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ABSTRACT

Objective: We provide an e-Science perspective on the workflow from risk factor discovery and classification of

disease to evaluation of personalized intervention programs. As case studies, we use personalized prostate and

breast cancer screenings.

Materials and Methods: We describe an e-Science initiative in Sweden, e-Science for Cancer Prevention and

Control (eCPC), which supports biomarker discovery and offers decision support for personalized intervention

strategies. The generic eCPC contribution is a workflow with 4 nodes applied iteratively, and the concept of e-

Science signifies systematic use of tools from the mathematical, statistical, data, and computer sciences.

Results: The eCPC workflow is illustrated through 2 case studies. For prostate cancer, an in-house personalized screen-

ing tool, the Stockholm-3 model (S3M), is presented as an alternative to prostate-specific antigen testing alone. S3M is

evaluated in a trial setting and plans for rollout in the population are discussed. For breast cancer, new biomarkers

based on breast density and molecular profiles are developed and the US multicenter Women Informed to Screen

Depending on Measures (WISDOM) trial is referred to for evaluation. While current eCPC data management uses a tra-

ditional data warehouse model, we discuss eCPC-developed features of a coherent data integration platform.

Discussion and Conclusion: E-Science tools are a key part of an evidence-based process for personalized medi-

cine. This paper provides a structured workflow from data and models to evaluation of new personalized inter-

vention strategies. The importance of multidisciplinary collaboration is emphasized. Importantly, the generic

concepts of the suggested eCPC workflow are transferrable to other disease domains, although each disease

will require tailored solutions.
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INTRODUCTION

The sequencing of the human genome opened avenues for new

genomic analysis of diseases, and high-throughput technologies such

as massively parallel sequencing and array-based technologies have

resulted in new insights and new biomarkers. Despite these findings,

the results have not yet propagated into new screening programs on

a wide scale.

Biomarkers provide means of stratifying patients by disease risk,

probability of therapy response, or prognosis. Genome-wide associ-

ation studies are commonly used to detect genetic risk factors predis-

posing to complex diseases, including various cancers; however,

clinical use when it comes to predicting individual risk is so far lim-

ited.1 Large collaborative efforts such as the Cancer Genome Atlas

and the International Cancer Genome Consortium aim to profile

most major cancer forms using several molecular technologies and

make data available to the research community. These studies con-

tribute to establishing somatic mutation patterns, molecular sub-

types, and pan-cancer molecular signatures.2 In the clinical setting

to date, the main patient benefit of cancer genomics has been to pro-

vide means for identifying patients harboring mutations in onco-

genes such as EGFR and BRAF,3,4 for which targeted therapies

exist. A unique opportunity exists to develop and validate novel bio-

markers for individual risk prediction, therapy response, and prog-

nosis based on integration of multiple molecular data types and

from multiple sources. However, new and refined bioinformatics,

statistical methodologies, and other e-Science tools will be required

to achieve these objectives.

The focus of this paper is an e-Science perspective on personal-

ized prevention and treatment programs, describing and exemplify-

ing the workflow from data and modeling to evaluation and clinical

implementation. Substantial resources have been put into e-Science

activities in many countries, including the United Kingdom5 and the

United States. Examples of e-Science approaches in the medical field

include the work of Saltz et al.6 who describe how e-Science can

contribute to translational medicine from a theoretical computer sci-

ence perspective, and Marias et al.7 who describe an e-Science

approach to multiscale simulation for the development of cancer

therapies.

Each cancer form and subtype has its own risk factor profile,

cancer genomics, prognosis, and treatment modalities. Currently,

cancer screening programs for early detection use a one-size-fits-all

approach instead of a personalized protocol, which takes into

account a person’s biological characteristics, circumstances, and

preferences. The US National Cancer Intervention Surveillance

Modeling Network (CISNET)8 has made major contributions to

understanding the effect of mass screening and treatment on trends

in mortality. The CISNET collaboration started in 2000 from a can-

cer surveillance perspective and involves a number of cancers.

Strengths of CISNET include a comparative modeling approach,

with population-level reconstructions of risk exposures (eg, smoking

for lung cancer) and screening behaviors (eg, mammography for

breast cancer, prostate-specific antigen [PSA] testing for prostate

cancer). CISNET, however, does not have access to the longitudinal

data and complete life histories needed to design, implement, and

evaluate new personalized screening programs.

