated with the TF in a tissue-specific manner.

Hence, we developed a new method based on the Fisher’s

exact test to identify tissue specific TFs. We tested this approach
to identify regulators of tissue-specific metabolic pathways and

correctly identified Nuclear Receptors as their main regulators.

We were also able to identify a new putative tissue-specific nega-

tive regulator of heptocyte metabolism (Yeats2). Finally, we

showed that DINA can be used to analyze GEPs obtained

during disease progression to make hypotheses on dysregulated

pathways.
The identification of differential expressed genes in disease

compared with normal conditions is a standard practice in

laboratories all over the world, and it has led to countless new
discoveries. However, differentially expressed genes are only a

proxy for finding dysregulated pathways. Indeed, the real ques-

tion one would like to answer is which pathways get dysregulated

during disease progression, to understand the pathogenic mech-

anisms. Recent efforts have shown that using high-throughput

phospho-proteomics in conjunction with signaling network

models can be used to identify differences in signaling pathways
between normal and transformed hepatocytes (Saez-Rodriguez

et al., 2011).

Here, we demonstrated that DINA is able to gain information

about HCC-specific metabolic and transcriptional pathway dys-
regulation by quantifying changes in co-regulation among genes

across primary and transformed hepatocytes. It remains to be

seen whether changes in signaling pathway activity can be de-

tected using only a transcription-based approach such as DINA.
We also implemented an on-line web tool (http://dina.tigem.it)

enabling the user to apply DINA to identify tissue-specific path-

ways or gene signatures.
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