
Chen et al. J Transl Med          (2021) 19:122  
https://doi.org/10.1186/s12967-021-02791-9

RESEARCH

Prediction of hepatocellular carcinoma 
risk in patients with chronic liver disease 
from dynamic modular networks
Yinying Chen1,2,3†  , Wei Yang2†, Qilong Chen4, Qiong Liu2, Jun Liu2, Yingying Zhang2, Bing Li2, Dongfeng Li5, 
Jingyi Nan6, Xiaodong Li7, Huikun Wu7, Xinghua Xiang8, Yehui Peng8, Jie Wang1*, Shibing Su4* and 
Zhong Wang2* 

Abstract 

Background:  Discovering potential predictive risks in the super precarcinomatous phase of hepatocellular car-
cinoma (HCC) without any clinical manifestations is impossible under normal paradigm but critical to control this 
complex disease.

Methods:  In this study, we utilized a proposed sequential allosteric modules (AMs)-based approach and quantita-
tively calculated the topological structural variations of these AMs.

Results:  We found the total of 13 oncogenic allosteric modules (OAMs) among chronic hepatitis B (CHB), cirrhosis 
and HCC network used SimiNEF. We obtained the 11 highly correlated gene pairs involving 15 genes (r > 0.8, P < 0.001) 
from the 12 OAMs (the out-of-bag (OOB) classification error rate < 0.5) partial consistent with those in independent 
clinical microarray data, then a three-gene set (cyp1a2-cyp2c19-il6) was optimized to distinguish HCC from non-
tumor liver tissues using random forests with an average area under the curve (AUC) of 0.973. Furthermore, we found 
significant inhibitory effect on the tumor growth of Bel-7402, Hep 3B and Huh7 cell lines in zebrafish treated with the 
compounds affected those three genes.

Conclusions:  These findings indicated that the sequential AMs-based approach could detect HCC risk in the patients 
with chronic liver disease and might be applied to any time-dependent risk of cancer.

Keywords:  Chronic liver disease, Hepatocellular carcinoma (HCC), Chronic hepatitis B (CHB), Cirrhosis, Dynamic 
modular networks, Sequential allosteric modules, HCC risk
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Background
Hepatocellular carcinoma (HCC) is the most common 
primary liver cancer with poor prognosis. Many factors 
are considered to contribute to hepatitis B virus (HBV)-
associated HCC, including the aberrant expression of 
microRNAs [1], aberrant DNA methylation [2], mutated 
genes [3], alterations in multiple signaling pathways and 
host gene expression [4–6]. Some serum or tissue bio-
markers for the diagnosis of HCC have been successfully 
identified [7]. However, previous research has focused on 
identifying risk of preclinical HCC for screening the early 
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presence of premalignant lesions and tumors [8]. Despite 
progress in diagnostics and treatment of HCC, its prog-
nosis remains poor [9, 10].

Evidence suggests that there is usually a critical tran-
sition point during disease progression, resulting in the 
critical transition from a normal state to a disease state. 
Therefore, it is very important to detect the early warning 
signals of the predisease state to prevent sudden deterio-
ration [11]. Thus, can we identify predictive risk for HCC 
at an earlier stage?

From the perspective of Modular Pharmacology (MP), 
the treatment of complex diseases requires a modular 
design to affect multiple targets [12]. The exploration of 
modular structure has been a key factor in understand-
ing the complexity of disease networks [13]. A disease 
module represents a cellular function whose disruption 
results in a particular disease phenotype [13]. In our 
previous study, we proposed the concept of allosteric 
modules (AMs), which refers to multipotent functional 
changes in modular architecture [14]. Allostery controls 
pathway divergence and unification and encodes spe-
cific effects on cellular pathways [15, 16]. The fundamen-
tal importance of allostery is the exertion of functional 
effects on signaling pathways and the entire cellular net-
work [16, 17]. The AMs may provide valuable structural 
information about disease and pharmacological networks 
beyond pathway analysis.

In this study, by integrating the multi-source data 
(including AMs, clinical microarray data and The Cancer 
Genome Atlas [TCGA] dataset), we constructed risk pre-
diction models and proposed the sequential AMs -based 
approach for predicting the risk of HCC in patients with 
chronic liver disease.

Methods
Constructing disease‑associated networks for each 
pathological stage
A list of disease-associated genes was obtained from the 
Online Mendelian Inheritance in Man (OMIM) database 
(http://​www.​ncbi.​nlm.​nih.​gov/​omim), including 220 hep-
atitis B-related genes, 152 liver cirrhosis-related genes, 
and 213 HCC-related genes. We used disease-associated 
genes from OMIM to construct 3 global disease-associ-
ated networks using the Agilent literature search plugin 
in Cytoscape.

Identifying and optimizing functional modules in different 
groups
In each disease-associated network, functional modules 
were identified using the Molecular Complex Detection 
(MCODE) algorithm [18]. For MCODE, we tried all pos-
sible combinations of the following parameters: Include 
Loops: false; Degree Cutoff: 3; Node Score Cutoff: 0.0, 

0.2, 0.3; Haircut: true or false; Fluff: true or false; K-Core: 
2; and Max Depth from Seed: 100, 5, 4, 3. A total of 48 
parameter combinations were calculated. After the func-
tional modules were identified, they were optimized 
according to the minimum entropy criterion, and the 
analysis of calculating minimal network entropy was car-
ried out as described previously [14].

Calculating the similarities of the AMs
The similarities of the nodes and edges of the modules 
were calculated with our proposed method of SimiNEF 
[14]. Briefly, we used similarity Sne to quantify the relative 
overlaps between AMs mi and mj, including the overlaps 
of nodes and edges together. The similarities of nodes Sn 
(mi, mj) and edges Se (mi, mj) are defined in Eqs. 1 and 2, 
respectively.

Enrichment analysis of KEGG pathways
The enrichment analysis of KEGG pathways in the 
modules was performed using a hypergeometric test, 
as implemented on the KOBAS 2.0 web server (http://​
kobas.​cbi.​pku.​edu.​cn/) [19].