As a conceptual case study, we present the approach taken by

the Swedish program e-Science for Cancer Prevention and Control

(eCPC), a flagship of the Swedish e-Science Research Centre (www.e-

science.se). eCPC was established in 2011 with the aim of coordinating

methodologies for new cancer biomarker discovery and developing

new screening tests and programs using e-Science methods, ie, methods

from mathematical, statistical, data, and computational sciences.

THE ECPC WORKFLOW

For prostate cancer, no organized screening program exists today,

and the challenge is to balance the benefit from tests for early detec-

tion (such as the PSA test) with harmful effects of screening (high

rates of negative biopsies and overdiagnosis). For breast cancer,

organized mammographic screening is implemented in most of the

developed world.

When attempting to initiate or improve programs for early detec-

tion of disease, the starting point must be the observable biology, ie,

the current understanding of the disease progression. This is referred

to as the natural history of the disease, which typically involves

parameters that are either not observable, such as the initial onset of

disease, or are only partially observed at specific time points, such as

the stage of disease at the time of diagnosis. Methodology adequate

for latent or partially observable entities is useful in this context.

Based on the description of the natural history as it is known and

on observed data, the aim of the personalized screening program in

eCPC is to identify risk factors and evaluate their ability to discrimi-

nate high-risk from low-risk individuals in the population. An indi-

vidual’s risk level determines the screening intervention he or she

receives. New predictors and new models are evaluated using rele-

vant data sources, both in a controlled trial setting and on real-

world populations using microsimulation and probabilistic calibra-

tion. When better discrimination is achieved and validated, then a

new iteration of the workflow begins in order to continuously

improve the screening program. This general methodology is cap-

tured in the eCPC workflow in Figure 1, which illustrates the proc-

ess from data and modeling to evaluation of new intervention

programs. This workflow requires tailored solutions for each disease

domain. The starting point is the observable biology of the disease

(node 3 of the figure). This guides the choice of data sources and the

first-stage analytic approach.

PERSONALIZED CANCER SCREENING

Recently, new validated predictors such as cancer susceptibility

genetic markers and medical imaging have led to improvement in

the discrimination accuracy of prediction models and the potential

for new cancer screening programs.9–12 We illustrate e-Science tech-

nology in the eCPC workflow in Figure 1 through 2 examples: per-

sonalized screening for prostate cancer and breast cancer.

Prostate cancer
Prostate cancer is the most common cancer in Swedish men, with

10 000 new diagnoses and 2500 deaths annually. For prostate can-

cer, there are high levels of opportunistic screening, with no organ-

ized screening program. Current testing using the PSA test may be

doing more harm than good. The major challenge is to predict

which men will have more aggressive prostate cancer, and thus

reduce overdiagnosis and overtreatment.
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Node 3: Natural history of prostate cancer
There are few environmental factors associated with prostate cancer

incidence; the main risk factors are older age, family history of pros-

tate cancer, and ethnicity. Natural history models for prostate can-

cer may include (1) cancer onset, stratified by the Gleason score

used in treatment decisions, (2) stage progression for preclinical can-

cer, and (3) survival after diagnosis. The current prostate cancer nat-

ural history models vary in their mathematical representations,

reflecting both parsimony and uncertainty in modeling for partially

observed states. As examples, a model may assume no change of

Gleason score after onset (eg, the model developed by the Fred

Hutchinson Cancer Research Center [FHCRC]13), or may model for

de-differentiation (eg, the Microsimulation Screening Analysis14

[MISCAN] model in CISNET). In addition, PSA can be modeled

explicitly and linked to disease progression (eg, FHCRC), or PSA

values can be modeled indirectly using test probabilities (eg, MIS-

CAN). We adapted the FHCRC natural history model for the Swed-

ish setting using Swedish data sources.

Node 1: Data sources
Local studies include data from the Cancer Risk Prediction Center

