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ABSTRACT: Objectives: We aim to identify the breast cancer (BC) subtype
clusters and the crucial gene classifier prognostic signatures by integrating genomic
analysis with the tumor immune microenvironment (TME). Methods: Data sets of
BC were derived from the Cancer Genome Atlas (TCGA), METABRIC, and Gene
Expression Omnibus (GEO) databases. Unsupervised consensus clustering was
carried out to obtain the subtype clusters of BC patients. Weighted gene
coexpression network analysis (WGCNA), least absolute shrinkage and selection
operator (LASSO), and univariate and multivariate regression analysis were
employed to obtain the gene classifier signatures and their biological functions,
which were validated by the BC dataset from the METABRIC database.
Additionally, to evaluate the overall survival rates of BC patients, Kaplan−Meier
survival analysis was carried out. Moreover, to assess how BC subtype clusters are
related to the TME, single-cell analysis was performed. Finally, the drug sensitivity
and the immune cell infiltration for different phenotypes of BC patients were also calculated by the CIBERSORT and ESTIMATE
algorithms. Results: TCGA−BC samples were divided into three subtype clusters, S1, S2, and S3, among which the prognosis of S2
was poor and that of S1 and S3 were better. Three key pathways and 10 crucial prognostic-related gene signatures are screened.
Finally, single-cell analysis suggests that S1 samples have the most types of immune cells, S2 with more sensitivity to tumor
treatment drugs are enriched with more neutrophils, and more multilymphoid progenitor cells are involved in subtype cluster S3.
Conclusions: Our novelty was to identify the BC subtype clusters and the gene classifier signatures employing a large-amount dataset
combined with multiple bioinformatics methods. All of the results provide a basis for clinical precision treatment of BC.

1. INTRODUCTION
Breast cancer (BC), a heterogeneous tumor, has many etiologies
and clinical features.1,2 Studies have found that multiple
subtypes have been identified in the development and
progression of BC.3 Based on the 2013 St. Gallen International
Breast Cancer Congress, more than five molecular subtypes of
BC can be defined, i.e., luminal A, luminal B, human epidermal
growth factor receptor 2 (HER2) + B2, HER2 overexpression,
basal-like triple-negative breast cancer (TNBC), and other
subtypes.4 The classical classification methods of breast cancer
subtypes include immunohistochemical-based estrogen recep-
tor (ER)-, progesterone receptor (PR)-, and HER2 and intrinsic
gene expression-based classification methods.5 Correspond-
ingly, the resulting tumor subtypes with distinct genomic
alterations show different clinical outcomes and treatment
responses. Identification of BC subtypes can provide insight into
the pathogenesis of the disease and contribute to the precise
diagnosis of BC and personalized targeted therapy.

Clinical phenotypes such as disease stage, metastasis, and
tumor resectability, as well as histological subtypes, are
frequently used in current clinical approaches for outcome
prediction and treatment decision-making for BC treatment.
However, the development of molecular profiling more recently

has given rise to the possibility of quantitative tumor analysis
based on profiles of protein expression, mutations, and/or
genome-wide gene transcription. These assays promise to
characterize tumor subtypes with more precision and accuracy
and to more correctly forecast how particular tumor types will
respond to various therapies. For instance, Perou et al. divided
BC into five intrinsic molecular subtypes based on gene
expression signatures�basal-like, normal-like, HER2-enriched,
and luminal A and B, revealing variations in the genesis of tumor
cells as well as disparate patterns of progression.6 Another study
classified BC into 1q/16q, amplifier, and complex subtypes
based on the CNA pattern.7

Additionally, it is widely known that the cross-talk between
the tumor cells and tumor microenvironment (TME) influences
genetic and epigenetic changes that affect the formation,
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incidence, and therapeutic resistance of cancer. In BC patients, a
better clinical result has been related to immune infiltration
levels.8,9 Particularly, higher CD8+ T-cell infiltration is strongly
associated with better overall survival (OS) in ER-negative
patients.10,11 Moreover, high immune infiltration is additionally
associated with a better response to adjuvant chemotherapy.12

Many studies in recent years have shown that the TME can be
explained by transcriptomic data.13−18 These findings indicate
that a lower risk of breast cancer recurrence is correlated with a
higher expression of leukocyte-related genes.13,16,19,20 Notably,
Ali et al. and Bense et al. recently reported in a metastudy how
specific immune cell types affect breast cancer prognosis.13,21

However, the role and clinical relevance of immunity in BC still
need to be elucidated by more comprehensive analysis.