Clinical microarray data
Clinical samples and RNA extraction
Morning fasting venous blood samples from a total of 36 
patients were obtained from Shuguang Hospital and Lon-
ghua Hospital in Shanghai, China, including 3 healthy 
people, 10 chronic hepatitis B (CHB) patients, 13 HBV-
related cirrhosis (cirrhosis) patients and 10 HCC patients. 
The research protocol was approved by the respective 
Institutional Review Boards. The study was approved 
by the Official Ethics Committee of the Shanghai Uni-
versity of Traditional Chinese Medicine, and written 
informed consent was obtained from all study partici-
pants. Chronic hepatitis B, HBV-related cirrhosis and 
HCC were diagnosed according to the “Chronic hepatitis 
B prevention and treatment guidelines” [20], “Standard 
of clinic diagnosis, syndrome differentiation and assess-
ing curative effect on hepatocirrhosis” [21], and “clinical 
diagnosis and staging criteria for primary hepatocellular 
carcinoma” established by the Chinese Society of Liver 
Cancer in 2001 [22], respectively.

The microarray methods followed those described in 
previous studies [23–25]. The leukocytes were isolated 
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from the blood samples by Ficoll optimized density gradi-
ent separation and stored at − 80 ℃ [26]. Total RNA was 
extracted using a “two-step” protocol as described previ-
ously. Total RNA from leukocytes from whole blood was 
extracted using TRIzol reagent according to the manu-
facturer’s instructions (Invitrogen, Carlsbad, CA, USA) 
and stored at − 80 ℃. The quantity and quality of RNA 
were assessed using a NanoDrop ND-1000 spectropho-
tometer (NanoDrop Technology, Rockland, DE).

Microarray data analysis
Briefly, cDNA was synthesized by the Invitrogen First-
Strand cDNA Synthesis Kit (Invitrogen, Carlsbad, CA, 
USA), and RNA polymerase was added to degrade RNA. 
The biotinylated cDNAs were labeled and hybridized to 
a NimbleGen Homo sapiens 12 × 135K gene expression 
array (Roche, Cat No. A6484-00-01). After hybridization 
and washing, the processed slides were scanned with the 
Axon GenePix 4000B microarray scanner (Molecular 
Devices, Sunnyvale, CA). Raw data were extracted as pair 
files by NimbleScan software (version 2.5), and the data 
were considered robustly expressed if the signal/noise 
ratio (SNR) > 2. NimbleScan software’s implementation 
of the robust multiarray analysis (RMA) algorithm offers 
the quantile normalization and background correction of 
data. The gene summary files were imported into Agilent 
GeneSpring Software (version 11.0, Agilent, USA) for 
further analysis. Both the P-value significance of t-test 
and the fold-change directionality (up- or downregula-
tion) were taken into consideration for identifying differ-
entially expressed genes between the two groups. Genes 
with a P-value < 0.05 and a fold-change > 1.5 or < − 1.5 
were considered differentially expressed.

Construction of random forests models and rule extraction 
for predicting HCC
First, by combining genes in the OAMs with microar-
ray data, we used the random forests algorithm to model 
and predict chronic hepatitis B, cirrhosis and HCC. The 
random forests algorithm was run independently on 
each of the OAMs. Then, the out-of-bag (OOB) error 
rates of the random forests models were computed. The 
variables of the model leading to the smallest OOB error 
were selected. The random forests algorithm has been 
extensively used to rank variable importance, i.e., genes. 
In this study, the Gini index was used as a measurement 
of predictive performance and a gene with a large mean 
decrease in Gini index (MDG) value is more important 
than a gene with a small MDG. The importance of the 
genes in discriminating HCC from non-tumor samples 
was evaluated by the MDG values.

Second, we further explored the predictive perfor-
mance of the important genes for HCC by using The 

Cancer Genome Atlas (TCGA) database for the liver 
hepatocellular carcinoma (LIHC) project (https://​por-
tal.​gdc.​cancer.​gov/​proje​cts/​TCGA-​LIHC). Human HCC 
mRNA-seq data were downloaded, containing 374 HCC 
tumor tissues and 50 adjacent non-tumor liver tissues. 
Receiver operating characteristic (ROC) curves and the 
associated area under the curve (AUC) values of the 
important genes were generated to evaluate their capac-
ity to distinguish non-tumor tissues from HCC samples. 
An AUC value close to 1 indicates that the test classifies 
the samples as tumor or non-tumor correctly, while an 
AUC of 0.5 indicates no predictive power. In addition, 
The G-mean was used to consider the classification per-
formance of HCC and non-tumor samples at the same 
time; The F-value, Sensitivity and Precision were used to 
consider the classification power of HCC; The Specific-
ity is used to consider the classification power of normal; 
Accuracy is used to indicate the performance of all cat-
egories correctly. In particular, the intergroup differences 
of classification evaluation indexes between two-gene 
and three-gene combinations were evaluated using the 
normal t-test or nonparametric Mann–Whitney U test.

The data analysis in this paper is implemented by R 
software. We used RandomForest function in the ran-
domForest package and these functions (RF2List, extrac-
tRules, unique, getrulemors, pruneRule, selectRuleRRF, 
buildLearner, applyLearner, presentRules) in the inTrees 
package. All parameters of functions were set by default.

Next, we used rule extraction to establish the condi-
tions of the three genes to correctly predict HCC. We 
applied the inTrees (interpretable trees) framework to 
extract interpretable information from tree ensembles 
[27]. A total of 1780 rule conditions extracted from the 
first 100 trees with a maximum length of 6 were selected 
from random forests by the condition extraction method 
in the inTrees package. Leave-one-out pruning was 
applied to each variable-value pair sequentially. In the 
rule selection process, we applied the complexity-guided 
regularized random forest algorithm to the rule set (with 
each rule being pruned).