(CRisP)15 for several prostate cancer studies, including an observa-

tional cohort, Stockholm-2, and a large diagnostic trial comparing

biomarker effectiveness at predicting prostate cancer incidence,

Stockholm-3 (STHLM3).12 Through linkages of health registries,

we organized a population-based registry, the Stockholm PSA and

Biopsy Registry.16 With data from the 3 clinical chemistry laborato-

ries that perform all PSA analyses in the Stockholm region, we iden-

tified all men who underwent at least 1 PSA test in Stockholm since

2003. From the 3 pathology departments in Stockholm, data were

collected on histological examinations from prostate tissue samples

from the same geographical area and period. The register is regularly

linked to the National Swedish Patient Register, where data on sur-

gical procedures and histories regarding other diagnoses were

obtained. Clinical data, including tumor stage and Gleason score,

were obtained through linkages to the Regional Prostate Cancer

Register and the Swedish National Cancer Register. For follow-up

between 2003 and 2015, the Stockholm PSA and Biopsy Registry

comprised 1.8 million PSA tests for 448 000 men. Extensive work

has been done to normalize the Stockholm PSA and Biopsy data-

base, and to annotate and standardize its use. For example, in order

to ensure reproducible analyses, we developed data-curating proce-

dures (eg, to clean biopsy data from misclassified surgeries based on

surgery coding) and defined standardized definitions of how

patients’ PSA tests are associated with the prostate biopsies they

undergo and the prostate cancer diagnoses they get.

Node 2: Biomarker panel for prostate cancer risk

prediction
Using data described in Node 1, we constructed an algorithm, the

STHLM3 model (S3M), for predicting a man’s risk of having clini-

cally significant prostate cancer (defined as Gleason score 7 or

higher) using a combination of plasma protein biomarkers (PSA,

free PSA, intact PSA, human kallikrein-2, microseminoprotein beta,

and macrophage inhibitory cytokine-1), genetic markers, clinical

variables (age, family history, previous prostate biopsy), and a pros-

tate exam (digital rectal exam and prostate volume) as predictors.

The plasma protein biomarkers used in STHLM3 were selected

from a scientific literature search and 2 subsequent validation stud-

ies on biobanked plasma (n¼1200 in total). S3M was fit to the

STHLM3 training cohort (n¼11 130) using logistic regression.

Node 4: Controlled trial evaluation
S3M was tested in the validation cohort (no overlap with the train-

ing cohort) of the prospective and population-based STHLM3 diag-

nostic trial, which included 47 688 men ages 50–69 years.12 The

STHLM3 study followed a paired screen positive design, where 2

tests (PSA alone and S3M) were performed on each study partici-

pant. A paired design has considerably higher statistical power for a

given number of study participants than a randomized design. The

results of STHLM3 showed that S3M reduced the number of biop-

sies by 32% and avoided 44% of the negative biopsies compared to

using PSA�3 ng/mL as a cutoff for biopsy recommendation, while

maintaining the same sensitivity to diagnose Gleason score �7 as

prostate cancer. S3M is now clinically available in Sweden and inter-

nationally and can be ordered instead of PSA as a clinical test for

prostate cancer risk.

Node 4: Microsimulation for evaluation in the

population
Internationally, there are few open-source computational tools for

population-based simulations of health care. The eCPC team developed

an open-source microsimulation framework to simulate prostate cancer

screening that closely links the R statistical language with a Cþþmicro-

simulation core used on high-performance computing clusters.17 The

simulation framework implements the prostate cancer simulation model

originally developed by FHCRC. We extended the FHCRC model to

incorporate S3M together with costs and quality-adjusted utilities for

cost-effectiveness analysis. The source code is available on https://

github.com/mclements/microsimulation and an online version (Figure 2)

is available at http://www.escience4cancer.net/applications/microsimula

tion/.

To calibrate the microsimulation model, we explored the use of

approximate Bayesian calibration.18 For computationally expensive

applications like the microsimulation, it is not feasible to evaluate

the full likelihood motivating the use of approximate Bayesian cali-

bration. Using the summary statistics and their likelihoods in combi-

nation has proved to quickly find suitable ranges for parameters in

order to reproduce observable data. The Bayesian framework in

itself is appealing for microsimulation model calibration, since prior

information on suitable parameter ranges and distributions may be

Figure 1. eCPC workflow to illustrate the process from data and modeling to

evaluation of new population programs via 4 nodes. Prediction and natural

history models are applied to assess individual risk. Model parameters are

estimated using molecular data, nationwide Swedish registers, and cohort

data. Bioinformatics and image analysis allow for discovery of novel bio-

markers and other predictors in order to improve risk discrimination. Microsi-

mulation is used to plan trials and evaluate protocols for public policy shifts.

The process is iterative.
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available from previous studies or publications, and the posterior

samples can be used for probabilistic sensitivity analysis.

Clinical impact, outlook
Comparing observational and trial data, we found evidence that the

S3M screening test would improve sensitivity and specificity in the

population more than was estimated from the STHLM3 trial.19

S3M began routine clinical use in Stockholm in 2016. The early use

has been as a triage for the PSA test for intermediate PSA values. As

suggested by a reviewer to,19 we will be able to monitor the uptake

and use of the S3M test in the population by extending the Stock-

holm PSA and Biopsy Register to include the S3M tests. A national

prostate cancer testing register is being planned to extend the cover-

age across Sweden.