Presently, three BC prognostic subtype clusters and a set of
genetic signatures that can be used to classify BC subtypes were
identified using BC data in public databases, which may provide
effective evidence for precise clinical treatment of BC and help
explore BC heterogeneity between patients. The single-cell
sequence analysis of BC suggests progressive immune
infiltration of clinically relevant immune clusters. Through
characterization of the immune components of the TME, the
immune infiltration and poor prognosis group identified as
tumor-related. Further subtype analysis revealed that most types
of immune cells are enriched in subtype cluster S1 samples, more
neutrophils are distributed in the subtype S2 with more
sensitivity to tumor treatment drugs, and more multilymphoid
progenitor cells are involved in subtype cluster S3. All of the
results may provide an effective basis for the clinical precision
treatment of BC.

2. MATERIALS AND METHODS
2.1. Data Source. Presently, a total of three publicly

available data sets, i.e., cohorts A, B, and C, are used in this study,
which are respectively derived from the Cancer Genome Atlas
(TCGA), Molecular Taxonomy of Breast Cancer International
Consortium (METABRIC), and Gene Expression Omnibus
(GEO) databases. Among them, the gene expression profiling
data of cohort A obtained from TCGA was used as a training set
for model construction, which contains 103 paracancerous
samples and 903 BC samples.22 The gene expression data of
cohort B derived from METABRIC, which included 154
paracancerous samples and 1826 BC samples, were used to
assess the reliability of the constructed model.23 Further, to
explore the underlying biology of BC, single-cell analysis was
performed on cohort C (accession number GSE118389), which
includes six primary TNBC patients with gene expression profile
data.24

2.2. Clustering Analysis for Determining the BC
Subtypes. To determine the molecular subtypes of BC in
patients, the consensus clustering analysis was carried out by
employing the ConsensusClusterPlus package of R.25 Before
running the program, the “max cluster number (maxK),” “cluster
algorithm (clusterAlg),” and “distance” parameters in this
package were set to “5”, “hc,” and “Pearson,” respectively. In
order to ensure the stability and reliability of the classification, all
cluster analyses were repeated 1000 times. Additionally, by
calculating the consensus matrix, cumulative distribution
function (CDF), and relative change in the area under the
CDF curve, the optimal number of subtypes (K) was obtained.
2.3. Construction of the Coexpression Network. To

identify the modules associated with clinical features, weighted
gene coexpression network analysis (WGCNA)26 was carried

out on BC cohort A data by the corresponding package of R. At
first, a topological overlap matrix (TOM) was obtained by the
adjacency matrix. Then, all genes were split into various gene
modules by the TOM dissimilarity measure. The outliers were
identified and removed by clustering analysis and the optimal
value of soft threshold β was employed to ensure a scale-free
network. When minModuleSize = 30 and merge CutHeight =
0.25, the gene module was identified as a key module. Finally,
the gene significance (GS) and module membership (MM) of
the genes in the module were calculated, which represent the
correlation between genes and subtypes. Herein, the hub genes
are the genes with GS > 0.5 and MM > 0.9.
2.4. Functional Enrichment Analysis of Genes in Key

Modules. To investigate the potential biological functions
performed by the acquired genes in key modules, Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) enrichment analyses were carried out by
employing several R packages, which contain “org. Hs.Eg.Db,”
“ggplot2,” and “clusterProfiler.”27,28 Subsequently, the enriched
GO or pathway terms with significant differences were screened
by a threshold p-value <0.05.
2.5. BC Subtype-RelatedGene Classification Signature

Screening. To screen the key genes classification signature
associated with BC subtypes, we first built the gene classifier as
previously described.29 In brief, employing the logistic
regression, the candidate genes associated with BC subtype
distinction (with p < 0.05) were identified. Finally, using the
glmnet and decision tree packages30 in R, the LASSO regression
was carried out to narrow the variables and obtain the final gene
classification signature.
2.6. Establishment of the Risk Prognostic Model. To

investigate the impact of gene classification signatures on the
patient’s survival outcome and survival time, the BC gene
expression data of cohort A were also used to establish a clinical
prediction model. Employing the gene classifiers obtained
above, the risk prognostic model was built based on the
following formula.

= ×
=

risk score coefi id
i

n

1 (1)

where coefi denotes the coefficient and id denotes the
normalized count for each gene.