Experimental verification
We screened related compounds that affected the three 
genes (cyp1a2-cyp2c19-il6). Then, the drug combination 
containing the corresponding compounds was used to 
treat three different human HCC cell lines (Bel-7402, Hep 
3B and Huh7). Bel-7402, Hep 3B and Huh7 cells were 
labeled with green fluorescent dye and transplanted into 
the yolk sac of wild-type AB strain zebrafish 2 days after 
fertilization (2 dpf ) by microinjection. About 200 cells 
were transplanted into each fish to establish a zebrafish 
human HCC transplantation model. Zebrafishes injected 
with human HCC cells were cultured at 35 ℃ to 3 dpf. 

https://portal.gdc.cancer.gov/projects/TCGA-LIHC
https://portal.gdc.cancer.gov/projects/TCGA-LIHC
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At 3 dpf, zebrafishes with good consistency of trans-
planted tumor were selected under the microscope and 
randomly distributed into 6-well plates with 30 fishes 
per well. In experimental groups, Jiangan (JG) granules 
were given with water-soluble concentrations of 27.8, 
83.3 and 250  µg/mL, respectively. The positive control 
group was treated by cisplatin (15 µg/mL). And the vehi-
cle group was set. Ten zebrafishes for each group were 
randomly selected to collect the fluorescence intensity 
of transplanted tumor. The statistical analysis results of 
fluorescence intensity were used to evaluate the growth 
inhibition effect of JG granules on human HCC trans-
planted tumor in the zebrafish model.

Results
Constructing disease‑associated networks for each 
pathological stage
A schematic diagram of the entire analysis framework is 
shown in Fig.  1. CHB-, cirrhosis-, and HCC-associated 
networks were constructed, involving 1104, 487, and 
1079 nodes, respectively (Additional file 1: Table S1). The 
cirrhosis-associated network had the minimum number 
of nodes, and there was only a small difference in net-
work size between the other two networks (Additional 
file 1: Table S1). Therefore, an analysis of the entire net-
works might not be sufficient to reveal the pathophysi-
ological changes from chronic hepatitis to HCC.

Identifying and optimizing functional modules
The results identified by MCODE are shown in Addi-
tional file  1: Table  S2. Considering the influence of dif-
ferent parameters on the clustering results, we tested 
48 parameter settings. After the optimization of mini-
mum entropy, 53, 21, and 60 modules (nodes ≥ 4) were 
identified from CHB-, cirrhosis-, and HCC-associated 
networks, respectively (Additional file  1: Table  S1). The 
average sizes of these modules ranged from 4.609 to 
6.447, and the entropy values were similar between the 
CHB- and HCC-associated networks after module opti-
mization (Additional file 1: Table S1).

Difference gradient among the AMs of the three 
pathological stages
We used similarity Sne > 0, > 20%, > 40%, > 60%, > 80%, 
and = 100% to define the overlap between AMs. Hence, 
we obtained different degrees of differences between 
the AMs (Fig.  2a). For example, it should be noted that 
Sne > 20% means Sn > 20% and Se > 20% simultaneously. 
When Sne = 0 or Sn > 0 but Se = 0, these modules are 
referred to as disease-exclusive modules (DEMs); that is, 
the module did not overlap with any other module from 
other groups (Figs. 1, 2c). There were 35, 6, and 44 DEMs 
in the CHB, cirrhosis, and HCC groups, respectively 

(Fig.  2a). The results showed that from Sne ≥ 0 to 
Sne = 100% in 20% increments, the number of overlapping 
modules among the CHB, cirrhosis and HCC groups was 
3, 1, 1, 1, 0, and 0; the number of overlapping modules 
between the CHB and cirrhosis groups was 7, 6, 5, 4, 4, 
and 4; the number of overlapping modules between the 
CHB and HCC groups was 8, 4, 1, 1, 1, and 1; and the 
number of overlapping modules between the cirrho-
sis and HCC groups was 5, 4, 3, 2, 2, and 2, respectively, 
showing a gradual decreasing trend. In other words, with 
the increments of Sne, the degree of difference among 
AMs increased gradually (Fig. 2a, b). When Sne > 80% and 
Sne = 100%, there were no overlapping modules among 
the three groups (Fig. 2a, b).

Distribution of the different AMs of the three pathological 
stages
Based on the changes in nodes and edges, the compari-
son of these modules in different disease stages resulted 
in three types of AMs (Fig.  1). (1) Conserved allosteric 
modules (CAMs, AMC). If the modular overlap between 
the CHB and cirrhosis groups, the cirrhosis and HCC 
groups, the CHB and HCC groups, or among the three 
groups reached 100% (Sne = 100%), these modules were 
referred to as CAMs (Figs.  1, 2d). A total of 7 CAMs 
were identified, including AMC

CHB1-C1, AMC
CHAB5-C3, 

AMC
CHB8-C4, AMC

CHB16-C6, AMC
CHB20-HCC25, AMC

C7-

HCC18, and AMC
C19-HCC49. (2) Transitional allosteric mod-

ules (TAMs, AMT). Some partially overlapping modules 
(0 < Sne < 100%) were identified only between the CHB 
and cirrhosis groups and could not be found in HCC; 
these modules were referred to as TAMs (Figs.  1, 2e). 
Four TAMs were identified, including AMT

CHB10-C5, 
AMT

CHB6-C2, AMT
CHB53-C21, and AMT

CHB7-C2. (3) Onco-
genic allosteric modules (OAMs, AMO). Many mod-
ules partially overlapped (0 < Sne < 100%) between the 
CHB and HCC groups, the cirrhosis and HCC groups, 
or among the three groups, and these modules were 
referred to as potential OAMs (Figs. 1, 3). A total of 13 
OAMs were found, including 3 OAMs (AMO

C2-HCC20, 
AMO

C21-HCC57, and AMO
C16-HCC35) between the cirrhosis 

and HCC groups, 7 OAMs (AMO
CHB53-HCC30, AMO

CHB11-

HCC6, AMO
CHB7-HCC20, AMO

CHB9-HCC12, AMO
CHB7-HCC3, 

AMO
CHB14-HCC21, and AMO

CHB36-HCC3) between the CHB 
and HCC groups, and 3 OAMs (AMO

CHB5-C3-HCC10, AMO-

CHB23-C11-HCC38, and AMO
CHB35-C13-HCC24) among the three 

groups (Fig. 3).