We have also begun the process of updating the S3M algorithm,

allowing for revised and new biomarkers where we incorporate

missing data methods and methods to include covariates only avail-

able for those who screened positive (eg, for those referred to

biopsy).

BREAST CANCER

Breast cancer is the most common cancer type among women in

Sweden and accounts for approximately 15% of all female cancer

deaths. For breast cancer, mammographic screening was introduced

gradually across Sweden and national coverage was achieved in

1997. Women are offered screening between the ages of 40 and 74,

40 and 69, 46 and 69, 50 and 69, or 50 and 74, at intervals in the

range of 18–24 months, depending on county of residence. Partici-

pation is in the range of 70–90%, again depending on county of resi-

dence. However, women continue to present clinically with breast

cancer in the time intervals between screenings and outside of the

screening program.

Node 3: Natural history of breast cancer
Understanding screening sensitivity and tumor progression is an

important part of the eCPC program for evaluating personalized

screening programs for breast cancer. We are developing a frame-

work for modeling tumor growth as a continuous biological process

and have, for example, used this to estimate mammographic screen-

ing sensitivity as a function of tumor characteristics and mammo-

graphic density and to study determinants of tumor growth

rates.20,21

Node 1: Data sources
eCPC works with data from CRisP15 also for breast cancer studies,

including the Karolinska Mammography (KARMA) project for risk

prediction of breast cancer,22 a prospective cohort study comprising

>70 000 women attending mammography screening or clinical

mammography in Sweden. Participants have responded to web-

based questionnaires, donated blood, and given permission for stor-

age of full-field digital mammograms. eCPC also works with the

Linné-Bröst 1 (LIBRO-1) study,21 a large cohort of breast cancer

patients in the Stockholm-Gotland region who were diagnosed

with breast cancer between 2001 and 2008, and CAHRES,17 a

population-based case-control study of post-menopausal breast

cancer, with 6000 cases and controls, of which half have been

included in molecular studies.

Node 2: Image-based markers for risk
Mammographic percent density has been confirmed to be one of the

strongest risk factors for breast cancer in women, and solutions

already exist to measure it in the clinical setting23 and include it in

risk-prediction models. There is, however, an opportunity to

improve risk prediction by extracting further attributes from digital

mammograms. This is being explored by a number of research pro-

grams, such as the WISDOM trial24 and the European Commission

Figure 2. Screen capture of the web-based microsimulation user interface for the prostate cancer model for a risk-stratified screening protocol, where men at low

risk are rescreened every 8 years and men at medium risk are rescreened every 4 years.
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FP7-funded Assure.25 A mammogram-based measure of breast tissue

stiffness and local texture patterns in prediagnostic mammograms

have, for example, recently been shown to be associated with breast

cancer risk.26,27

eCPC has recently developed a novel approach to enhance area-

density measures in digitized film and digital mammograms28,29 and

described algorithms (based on automated segmentation and

machine learning methods; Figure 3) for measuring area and volu-

metric density in processed full-field digital mammograms30 and

spatial relations of density regions.31 Additionally, and in a more

recent study, we identified 2 novel mammographic features in

screening mammograms of the normal breast that appear to differ-

entiate between future-interval cancers and screen-detected cancers.

The 2 image-based features are “skewness of the intensity gradient”

and “eccentricity,” which are basically shape descriptors. The for-

mer feature was found to be associated with tumor size at screen

detection, while the latter was found to be associated with tumor

size at interval detection.32

Node 2: Genomic profiling to identify high risk
eCPC aims to identify molecular features that predict interval breast

cancers, ie, tumors that become detectable in the interval between

mammography screenings. Interval cancers represent a failure of the

current screening system and are thought to be aggressive tumors

with a high growth rate. We evaluated the genomic profiles of 60

interval and 113 screening-detected cancers through targeted deep

sequencing of cancer-related genes, low-pass whole-genome

sequencing, and RNA sequencing, in order to better understand

somatic differences between the 2 groups.33 Comparisons included

routine tumor characteristics currently used in the clinic as well as

the spectrum of breast cancer–associated point mutations, copy

number alterations, and differential gene expression. The genomic

profiling indicates that the genes TP53, PPP1R3A, and KMT2B are

more frequently mutated in interval cancers than in screen-detected

cancers. Adjustment for the PAM50 subtype indicates that the

molecular differences by interval cancer status are largely explained

by PAM50 subtypes, confirming that interval cancers are associated

with more aggressive tumor characteristics and the identified genes

are targets for identification of high-risk individuals.