Additionally, the TCGA−BC patients were split into high-
and low-risk groups based on the median risk score. The overall
survival rates of two patient groups were assessed using Kaplan−
Meier survival analysis. Additionally, employing the survival
package31 in R, the ability of the classifier to predict the tumor
lymph node metastasis (TNM) status, stage, age, and risk was
assessed by the time-dependent receiver operating characteristic
(ROC) curve. Moreover, area under the curve (AUC) values
were computed to determine the classifier’s or pertinent clinical
factors’ predictive potential. Finally, the correlation between
TCGA-based breast cancer clinical immunohistochemical
subtypes and previous high- and low-risk subtypes was evaluated
and visualized using the ggstatsplot package.32

2.7. Validation of the Classification Model. To further
confirm the robustness of gene classified signatures, the data of
cohort B derived from METABRIC are employed for external
validation. By calculating the individual risk score of high- and
low-risk BC patients, their individual survival status was
evaluated. In addition, the molecular intrinsic subtypes of BC
patients were determined by the PAM50 classifier algorithm.33
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Also, to compare the overall survival among subtypes, log-rank
tests were carried out to assess the correlation between the basic
classification clusters and tumor stage.
2.8. Evaluation Heterogeneity among Different Sub-

type Clusters. To further evaluate the heterogeneity of the

molecular intrinsic subtypes of BC patients, single-cell analysis
was performed on cohort C (GSE118389). To standardize the
expression matrix of cohort C and to perform cell cluster
analysis, the Seurat package, FindNeighbors, and FindClusters
are used. In addition, the differentially expressed genes (DEGs)

Figure 1. Consensus clustering for TCGA−BC. (a−d) Consistency matrix heat map at k = 2−5. (e−h) Kaplan−Meier curves for OS of BC patients
stratified by consensus clustering (2−5). (i) Cumulative distribution function curve tracking graph. (j) PCA of expression when subtype classification
number is 3.
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among cell clusters were obtained by FindAllMarkers in the
Seurat package. Herein, the criteria for screening DEGs were |
log fold change (FC)| ≥ 1 and the adjusted p-value ≤0.05.
Finally, the cell subgroups determined by the prognostic gene
classifier signatures were observed by violin plots, and the
interaction between cells was analyzed by the R cellchat (1.6.1)
package.34

2.9. Prognostic Nomogram Construction. For further
exploring the prognostic role of gene classification signatures,
univariate and multivariate regression analysis was also
performed to filter the significant prognostic factors. To
determine which gene classifier signatures were significantly
associated with OS, the univariate regression models were used
and p-values were calculated. The gene classifier signatures with
a p-value <0.05 are significantly related to clinicopathologic
features. Subsequently, a prognostic nomogram was constructed
to improve the prediction ability by integrating important
features derived from multiple regression analysis with the
survival and RMS packages.35

2.10. Evaluation of Drug Sensitivity and Immune Cell
Infiltration. For investigating the molecular characteristics
associated with drug sensitivity and drug resistance, the
Genomics of Drug Sensitivity in Cancer (GSDC) database
(https://www.cancerrxgene.org/) was employed, which is a
public resource for the discovery of biomarkers in cancer cells.
Using the pRRophetic package36 of R, the sensitivity data of
three BC subtype clusters to different drugs were counted, and
the drug sensitivity of different phenotypes of BC patients from
the gene expression data was also predicted.

Additionally, for exploring the differences of different
subtypes of immune cells based among multiple clusters of
TCGA−BC samples, CIBERSORT,37,38 a tool to deconvolute

the expression matrix of immune cell subtypes, was used.
Besides, to explore the degree of immune cell infiltration
between BC subgroups, the ESTIMATE39 algorithm was also
performed.