Topological variations in potential OAMs
Next, we focused on the topological variations of the 
13 potential OAMs. As shown in Fig. 3, a partially over-
lapping structure existed in each OAM that served 
as a bridge between modules, generally including the 
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Fig. 1  Flow diagram. CHB-, cirrhosis-, and HCC-associated networks were constructed using disease-associated genes downloaded from OMIM. 
Functional modules were identified using the MCODE algorithm. Then, the results of module identification were optimized based on the minimum 
entropy criterion. The enrichment analysis of KEGG pathways was performed with DAVID 6.7 software. The similarity between modules was 
calculated using SimiNEF. Four AMs (DEMs, CAMs, TAMs, and OAMs) were identified. The relationships between OAM genes and HCC were validated 
by published literature. AMs allosteric modules, DEMs disease-exclusive modules, CAMs conserved allosteric modules, TAMs transitional allosteric 
modules, and OAMs oncogenic allosteric modules. ‘√’ or ‘×’ represents its appearance ‘yes’ or ‘no’ in the group, respectively. For example, the module 
is identified as ‘conserved’ when it is found both in CHB and cirrhosis, cirrhosis and HCC, CHB and HCC, or among the three groups (‘√’), and 
Sne = 100%
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following four types. (1) One-edge overlap, wherein 
an edge between two nodes overlapped between two 
modules. Six OAMs (AMO

CHB36-HCC3, AMO
C2-HCC20, 

AMO
C21-HCC57, AMO

CHB14-HCC21, AMO
CHB23-C11-HCC38, 

and AMO
CHB35-C13-HCC24) were included in this cat-

egory (Fig.  3b, c). (2) Triangular overlap, wherein there 
were three overlapping nodes and edges between mod-
ules. Three OAMs (AMO

CHB9-HCC12, AMO
CHB7-HCC3, and 

AMO
CHB7-HCC20) had overlapping structures (Fig.  3c). 

(3) Multiedge overlap, wherein there were more than 
three overlapping nodes and edges between modules. 
Two OAMs (AMO

CHB11-HCC6 and AMO
CHB53-HCC30) were 

included in this category (Fig.  3b). (4) Fully contained 
overlap, wherein one module was fully contained within 
the other. Two OAMs (AMO

C16-HCC35 and AMO
CHB5-

C3-HCC10) had overlapping structures (Fig.  3a). One-edge 
overlap was the most common type, and it could be 
found in OAMs from the three paths above. Triangu-
lar overlap and multiedge overlap only existed in OAMs 
between the CHB and HCC groups (Fig. 3).

In addition, the topological changes in the nonoverlap-
ping parts of each OAM also involved three situations as 
follows. (1) Node–node changes, wherein the modular 
changes included adding or removing nodes (the num-
ber of changing nodes < 3). Two OAMs were related to 
the change in nodes (Fig. 3a). (2) Node-module changes. 
These changes included changes from nodes (the num-
ber of changing nodes < 3) to a module (the number of 
changing nodes ≥ 3) or from a module to nodes. Three 
OAMs showed changes between nodes and modules 
(Fig. 3b). (3) Module-module changes. Eight OAMs were 
involved in the changes from module to module, indicat-
ing that the total number of nodes and edges in mod-
ules increased or decreased. Module-module changes 
appeared in all three carcinogenic paths (Fig. 3c).

KEGG pathway analysis of 13 OAMs
In the 13 OAMs, the number of overlapping pathways 
between any two pathological stages (CHB, cirrhosis 
and HCC) was 18, 24, and 7, respectively. A total of 7 
overlapping pathways were identified among the three 
pathological stages (Fig.  4a, Additional file  1: Table  S3). 
KEGG pathways were restricted to those involved in 
biological processes. Consequently, disease pathways 

were discarded (except KEGG pathways related to liver 
disease).

After removing other disease pathways and overlapping 
pathways, the remaining nonoverlapping pathways were 
referred to as altered pathways. A total of 24 altered path-
ways were found during CHB-HCC progression, which 
could be largely divided into 10 categories, including 
cell growth and death (4.2%), cell motility (4.2%), cellular 
community (8.3%), endocrine system (8.3%), human dis-
eases cancers (4.2%), immune system (41.7%), membrane 
transport (4.2%), nervous system (4.2%), signal transduc-
tion (16.7%), and signaling molecules and interaction 
(4.2%) (Additional file  1: Table  S4, Fig.  4b). The neuro-
trophin signaling pathway appeared in four OAMs and 
had the highest frequency (Additional file  1: Table  S4). 
The remaining pathways were all HCC-related pathways, 
except for six altered pathways that have not been pre-
viously reported to be associated with HCC (Additional 
file 1: Table S4).

Reanalysis of the genes in the 13 OAMs with clinical 
microarray data
The consistency between the groups with differentially 
expressed genes and the groups represented by OAMs
The microarray expression data (comprising 19,471 
genes) of 36 clinical samples were used. The number of 
overlapping genes between the CHB-, cirrhosis-, and 
HCC-associated networks (see section  1 of the results) 
and the microarray data was 989, 423, and 939 genes 
(accounting for 89.6%, 86.9%, and 87% of the network 
genes), respectively. In the microarray data, the numbers 
of genes significantly altered in the CHB, cirrhosis and 
HCC groups were 6251, 937, and 2175, respectively, com-
pared with the normal group. The number of overlapping 
genes between CHB-, cirrhosis-, and HCC-associated 
networks and significantly altered genes in the microar-
ray data was 279, 23, and 124 genes, respectively.

The further analysis showed that a total of 121 genes 
were included in the 13 OAMs; according to the expres-
sion levels of the 121 genes in the microarray data, a 
total of 7 differentially expressed genes were identified 
between any two groups, including cyp2b6 (CHB vs. 
HCC groups), pi3 (cirrhosis vs. HCC groups), and mmp2, 
pi3, ptk2, timp2, tnfrsf10b (CHB vs. cirrhosis groups). 