Node 4: The WISDOM trial
Traditionally, age has been the sole risk factor used to initiate

screening. A personalized approach to screening could be an alterna-

tive to the current “one-size-fits-all” guideline-based approach in

Figure 3. Automated mammography breast segmentation and feature extraction for breast cancer research. The figure shows the output of our preprocessing of

mammograms: (A) original full-field digital mammograms, (B) pseudo-color generation after applying the horizontal and vertical cropping, (C) positive signal in

the Q component in the NTSC color space, detecting the reddish area, (D) convex hull of the negative (c), (E) final extracted breast mask, and (F) breast region

after applying the contrast limited adaptive histogram equalization. Note that to get the dense tissue region, one could perform a logical AND operation of the

input images (C and D).
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the United States and most of the rest of the developed world.

Besides work on identifying new risk factors as described under

eCPC Node 2, eCPC members are involved in the WISDOM study

of risk, a multicenter trial comparing risk-based screening to annual

screening in 100 000 women ages 40–74, initiated at the Athena

Breast Health Network (in California and the Midwest at Sanford

Health).24 The trial will determine if screening based on personal-

ized risk is as safe, results in less morbidity, is preferred by women,

and will facilitate prevention for those most likely to benefit and

adapt as we learn who is at risk for what kind of cancer. In the plan-

ning of WISDOM, a microsimulation model was developed to

study, a priori, the likely outcomes of the trial, to determine the best

approach for analyzing the trial, and to estimate study power and

the likely cost-effectiveness of the intervention.

Clinical impact, outlook
Accurate risk prediction is a necessary prerequisite for effective per-

sonalized breast cancer screening. If successful, the WISDOM study

could provide a paradigm shift, with a decrease in the mortality of

breast cancer and reduced unintended consequences of screening,

similar to those for prostate cancer (unnecessary biopsies, overdiag-

nosis, and overtreatment).

E-SCIENCE METHODS FOR DATA INTEGRATION

Here we describe some generic e-Science concepts and methods for

data integration that are relevant in the context of the eCPC

workflow. While eCPC has used traditional data management tools

so far, the methods in this section are developed within eCPC aiming

to adopt a more mature future data science approach. This section

refers to Node 1 of the eCPC workflow in Figure 1.

Medical research commonly involves integrating data from vari-

ous sources, such as biobanks, health registers, medical records, and

local as well as public repositories. Data integration is the process

by which data from different sources are linked and made available

in a form such that information or conclusions can be deduced from

the combined data.34 This commonly requires that a metadata

model exists, allowing data to be harmonized or transformed and

converted into an interoperable format. Data integration can be

achieved on different levels: as aggregated summary statistics or on

the microdata (patient or sample) level. Integrating data is not triv-

ial, due to issues of semantics, and also for political and regulatory

reasons. The sensitive nature of information in medical research also

calls for solutions using adequate anonymization and encryption

methods to protect the confidentiality of individuals.35

Integrating samples across biobanks and clinical health

registers
We developed and applied the stereo-array isotope labeling (SAIL)

method36 for linking data across biobanks and health registers.

SAIL operates on the metadata level, specifically availability data,

and contains information on whether data for individual samples

exist without disclosing the data value per se. This approach avoids

many privacy issues but allows for linking data on the sample level

to carry out power calculations or feasibility studies. The method is

particularly useful when designing large-scale studies on a specific

topic as well as in raising awareness among researchers about the

availability and content of data sources, making the data easy to

locate, interpret, and incorporate into a research project. We applied

the SAIL method to biobank data in the European Network for

Genetic and Genomic Epidemiology consortium37 to local biobanks

at Karolinska Institutet and to prostate cancer health registry data at

the Karolinska University Hospital.36,38 In order to reduce the

chance of possible reidentification of individuals using prior infor-

mation, we applied statistical disclosure control methods that have

been successfully applied in several bioscience projects, such as Jer-

boa39 and DataSHIELD.40 Public instances demonstrating the

method are available from http://www.escience4cancer.net/applica

tions/data-availability/. The source code for SAIL is available from

the SIMBioMS website, https://www.simbioms.org. However, the

importance lies not in the actual software but rather in the devel-

oped general method of achieving interoperable data that can be

applied to other similar cases and using other software tools.