3. RESULTS
3.1. Identification of Clusters Associated with Sub-

types of BC Patients. Employing the ConsensusClusterPlus
package of R, the gene expression data allowed the 1006 samples
in the TCGA−BC cohort A to be divided into various groups.
With the changes in the consensus matrix (CM) K value, the
resulting clusters in CM (Figure 1a−d) and their corresponding
prognosis (Figure 1e−h) are also different. Particularly, when
the maxK value is equal to 3, three clean clusters associated with
molecular subtypes of BC in patients are obtained, which are
named cluster S1 (n = 382), cluster S2 (n = 328), and cluster S3
(n = 296) subgroups (Figure 1b). Subsequently, Kaplan−Meier
survival analysis was performed on the gene expression data of
the patients using the log-rank test (Figure 1e−h). Interestingly,
only when K = 3, the differences in prognosis among the three
clustering subgroups are statistically significant (log-rank test P
= 0.028 < 0.05, Figure 1f), which is consistent with the above
results. In detail, the prognosis of cluster S2 patients was the
worst, and that of cluster S3 patients was the best (Figure 1f). In
contrast, moderate OS was observed in patients of cluster 1
(Figure 1f). Besides, we evaluated the relative changes of areas
under the CDF curve, and the results showed that when K = 3,
the clustering results tend to be stable (Figure 1i). Further, the
principal component analysis of gene expression data in these
three clusters is depicted in Figure 1j. Consequently, a total of
three subtype clusters of BC with significantly different

Figure 2. WGCNA analysis of TCGA−BC. (a) Scale-free fit index analysis for different soft thresholds. (b) Cluster dendrogram of TCGA−BC. (c)
Correlation between each module and different subtype clusters. (d−f) Correlation between module gene expression and subtype clusters.
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Figure 3. GO bioprocess functional enrichment and pathway analysis of genes in (a, b) subtype cluster S1, (c, d) subtype cluster S2, and (e, f) subtype
cluster S3 modules.

Figure 4. Identification and evaluation of the gene classifier for BC subtyping. (a) Distribution of follow-up data of breast cancer patients in three
subtypes. (b) LASSO coefficient profiles of the module genes. (c) Selection of the penalty parameter (λ) in the LASSO model. (d) Gene classifier is
represented by the boxplot in the three subtypes.
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prognoses were classified by unsupervised consistent clustering,
which are used for further research.
3.2. WGCNA Analysis. Presently, WGCNA was carried out

on the TCGA−BC cohort A to establish a weighted
coexpression network. Clearly, the connection between genes

in the network satisfies the scale-free distribution when the soft
threshold β = 6 (scale-free R2 = 0.9) (Figure 2a). Subsequently,
the phylogenetic tree was used to retrieve the coexpression
modules (cut height = 0.25) (Figure 2a). Additionally, the
hierarchical cluster analysis showed that modules with similar

Figure 5. Survival evaluation of gene classifier signatures in TCGA. (a) Kaplan−Meier survival curve of the patients in high- and low-risk scores. (b)
Patient subtypes were grouped based on the median level of gene classifier labels in TCGA. (c) Results of ROC analysis for the clinical factors. (d)
Distribution of subtypes in high- and low-risk levels.
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gene expression patterns were clustered on the same branch
(Figure 2b). Figure 2c shows the calculated and visible
correlations between modules and the subtype clusters, in
which the red color module had a significantly negative
association with subtype cluster S1 (r = 0.70, p < 0.01). Besides,
the black module had the strongest association with subtype
cluster S2 (r = 0.67, p < 0.01), while the blue module had the
strongest association with subtype cluster S3 (r = −0.81, p <
0.01). Finally, the correlation between genes and subtypes is
depicted in Figure 2d−f. Through WGCNA, a total of three
subtype-related gene modules were found, which can be
considered as gene signatures specific to each BC subtype.
3.3. BC Subtype Cluster-Specific Enrichment Analysis.

For investigating the biological pathways and biological
processes related to BC subtype clusters, enrichment analysis
of significant genes in modules was performed. Figure 3a,b
shows that most of the biological processes and pathways
associated with subtype cluster S1 are related to the regulation of
angiogenesis and the PI3K-Akt pathway. The occurrence of
these tumor vessels may be related to the tumor progression,
which is consistent with the moderate survival time of subtype
cluster S1 (Figure 1f). Additionally, the genes in the subtype
cluster S2 module show significant enrichment for hormone
secretion and the AMPK signaling pathway (Figure 3c,d).
Actually, these are linked to the body’s active immune metabolic
processes, which indicate the body’s immunological response as

cancer progresses.40 After observing Figure 3e,f, we found that
the genes in subtype cluster S3 are mainly enriched in epidermis
development and the Wnt signaling pathway. Overall, through
enrichment analysis of the gene modules related to the three
subtypes, combined with the analysis of the prognosis of BC, the
accuracy of unsupervised consistent clustering for BC subtyping
is further confirmed, and the basis for clinical treatment of these
subtypes is also provided.
3.4. Identification of Gene Classifier Signatures