(See figure on next page.)
Fig. 2  Different levels of similarities between the modules in the CHB, cirrhosis and HCC groups. a Six levels of similarities reflecting the degree 
of overlap between modules in the CHB, cirrhosis and HCC groups, including Sne > 0, > 20%, > 40%, > 60%, > 80%, and = 100%. Each Venn diagram 
represents a level of similarity. The green circle denotes the number of modules in the CHB group. The blue circle denotes the number of modules 
in the cirrhosis group. The red circle denotes the number of modules in the HCC group. Gray arrows indicate the progression of the disease. b The 
changing trends of the number of overlapping modules between the CHB and cirrhosis groups (blue line), the cirrhosis and HCC groups (gray 
line), the CHB and HCC groups (green line), and among the three groups (red line). c Examples of DEMs. AMCHB15, AMC14, and AMHCC8 were DEMs in 
the CHB, cirrhosis and HCC groups, respectively. d Examples of CAMs. The area in the blue solid line represents AMHCC18. The green solid line area 
represents AMC7. e Examples of TAMs. The green solid line area represents AMC5. The purple area indicates AMCHB10
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Furthermore, we identified 4 differentially expressed 
genes (cyp2b6, pi3, mmp2, and timp2) (Fig.  5a–d) that 
satisfied the following condition: the groups in which the 
differentially expressed gene existed were consistent with 
the groups represented by the OAM from which the gene 
was derived.

Selecting the top 5 important genes in OAMs and identifying 
highly correlated gene pairs
We conducted correlation analysis of the 121 genes con-
tained in the 13 OAMs. First, the Pearson correlation 
coefficients between these genes were calculated from 
36 clinical samples. Through statistical tests, we screened 
273 pairs of genes that were highly correlated (r > 0.8, 
P-value < 0.001), of which 39 highly correlated gene 
pairs appeared in 10 of the 13 OAMs (Additional file 1: 
Table S5).

Then, according to the 13 OAMs, we constructed 13 
random forests models for three disease groups and 
estimated the out-of-bag (OOB) classification error rate 
respectively. A total of 12 out of the 13 OAMs with an 
OOB classification error rate < 0.5 in predicting certain 
disease states are summarized in column 2–5 of Addi-
tional file  1: Table  S5. Among the 12 OAMs, 11 OAMs 
were used to predict cirrhosis with the OOB classifica-
tion error rate ≤ 0.46, 4 OAMs were used to predict CHB 
with the OOB classification error rate ≤ 0.4, and the 
OOB classification error rate of these OAMs for predict-
ing HCC is greater than or equal to 0.6, which seemed to 
have the lowest predictive power for HCC.

Finally, we extracted the 11 highly correlated gene 
pairs (involving 15 genes in total) from the 12 OAMs 
(OOB classification error rate < 0.5), which met the 
following two conditions: the top 5 important genes 
in the OAMs according to the MDG, and significantly 

Fig. 3  Topological changes in the 13 potential OAMs. The modules are color coded; green nodes and edges denote cirrhosis modules, blue nodes 
and edges denote HCC modules, and purple nodes and edges denote CHB modules. The overlapping nodes and edges between modules are 
highlighted in red (cirrhosis vs. HCC), yellow (CHB vs. HCC), gray (CHB vs. cirrhosis) and orange (CHB vs. cirrhosis vs. HCC), respectively. a Node–node 
change; b Node-module change; c Module-module change. The changing characteristics of the module structures in each OAM are listed below 
the modules. “↑” denotes that the number of nodes or edges increases. “↓” denotes that the number of nodes or edges decreases
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correlated gene pairs (r > 0.8, P-value < 0.001), as listed 
in column 7 of Additional file 1: Table S5.

Associations of the 11 highly correlated gene pairs 
in the three disease states
Next, the Pearson correlation coefficients between 
the 11 pairs of genes in CHB, cirrhosis, and HCC were 

calculated. The 11 gene pairs were correlated in the 
three disease states (r > 0.63) (Fig.  5e–h). Furthermore, 
the changing trends in the correlation of 6 gene pairs in 
the three disease states were consistent with the disease 
states indicated by the OAMs that the gene pairs belong 
to (Fig.  5h). The changing trends were roughly divided 
into the following four categories. (1) Weak correlation 

Fig. 4  KEGG pathway analysis of the 13 OAMs. a The number of overlapping pathways among CHB, cirrhosis and HCC. b The 24 altered pathways 
were divided into 10 categories. c, d Altered signaling pathways in the progression of HBV-associated HCC. Altered pathways are denoted as blue 
rectangles. HBV-encoded proteins (hepatitis B x, HBx) are marked as red polygons, which stimulate/activate/influence genes adjacent to the HBx 
proteins. The genes in the OAMs are represented as purple ellipses. ECAD (CDH1), E-cadherin; ERBB2, erb-b2 receptor tyrosine kinase 2; IL-8 (IL8), 
interleukin 8; CCL-2 (CCL2), C–C motif chemokine 2; TRAIL (TNFSF10), tumor necrosis factor ligand superfamily member 10; TRAIL-R (TNFRSF10, 
TRAILR), tumor necrosis factor receptor superfamily member 10; Src (SRC), tyrosine-protein kinase Src; α12/13 (GNA12), guanine nucleotide-binding 
protein subunit alpha-12; αq/11 (GNA11), guanine nucleotide-binding protein subunit alpha-11; SOCS (SOCS3), suppressor of cytokine signaling 3; 
PTEN, phosphatase and tensin homolog; FAK (PTK2), focal adhesion kinase 1; PI3K (PIK3CA), phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic 
subunit alpha; PKB/Akt (AKT1), v-akt murine thymoma viral oncogene homolog 1; PKC, classical protein kinase C; Rac1 (RAC1, Rac-1), Ras-related 
C3 botulinum toxin substrate 1; Nox, NADPH oxidase; JNK (MAPK8), c-Jun N-terminal kinase, mitogen-activated protein kinase 8; RASSF1 (RASSF1A) 
Ras association (RalGDS/AF-6) domain family member 1; ERK (MAPK1_3), mitogen-activated protein kinase 1/3; Bcl-2 (BCL2), B-cell CLL/lymphoma 
2; Bcl-XL (Bcl2l1), BCL2-like 1; cIAPs (BIRC3), baculoviral IAP repeat containing 3; COX-2 (PTGS2, COX2), prostaglandin-endoperoxide synthase 2; 
VEGF (VEGFA), vascular endothelial growth factor A; IL-6 (IL6), interleukin 6; MMPs (MMP2), matrix metalloproteinase-2; IFN-α (IFNA), interferon 
alpha; HLA-E (MHC), major histocompatibility complex, class I, E; MICA, MHC class I polypeptide-related sequence A; CD8 (CD8A), CD8a molecule; 
CD94 (KLRD1), killer cell lectin-like receptor subfamily D member 1; NKG2A/B (KLRC1), killer cell lectin-like receptor subfamily C, member 1; NKG2D 
(KLRK1), killer cell lectin-like receptor subfamily K member 1
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with CHB but strong correlation with cirrhosis and HCC. 
The correlation coefficient of diablo-ebp was 0.72 in 
CHB and increased to 0.89 and 0.9 in cirrhosis and HCC, 
respectively. (2) Strong correlation with CHB but weak 
correlation with cirrhosis and HCC. The correlation of 