Secure integration of sensitive data in distributed

environments
A common solution in medical data integration is to pseudonymize

personal IDs (PIDs), which is associated with the risk of deidentifica-

tion if prior information is available that can be linked via nonsensi-

tive variables. We developed a method that replaces the PID with an

anonymous ID, which is then subjected to double encryption using a

Study key as well as a Master key. This ensures that data can be inte-

grated on an anonymous ID in a system containing the Master key,

but also ensures that if the system were compromised, the data could

not be traced back to the original PID. The data are subsequently

made available in an isolated secure instance of a data availability

system41 and can serve as a model for reducing the risk of deidentifi-

cation when publishing availability data. The source code for the

implementation is available at https://github.com/gholamiali/ecpc.

Standardization
Developing shared vocabularies, minimum-information standards,42

and data exchange formats is a key aspect of data integration carried

out in various domain-specific settings as well as in international

consortia, eg, the Biobanking and Biomolecular Resources Research

Infrastructure–European Research Infrastructure Consortium,43 the

Public Population Project in Genomics and Society,44 and BioMed-

Bridges.45 Vocabularies and standards emerge that gain acceptance

in the medical research community, eg, Health Level 7, Clinical

Data Interchange Standards Consortium, and Systematized Nomen-

clature of Medicine–Clinical Terms.

DISCUSSION

This paper exemplifies e-Science tools useful in the process of per-

sonalized medicine. A generic workflow is defined starting from

data and models and carries over to evaluation of programs in con-

trolled and real-world settings. To illustrate e-Science methodology,

we use personalized prostate and breast cancer screening. Impor-

tantly, the workflow in Figure 1 is not limited to cancer, but is

adaptable to other disease domains.

Natural history cancer modeling will continue to be central to

the validity of most simulation models for cancer screening and can-

cer treatment. The comparative modeling approach of CISNET

brought consolidation to divergent research on cancer screening.46

We now see a more mature field where natural history models are

used to answer more refined questions about cost-effectiveness,47

risk stratification, and evaluation of novel biomarkers.48

We expect to see improvements in the accuracy of prediction

models through better and more affordable biomarkers. We also
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expect to see a trend toward prediction models for biological sub-

types of cancer and changes in the response variable from pathologi-

cally determined phenotypes to phenotypes determined by genome

sequencing. In the era of personalized medicine, large-scale prospec-

tive trials of personalized approaches to screening and treatment

will likely become more common, leading to broader clinical adop-

tion of prediction models.

With larger sample sizes and high-throughput technologies, both

image-based and biomarker-based discovery have become data-

intensive and inherently dependent on e-infrastructures and e-Sci-

ence components. Similarly, in silico modeling and microsimulation

are data-intensive and offer a flexible complement to conventional

randomized intervention trials with morbidity or mortality out-

comes. Although total mortality is an ultimate measure of interven-

tion success, intermediate outcomes such as number of biopsies in

the S3M diagnostic trial are important as intermediate evaluation

tools. Moreover, the flexibility of the microsimulation framework

allows for evaluation of cancer screening protocols based on cost-

effectiveness comparisons and where the lifetime expected quality-

adjusted utilities and costs can be calculated.49

Data sizes in, eg, eCPC are considerable and expected to increase

manifold in the coming years with, eg, increased uptake of high-

throughput technologies such as massively parallel sequencing. This,

coupled with simulations of large populations, necessitates access to

high-performance e-infrastructures (compute clusters or cloud

resources) and requires that problems are properly parallelized.

New emerging frameworks for Big Data promise to simplify con-

struction of scalable software applications but are not easily accessi-

ble, and in most cases require considerable changes to existing code

and libraries. Building a general modular system, such as the work-

flow in Figure 1, requires expertise in software engineering, high-

performance and distributed computing, and collaboration with a

multidisciplinary team of scientists.

A challenging and far-reaching implication of eCPC has been in

cross-disciplinary development. A broad range of methods experts

with backgrounds in mathematical, statistical, data, and computa-

tional sciences work closely together and interact on a daily basis

with clinicians, epidemiologists, and molecular scientists. We must

invest in developing the human competences necessary to realize

these new approaches to doing science.50,51 This is particularly true

of the sciences that are traditionally less technical, which includes

the biomedical sciences. Importantly, we also need to transform the

way in which students in medicine view research.
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