Associated with BC Subtype Clusters. The distribution of
different BC stages and ages in the three subtype clusters is
depicted in Figure 4a. Obviously, patients with N and M stages
had no significant difference in age, while lower stage and T
stages were more common in subtype clusters S1 and S3 (Figure
4a). To avoid overfitting the subtyping characteristics, the
LASSO regression on the gene expression of TCGA−BC
patients was performed. As a result, a total of 160 genes that are
related to BC subtype clusters are obtained (Figure 4b) and the
optimal value of penalty parameters through 10 rounds of cross-
validation is also determined (Figure 4c). Additionally, the
boxplots of the three stages also suggest obvious differences
among the three BC subtype clusters, revealing the robustness of
constructed gene classifier signatures (Figure 4d).
3.5. Assessment of the Gene Classifier Prognostic

Signature for BC. By analyzing the Kaplan−Meier curve, we
found that the OS of BC samples in the high-risk group had a

Figure 6. Survival evaluation of gene classifier signatures in METABRIC. (a) Patient subtypes were grouped based on the median level of gene classifier
labels in METABRIC. (b) Kaplan−Meier survival curve of OS in different groups for the BC patients in METABRIC. (c) K-means algorithm for
molecular subtype classification in the BC dataset of METABRIC (n = 1904). (d) Kaplan−Meier survival curve of OS between subtypes in
METABRIC.
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Figure 7. Correlation between the gene classifier signatures and clinicopathological features of TCGA−BC samples. (a, b) Univariate and multivariate
analysis including risk status and clinical factors. (c) Nomogram for comprehensively predicting the 1-, 3-, and 5-year OS of BC patients in the TCGA
database. (d) Calibration plots for estimating the 1-, 3-, and 5-year OS for TCGA−BC samples. (e) Decision curve plots of the “nomogram,” “group,”
“pathology_M,” “age,” “All,” and “None” models by Cox regression analysis. (f) Significantly prognostic genes screened by univariate analysis.
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Figure 8. Single-cell sequencing analysis. (a) Cells are divided into thirteen types, including CD8+ T-cells, endothelial cells, mast cells, stromal cells,
neutrophil, natural killer T-cells, multilymphoid progenitor cells, epithelial cells, secretory cells, B-cells, plasmacytoid dendritic cells, and cancer stem
cells. (b) Volcano of DEGs between different cell populations. (c) Violin plots displaying the expression of representative gene classifier signatures
across the cell types identified in the single-cell dataset. The y-axis shows the normalized read count. (d) Cellular communication analysis among tumor
cells, NK-T cells, epithelial cells, and secretory cells.
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lower value than those in the low-risk group, indicating that the
prognostic marker of the risk score was effective (p < 0.05)
(Figure 5a). In addition, the risk curve and scatter plot indicate
that the risk factors and mortality of the high-risk group were
higher than those of the low-risk group (Figure 5b).
Furthermore, ROC analysis reveals that the AUC of the risk
score was 0.703 (Figure 5c), suggesting the reliability of the
obtained gene classifier signatures of BC. At the same time, the
survival analysis results of BC subtype clusters obtained by using
the unsupervised consistent clustering were relatively consistent
with the prognosis results in high- and low-risk groups obtained
from the prognostic model. In detail, the subtype cluster S3 with
a better survival rate was similar to that in the low-risk group and
the subtype cluster S2 with poor survival was close to that in the
high-risk group (Figure 5d). All of these findings imply that the
gene signature is a predictive factor unique to BC patients.
3.6. Validation of the Prognostic Signature for BC. For

further validating the stability of gene classifier signatures, the
patients of BC in the METABRIC database were classified into
two different groups, namely, high- and low-risk groups. Then,
the OS of patients in high- and low-risk groups was analyzed by
Kaplan−Meier survival analysis. As a result, samples from high-
risk groups have higher OS than those from low-risk groups,
suggesting that prognostic markers of risk scores were valid (P <
0.05) (Figure 6a). The generated risk curves and scatterplots
indicate that compared with the risk factor and mortality in low-
risk groups, those in high-risk groups were high (Figure 6b). All
of these results suggest that the gene classifiers are highly reliable
in marking prognostic markers of BC. Moreover, the molecular
intrinsic subtypes of BC patients were determined by the
PAM50 classifier algorithm. Clearly, according to gene classified
signatures, three subtype clusters were identified (Figure 6c)
and there were also significant differences in prognosis (p <
0.05) among three subtype clusters (Figure 6d), which is in
agreement with the above results. Overall, all of the findings
suggest that the genetic classification markers are independent
prognostic factors in BC patients.
3.7. Independent Prognostic Ability of Gene Classifier