decr1-pik3ca and tnfrsf10b-ebp in CHB was 0.95 and 
0.96, respectively, while it decreased in both cirrhosis and 
HCC. (3) Correlation with cirrhosis different from that 
with CHB and HCC. The correlation of mgmt-socs1 was 
0.96 in CHB but reduced to 0.68 in cirrhosis and then 

Fig. 5  Reanalysis of the genes in the 13 OAMs combined with clinical microarray data. a–d The mRNA levels of CYP2B6, PI3, MMP2 and TIMP2 among 
different groups. # denotes statistical significance (P < 0.05) between the CHB and HCC groups; & denotes statistical significance (P < 0.05) between 
the cirrhosis and HCC groups; and * denotes statistical significance (P < 0.05) between the CHB and cirrhosis groups. e–g The correlation coefficient 
between the 11 pairs of genes in CHB, cirrhosis, and HCC. All gene pairs were highly correlated in the three disease states (r > 0.63). In the matrix, 
the red circles indicate a positive correlation, while the blue circles indicate a negative correlation. The larger a circle is, the stronger the correlation. 
h The changing trend of the correlation coefficient between the 11 pairs of genes in the three pathologic stages (CHB, cirrhosis, and HCC). The 
underlined gene pairs indicate that the changing trends in the correlation of 6 gene pairs in the three disease states were consistent with the 
disease states indicated by the OAMs that the gene pairs belong to
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increased to 0.92 in HCC. (4) Strong correlation with 
CHB, cirrhosis and HCC. The gene pair hdac2-prkaa1 
was highly correlated in the three disease states, in 
accordance with the disease states indicated by AMO

CHB 

23-C11-HCC38 (Fig. 5h).
Furthermore, 10 of the 15 genes have been previously 

reported to be associated with the disease states repre-
sented by their OAMs, except that decr1, mgmt, diablo 
and ebp have not been reported to be associated with 
CHB and hdac2 has not been reported to be correlated 
with cirrhosis and HCC (Additional file  1: Table  S6). 
Moreover, 9 of the 15 genes (60%) have been previ-
ously reported as biomarkers of HCC (Additional file 1: 
Table S7).

Assessing the predictive performance of the 15 genes 
for HCC using the TCGA LIHC dataset
Predictive performance of the 15‑gene set
The 15 genes were further evaluated to distinguish tumor 
tissues from non-tumor tissues by using the TCGA 
LIHC dataset. The training and test sets were randomly 
sampled at a 4:1 ratio, with 329 and 95 samples. The 
random forests algorithm was used to construct a predic-
tive model for HCC in the training sets. The flow chart 
of Random Forest construction is shown in Fig. 6a. The 
results showed the classification evaluation indexes of the 
model. The total OOB error rate, AUC, G-mean, F-value, 
sensitivity, precision, specificity, and accuracy were 7.6%, 
0.99, 0.8991, 0.9823, 0.9881, 0.9765, 0.8182, and 0.9684, 
respectively.

Predictive performance of three‑gene sets, two‑gene sets, 
and one gene
The importance of the 15 genes was evaluated by the 
MDG values. Starting from 15 genes, the random for-
ests model was constructed for the remaining genes after 
removing the least important gene in the current model. 
The results showed that the model of the remaining 6 
important genes was the best choice that yielded the low-
est OOB error rates (total OOB error rate = 6.69%, OOB 
classification error rate for predicting HCC = 0.024). 
In order to further obtain the optimal gene combina-
tions of low dimensions, we selected the combinations 
of one, two or three genes from the 6 important vari-
ables (cyp1a2, cyp2c19, cyp2c9, rac1, diablo, and il6) to 
establish prediction models for HCC, that is, we ran the 
random forests algorithm  41 times. The sensitivities of 
all gene combinations were above 0.9 (range from 0.9048 
to 0.9881). Seventeen gene combinations (9 three-gene 
sets and 8 two-gene sets) achieved a specificity ≥ 0.6364, 
and only the three-gene set (cyp1a2-cyp2c19-il6) had a 
specificity greater than 0.9. Almost all gene combinations 

achieved an AUC > 0.75 except one gene of il6, rac1, 
cyp2c19, and a two-gene set (diablo-il6). Nineteen gene 
combinations (14 three-gene sets and 5 two-gene sets) 
achieved an AUC > 0.95 (Additional file  1: Table  S8, 
Fig. 6b-d).

In summary, the overall predictive performance of 
all gene combinations was ranked as follows: three-
gene sets > two-gene sets > one gene (Additional file  1: 
Table S8, Fig. 6b–d). All classification evaluation indexes 
in three-gene combinations were better than those in 
two-gene combinations. Almost all of the observed dif-
ferences were statistically significant (P < 0.05), except 
for G-mean, Precision and Specificity (Additional 
file 1: Table S8-1). We finally identified a three-gene set 
(cyp1a2-cyp2c19-il6, total OOB error rates = 5.78%, 
AUC = 0.9730, G-mean = 0.9305, F-value = 0.9697, sen-
sitivity = 0.9524, precision = 0.9877, specificity = 0.9091, 
and accuracy = 0.9474) with the optimal predictive 
performance.