Signatures. For evaluating the independent prognostic ability
of the obtained gene classifier signatures, we also investigated
the correlation between the gene classifier signatures and
clinicopathological features of TCGA−BC samples through
univariate regression analysis and multivariate Cox regression
analysis. The clinically common factors like age, tumor stage,
group, and TNM status were registered as covariates for analysis.
As a result, age, M status, and group are independent factors that
can be used to predict the prognosis of BC patients (Figure
7a,b). In addition, the clinicopathological information and

independent prognostic factors are combined and then a
nomogram involving three items in TCGA was constructed,
which is used as a clinically relevant quantitative method for
predicting the mortality of BC patients. Obviously, we found
that by adding points for each prognostic parameter, each
patient will be assigned a total score value and higher total scores
corresponded to poorer patient outcomes (Figure 7c). More-
over, calibration plots for the TCGA cohort A reveal a similar
performance of the nomogram to the developed prognostic
model (Figure 7d). In addition, the DCA curve also indicated
that the nomogram had good stability and reliability net benefit
curve in age compared with other clinical factors (Figure 7e).
Finally, we further screened the gene signatures that are
associated with the prognosis by employing univariate
regression analysis. As a result, a total of ten gene signatures
significantly related to prognosis were obtained, which contain
BARD1, CASP7, CYP11A1, IL1RAP, ITGB1, RAB13, RPL28,
TGFBR1, DUSP1, and CXCL13 (Figure 7f).
3.8. Evaluation of Cellular Heterogeneity in the

Subtype Cluster of BC Patients. To evaluate the
heterogeneity of the molecular intrinsic subtypes of BC patients,
single-cell analysis was performed on GSE118389. Employing
the immune cell-specific marker genes obtained from the
published article,41 more than 1500 cells from six primary BC
patients were clustered into 13 clusters and 12 cell types, i.e.,
CD8+ T-cells, endothelial cells, mast cells, stromal cells,
neutrophil, natural killer T-cells, multilymphoid progenitor
cells, epithelial cells, secretory cells, B-cells, plasmacytoid
dendritic cells, and cancer stem cells (Figure 8a). Subsequently,
the DEGs between different cell types were identified and
visualized by the volcano plots (Figure 8b). In addition, the
signature distribution of key prognostic gene classifiers reveals
that BARD1 is mainly expressed in T and cancer stem cells,
while CASP7 is mainly expressed in endothelial cells (Figure
8c). Moreover, DUSP1, ITGB1, RAB13, and RPL28 are
expressed in subsets other than T-cells and B-cells (Figure
8c). With respect to TGFBR1, it was mainly expressed in T-cells,
neutrophils, and epithelial cells. In contrast, CYP11A1, IL1RAP,
and CXCL13 were not specifically expressed (Figure 8c).
Furthermore, to characterize the communication between key
immune cells, tumor cells, and other microenvironmental cells,
the significant ligand−receptor interactions between 12 cell
types were detected and analyzed through the CellChat analysis.
The results show that there is extensive cellular communication
among tumor cells, NK-T cells, epithelial cells, and secretory
cells (Figure 8d).
3.9. Distribution of Subtype Clusters in BC Intrinsic

Profiles and Risk Subgroups. To investigate the association

Figure 9. Correlation analysis of the clinical type and subtype clusters. (a) Histogram of the correlation between clinical immunohistochemical typing
and subtype clusters. (b) Histogram of the correlation between high- and low-risk typing and subtype clusters.
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Figure 10. Drug sensitivity analysis as well as immune cell infiltration evaluation. (a−h) Scatter plot shows that drug sensitivity prediction scores are
distributed differently among subtypes. (i) Comparison of immune cell proportions between subtypes (TCGA). (j−m) Scatter plot for the immune
score, stromal score, estimated score, and tumor purity, which are distributed differently among subtypes.
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between the subtype clusters and the clinicopathological
characteristics and risk subgroups of BC patients, we assessed
the proportion of subtype clusters in BC molecular intrinsic
profiles (i.e., basal, Her2, LumA, LumB, and normal) and the risk
subgroups (i.e., high, low) using the chi-square analysis.42

Interestingly, all of the BC molecular intrinsic profiles were
identified in the three subtype clusters, but the proportions are
different (Figure 9a). For example, the proportion of subtype
cluster S2 with poor prognosis in the basal-like profile was 80%
(p = 9.49 × 10−33), whereas subtype cluster S1 (68%) showed a
BC normal-enriched profile (p = 2.35 × 10−4, Figure 9a). Of
note, 52% of subtype cluster S3 exhibited a BC LumB-enriched
profile (p = 3.21 × 10−10, Figure 9a). Additionally, compared
with the proportion of subtype cluster S2 patients in the low-risk
group, that in the high-risk group was significantly higher (p =
3.38 × 10−6), whereas the proportion of samples in subtype
clusters S1 and S3 in the low-risk group are higher (p = 1.15 ×
10−4, Figure 9b). All of the results indicate that the classified
subtype clusters and the clinicopathological features of BC
patients exhibit a certain correlation.
3.10. Drug Sensitivity Analysis and Immune Cell

Infiltration Evaluation. Using the “pRRophetic” package of
R, the IC50 differences of eight targeted and chemotherapeutic
drugs in three different subtypes of clustering were studied to
predict their sensitivities to drug therapy. Figure 10a−h,
respectively, shows the drug sensitivity results of Sorafenib,
Gefitinib, Bleomycin, Bosutinib, Etoposide, Lenalidomide,
Camptothecin, and Methotrexate in three subtypes of BC
clusters. The statistical results demonstrated that subtype cluster
S2 samples are generally more sensitive to tumor treatment
drugs than the other two subtype clusters. In contrast, subtype
cluster S3 is less sensitive to most drugs (Figure 10a−h).

Additionally, the differences of 22 subtypes of immune cells
among TCGA−BC samples in three subtype clusters are
investigated using the CIBERSORT algorithm. According to
the results, there are significant differences in immune
infiltration between the three subtype clusters for B-cells
naive, plasma cells, T-cells CD4 memory resting, T-cells CD4
memory activated, T-cells follicular helper, T-cells regulatory
Tregs, T-cells γ delta, NK cells resting, monocytes, macrophages
M0, M1, M2, dendritic cells activated, mast cells resting, and
eosinophils (Figure 10i), taking up a sizable portion of immune
cell invasion. Besides, compared to other clusters with a poorer
prognosis, the subtype cluster S1 with better survival showed a
higher number of M1 and M2 macrophages and activated NK
cells (Figure 10i). Finally, the tumor purity for all BC samples in
three subtype clusters as well as the stromal and immune scores
were calculated. As a result, subtype cluster S2 had better
immune, stromal, and estimate scores than the others, while
subtype clusters S1 and S3 had more pure tumors (Figure 10j−
m).

4. DISCUSSION
With the rapid development of high-throughput sequencing and
the accumulation of massive biomedical data, a large number of
bioinformatics methods have been used to identify new gene
signatures related to the progression, survival, or prognosis of
malignant carcinoma.43−45 Particularly, the critical role of the
TME in tumor biology has made targeted TME therapy for
tumors a research hotspot. BC, as one of the most common
malignant tumors in women, has attracted more attention from
researchers due to its poorer prognosis.46 As a biologically
heterogeneous disease, BC has different molecular subtypes

according to the gene expression profiles. Presently, we attempt
to identify the BC subtype clusters by integrating genomic
analysis with the TME. As far as we know, a large-amount
dataset combined with multiple bioinformatics methods was
first used to identify the intrinsic subtypes and the gene classifier
signatures for BC patients.

First, we performed unsupervised consistent clustering on the
mRNA profiles of TCGA−BC cohort A and a total of three BC
subtype clusters were obtained, which are named cluster S1 (n =
382), cluster S2 (n = 328), and cluster S3 (n = 296) subtypes
(Figure 1b). Then, three corresponding subtype-related gene
modules were obtained from WGCNA, which are specific to
each BC subtype cluster (Figure 2c). Further analysis of
enrichment reveals that genes in subtype cluster S1 are
principally involved in the regulation of angiogenesis and
PI3K-Akt pathways, and genes in subtype cluster S2 exhibit
significant enrichment for hormone secretion and AMPK
signaling pathways (Figure 3a−d). Additionally, genes in
subtype cluster S3 are mainly enriched in epidermis develop-
ment and Wnt signaling pathways (Figure 3e,f). Actually, these
biological processes and signaling pathways exhibit crucial roles
in the development of BC. For instance, angiogenesis is a crucial
process in the formation of inflammatory BC (IBC), and genes
and proteins involved in angiogenesis are often overexpressed
and overactivated in IBC.47,48 Recent studies have shown that
hormone receptor (HR) + BC causes the majority of BC-related
deaths.49 Yu et al. have also reported that in BC patients with
bone, lung, and brain metastases, actionable mutations
frequently occur in the PI3K/AKT/mTOR pathway.50 Inhibit-
ing the activation of the PI3K/Akt pathway partially restores the
sensitivity of trastuzumab-resistant HER2-positive BC cells.51