Rule extraction for predicting HCC
Additional file  1: Table  S9 shows the 7 most accurate 
rules. The total error rate was 0.049. The results showed 
that the present extracted rules achieved a very good 
performance. Among the 7 conditions, the expression 
levels of cyp1a2 and cyp2c19 in the non-tumor tissues 
were greater than those in the HCC tissues (Additional 
file  1: Table  S9). The condition “cyp1a2 > 12,201.5 and 
cyp2c19 <  = 103.5 and il6 <  = 48.5” (error rate = 0.000, 
frequency = 0.046) might have a greater probability of 
being correctly predicted as the HCC group. The expres-
sion levels of the three genes in different populations 
(a total of 460 patients, including 53 healthy people, 10 
CHB patients, 13 HBV-related cirrhosis patients and 384 
HCC patients) were shown in Fig. 7a–c.

Relationships between gene combinations with good 
predictive performance and OAMs
In combination with the previous OAMs results, 80% 
of the 15 genes were the nodes with the highest degree 
in the OAMs (Additional file  1: Table  S10). We found 
that the two-gene set (cyp1a2-cyp2c19) appeared in the 
same OAM (AMO

CHB 11-HCC6). Cyp1a2 and cyp2c19 were 
located in the overlapping part of AMO

CHB 11-HCC6, and 
an edge existed between them (Fig.  3b). Both were the 
nodes with the highest degree (degree = 7, 8) in the mod-
ule (Additional file 1: Table S10). While il6 did not appear 
in the same OAM with cyp1a2 and cyp2c19, it appeared 
in AMO

CHB 7-HCC20 and AMO
C2-HCC20 separately. It did not 

have the highest degree (degree = 3) (Additional file  1: 
Table  S10), and it was not located on the overlapping 
structure of the module (Fig. 3c).
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Experimental verification
The top three compounds that affected the three genes 
(cyp1a2-cyp2c19-il6) were selected, including glycyrol, 
inermin and bilobalide (Additional file  1: Table  S11). 
Then, a drug combination (Jiangan granules, JG) contain-
ing the three compounds was used to treat three different 
human HCC cell lines (Bel-7402, Hep 3B and Huh7).

In all three cell lines, the fluorescence intensities of the 
cisplatin group were significantly reduced compared with 
the vehicle group (P-value < 0.001) (Fig. 7d, e), and tumor 

growth inhibition was 57%, 59% and 66%, respectively 
(Fig. 7f ). The fluorescence intensities of different JG gran-
ules concentration groups (27.8, 83.3 and 250  µg/mL) 
were also significantly reduced compared with the vehi-
cle group (P-value ≤ 0.001) (Fig. 7d, e), and tumor growth 
inhibition was 47%, 47% and 66% (in Bel-7402 cells), 
47%, 60% and 75% (in Hep 3B cells), 50%, 56% and 58% 
(in Huh7 cells), respectively (Fig. 7f ). JG granules had a 
significant inhibitory effect on tumor growth of human 
HCC transplanted tumors.

Fig. 6  The Random Forest construction and receiver operating characteristic (ROC) curve of candidate genes. a The flow chart of Random Forest 
construction. ROC curve for the relative expression of HCC (n = 84) and non-tumor (n = 11) mRNA-seq samples of each validated gene and gene 
combination. The corresponding area under the curve (AUC) value is indicated. Diagonal lines represent the performance of a random classifier. 
b ROC curves of three-gene sets for classifying non-tumor samples from HCC samples in the TCGA test set. All three-gene sets achieved an 
AUC > 0.82. c ROC curves of two-gene sets for classifying non-tumor samples from HCC samples in the TCGA test set. All two-gene sets achieved an 
AUC > 0.65. d ROC curves of 6 candidate genes for classifying non-tumor samples from HCC samples in the TCGA test set. All 6 genes achieved an 
AUC > 0.6
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Discussion
The pathogenesis of HCC is complex and heterogenous, 
and multiple mechanisms of tumorigenesis could be 
involved. The annual incidence of liver cirrhosis in CHB 
patients without anti-viral therapy was 2–10%, and the 
annual incidence of HCC in non-cirrhotic HBV-infected 

patients was 0.5–1.0%. The annual incidence of HCC in 
patients with cirrhosis was 3–6% [28]. Despite a large 
number of promising molecules, the heterogeneity of 
HCC makes early detection a major challenge [29, 30], 
and individual markers generally lack sensitivity and/or 
specificity to be sufficiently effective. The future of HCC 

Fig. 7  The expression levels of cyp1a2, cyp2c19 and il6 in different populations and the experimental verification. a–c The expression levels 
of cyp1a2, cyp2c19, il6 in different populations. d, e The fluorescence intensities of different JG granules concentration groups (27.8, 83.3 and 
250 µg/mL), the cisplatin group (15 µg/mL) and the vehicle group in Bel-7402, Hep 3B and Huh7 cell lines. ***denotes statistical significance 
(P-value ≤ 0.001), compared with the vehicle group. f The tumor growth inhibition of cisplatin and different JG granules concentration groups (27.8, 
83.3 and 250 µg/mL) in Bel-7402, Hep 3B and Huh7 cell lines. ***denotes statistical significance (P-value ≤ 0.001), compared with the vehicle group. 
JG Jiangan granules
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screening will most likely involve the use of a combina-
tion of biomarkers based on various macromolecules 
such as mRNAs, proteins, and miRNAs [31].

Sequential AMs contributed to revealing the dynamic 
evolution from CHB to cirrhosis and HCC
The clinical pathway of most HBV-related HCC may fol-
low the four states: healthy, hepatitis, cirrhosis, and HCC. 
In our study, the cohort included healthy individuals and 
patients with CHB, HBV-related cirrhosis and HCC. 
Using the AMs-based approach, four types of modular 
allostery (DEMs, CAMs, TAMs and OAMs) were identi-
fied that might reveal the dynamic evolution of patho-
logical processes from CHB to HCC. Module-module 
associations (finally forming the AMs) among CHB, cir-
rhosis and HCC were established through the partially 
overlapping structures, which were similar to the linkers 
connecting domains in protein allostery, implying topo-
logical variations in modular networks. Identification of 
13 potential OAMs also reflected three disease processes 
in HBV-related HCC cases: from HBV to cirrhosis to 
HCC, from cirrhosis to HCC, and from HBV to HCC 
directly. It was also consistent with previous findings that 
not all patients with HCC have underlying liver cirrhosis, 
especially CHB patients [32]. The OAMs were the par-
tially overlapping modules among different stages in the 
progression of chronic liver diseases. At different stages, 
the structures and functions of these modules have par-
tial differences, and further changes may occur.