In addition, the genetic diversities of BC patients demonstrate
that it is important to identify gene signatures with distinct
survival and druggable targets. Presently, LASSO regression
analysis on the gene expression profiles of TCGA−BC patients
obtained a total of 160 gene classifiers related to the BC subtype
(Figure 4b). Employing the obtained gene classifiers, we built
the risk prognostic model, and this model was also then validated
by the gene expression data of cohort B in the METABRIC
database. The results show that the OS of samples from high-risk
groups is higher than those in low-risk groups, suggesting that
the risk model of prognostic markers was reliable (P < 0.05)
(Figure 6a). Indeed, the important role of OS in multiple stages
of tumorigenesis and development has been reported in many
studies.52,53 Further, evaluation of the independent prognostic
ability of obtained gene classifier signatures indicates that the BC
patients in subtype cluster S2 have the poorest prognosis, while
subtype clusters S1 and S3 exhibit good prognosis (Figure 5d).
Subsequently, ten gene signatures significantly related to
prognosis were obtained, which contain BARD1, CASP7,
CYP11A1, IL1RAP, ITGB1, RAB13, RPL28, TGFBR1,
DUSP1, and CXCL13 (Figure 7f). All of these results suggest
that the independent prognostic factors of BC patients can be
the genetic classifier signatures.

Besides, it is well-known that TME has an important role
during the progression of human cancers, as well as the OS after
the operation.54,55 Presently, the heterogeneity of the molecular
subtypes of BC patients was also explored by the single-cell
analysis on GSE118389. The results demonstrate that most of
the key prognosis-related gene classification signatures are
distributed in immune cells. Notably, there were more
neutrophils in the subtype S2 with poor prognosis (Figure
8c), which is consistent with the previous study.56 Single-cell
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analysis also shows that subtype cluster S1 contains more types
of immune cells, while subtype cluster S3 with a good prognosis
includes more multilymphoid progenitor cells (Figure 8c).
Moreover, the chi-square analysis exhibits that 80% of basal-like
profile samples are found in subtype cluster S2 (p = 9.49 ×
10−33), 68% of the normal-enriched profiles are subtype cluster
S1 samples, and 52% of the subtype cluster S3 showed LumB
enrichment (p = 3.21 × 10−10, Figure 9a), indicating the
association among the classification subtype cluster and the
clinicopathological features of patients with BC. Finally, drug
sensitivity analysis demonstrates that subtype cluster S2 samples
are generally more sensitive to tumor treatment drugs and
subtype cluster S3 is less sensitive to most drugs (Figure 10). All
of the findings may provide a basis for targeting the subtype-
specific molecular and immunotherapy of BC. However, the
gene signatures that characterize each subtype cluster of BC
need further be studied and validated by biological experiments.

5. CONCLUSIONS
Taken together, three subtype clusters, S1, S2, and S3, are
obtained from the gene expression profiles of TCGA−BC
cohort A. WGCNA and pathway enrichment analysis revealed
that PI3K-Akt, AMPK, and Wnt signaling pathways, respec-
tively, participated in the subtype clusters S1, S2, and S3.
Additionally, the risk prognostic model was constructed by the
obtained 160 gene classifiers associated with the BC subtype and
validated by the data in the METABRIC database. Clinical
prognostic evaluation reveals the poor prognostic ability of
subtype cluster S2 and the good prognostic ability of subtype
clusters S1 and S3. Then, ten crucial prognostic-related gene
signatures, i.e., BARD1, CASP7, CYP11A1, IL1RAP, ITGB1,
RAB13, RPL28, TGFBR1, DUSP1, and CXCL13, are screened.
Finally, single-cell analysis demonstrates that most types of
immune cells are enriched in subtype cluster S1 samples, more
neutrophils are distributed in the subtype S2 with more
sensitivity to tumor treatment drugs, and more multilymphoid
progenitor cells are involved in subtype cluster S3. All of the
results may provide an effective basis for the clinical precision
treatment of BC.
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