In addition, the invariant modules CAMs might reflect 
the conservation and stability of the organism. As for 
DEMs, they were the differential modules only found 
in the three diseases, representing the feature mod-
ules unique to CHB, HBV-related cirrhosis or HCC. We 
identified 35, 6, and 44 DEMs in the CHB, cirrhosis, and 
HCC groups, respectively. DEMs might demonstrate the 
unique characteristics of each stage of hepatitis, cirrho-
sis and liver cancer. From the perspective of Modular 
Pharmacology, sequential AMs might contribute to illus-
trating the molecular mechanism of the pathological pro-
gression from CHB to HCC. CAMs, OAMs and DEMs 
might have pharmacological implications at the systems 
level and serve as universal or specific therapeutic targets 
in disease treatment [33, 34]. Further, OAMs might play 
an important role in the pathological progression from 
CHB to cirrhosis to HCC, and therefore had considerable 
clinical value in predicting early-stage HCC risk.

Functional changes of OAMs: alterations in multiple 
cellular signaling pathways
As shown in Fig. 4c, d, the carcinogenic effects of the 13 
OAMs involve different changes in multiple signaling 

pathways at different pathological stages. We infer that 
alterations in these signaling pathways as well as some 
molecular targets in the pathways might participate in 
critical steps in the development of HBV-associated 
HCC. The most frequent pathway, the neurotrophin 
signaling pathway, appeared in four OAMs, showing that 
the dysregulation of neurotrophin signaling might play a 
role in the progression of HCC [35]. Evidence indicates 
that growth factor-mediated angiogenic signaling (VEGF, 
EGFR, IGF and HGF/c-MET), the ERK/MAPK pathway, 
the PI3K–AKT–mTOR signaling pathway, the WNT/b-
catenin pathway, cytokine/chemokine production/activa-
tion, leukocyte infiltration, c-erbB-3, adherens junction, 
focal adhesion, and antigen processing and presenta-
tion are implicated in HCC [36–43]. In the erbB family, 
upregulated ERBB-2 was associated with HBV infection 
[44]. HBV alters TLR signaling, resulting in liver dam-
age [45]. NK cells are important in the defense against 
HBV infection and exert their antiviral functions and 
host anticancer defense by natural cytotoxicity [46, 47]. 
In addition, AMO

CHB11-HCC6, which is only enriched in 6 
metabolism pathways, might be a metabolism-related 
module. Aberrations in lipid metabolism are often seen 
in chronic HBV infection. Downregulated linoleic acid 
[48], increased arachidonic acid synthesis [48] and high 
serum levels of retinol [49] and cytochrome P450 enzyme 
[50] are involved in the development of HCC.

Establishing a panel of genes to predict HCC risk 
for patients with chronic liver disease
In this study, 11 pairs of highly correlated genes and a 
panel of genes (cyp1a2-cyp2c19-il6) were identified in the 
core OAMs throughout the  progression  of  CHB  to  cir-
rhosis and HCC. Almost all gene combinations achieved 
an AUC > 0.75. Generally, a larger AUC value indicates 
a better predictive model and is a commonly accepted 
rule in the determination of a model’s performance [51]. 
A classification model can be considered to have an out-
standing performance if the AUC value of the model is 
above 0.9. The performance of any classification model 
with AUC values between 0.8 and 0.9 is excellent [52]. 
Therefore, this result indicated that the 6 important genes 
and their combinations were successfully validated in the 
independent TCGA LIHC dataset and were able to accu-
rately distinguish HCC from non-tumor tissues. A gene 
with an AUC value of at least 0.95 and a sensitivity and 
specificity of 90% or greater at the established threshold 
is considered adequate for the confident identification of 
HCC samples [31]. In addition to these criteria, we con-
sidered multiple indexes (total OOB error rates, G-mean, 
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F-value, sensitivity, precision and specificity) as a whole 
and finally identified a three-gene set (cyp1a2-cyp2c19-
il6) with an AUC of 0.973, a sensitivity of 0.9524, and a 
specificity of 0.9091. Here, considering the imbalance 
of the data, we mainly refer to total OOB error rates, 
AUC, G-mean and F-value. We also extracted the 7 most 
accurate rules/conditions from random forests for the 
three genes (cyp1a2, cyp2c19 and il6). Furthermore, the 
three genes have been previously reported to be associ-
ated with HCC [31, 53, 54], which is consistent with the 
results of rule extraction.

In addition, the results of experimental verification 
indicated that JG granules had a significant inhibitory 
effect on tumor growth of human HCC transplanted 
tumors. JG granules was the drug combination contain-
ing the three compounds selected by the three genes 
(cyp1a2, cyp2c19 and il6), which could indirectly vali-
date the effect of the three genes on the development of 
HCC. Furthermore, the two-gene set (cyp1a2-cyp2c19, 
AUC = 0.963) appeared in the same OAM (AMO

CHB11-

HCC6), cyp1a2 and cyp2c19 had the highest within-module 
degree, and an edge existed between them. This finding 
also confirmed the reliability of the AMs-based approach.

Finally, the limitation of this study is the lack of inde-
pendent validation. In order to improve the accuracy 
of prediction, next we will validate the sensitivity and 
specificity of the three-gene set identified in our study 
by using an independent, large and multicenter cohort, 
and furtherly evaluate the diagnostic performance of the 
three-gene set in different Barcelona Clinic Liver Can-
cer (BCLC) stages. In addition, the performance of the 
three-gene set in differentiating the HCC group from the 
healthy, CHB, and cirrhosis groups will be also evaluated.

Conclusions
Taken together, we showed that the three-gene set 
(cyp1a2-cyp2c19-il6) was optimized to distinguish HCC 
from non-tumor samples using random forests with an 
AUC of 0.973. These findings indicated that the proposed 
sequential AMs-based approach contributed to revealing 
the dynamic evolution from CHB to cirrhosis and HCC, 
identifying a panel of genes for the assessment of HCC 
risk in patients with chronic liver disease and might be 
applied to any time-dependent cancer risk prediction.
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