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Abstract

Background: Inpatient falls, many resulting in injury or death, are a serious problem in 

hospital settings. Existing falls risk assessment tools, such as the Morse Fall Scale, give a risk 

score based on a set of factors, but don’t necessarily signal which factors are most important 
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for predicting falls. Artificial intelligence (AI) methods provide an opportunity to improve 

predictive performance while also identifying the most important risk factors associated with 

hospital-acquired falls. We can glean insight into these risk factors by applying classification 

tree, bagging, random forest, and adaptive boosting methods applied to Electronic Health Record 

(EHR) data.

Objective: The purpose of this study was to use tree-based machine learning methods to 

determine the most important predictors of inpatient falls, while also validating each via cross­

validation.

Materials and methods: A case-control study was designed using EHR and electronic 

administrative data collected between January 1, 2013 to October 31, 2013 in 14 medical surgical 

units. The data contained 38 predictor variables which comprised of patient characteristics, 

admission information, assessment information, clinical data, and organizational characteristics. 

Classification tree, bagging, random forest, and adaptive boosting methods were used to identify 

the most important factors of inpatient fall-risk through variable importance measures. Sensitivity, 

specificity, and area under the ROC curve were computed via ten-fold cross validation and 

compared via pairwise t-tests. These methods were also compared to a univariate logistic 

regression of the Morse Fall Scale total score.

Results: In terms of AUROC, bagging (0.89), random forest (0.90), and boosting (0.89) all 

outperformed the Morse Fall Scale (0.86) and the classification tree (0.85), but no differences were 

measured between bagging, random forest, and adaptive boosting, at a p-value of 0.05. History of 

Falls, Age, Morse Fall Scale total score, quality of gait, unit type, mental status, and number of 

high fall risk increasing drugs (FRIDs) were considered the most important features for predicting 

inpatient fall risk.

Conclusions: Machine learning methods have the potential to identify the most relevant and 

novel factors for the detection of hospitalized patients at risk of falling, which would improve the 

quality of patient care, and to more fully support healthcare provider and organizational leadership 

decision-making. Nurses would be able to enhance their judgement to caring for patients at risk for 

falls. Our study may also serve as a reference for the development of AI-based prediction models 

of other iatrogenic conditions. To our knowledge, this is the first study to report the importance of 

patient, clinical, and organizational features based on the use of AI approaches.

1. BACKGROUND AND SIGNIFICANCE

Patient falls are a leading cause of human injury and mortality across international hospital 

settings [1–4]. It is estimated that in the United States (US) one million falls occur in 

hospitals annually, with an associated direct medical cost of $50 billion [5,6]. Fifty percent 

of inpatient falls result in injury, ten percent result in severe injury, and one percent result in 

death [7,8]. Patient falls can be largely prevented if important factors associated with these 

adverse events are known [9].

Risk of fall is commonly measured using assessments such as the Morse Fall Scale, 

the St. Thomas’s risk assessment tool in falling elderly inpatients (STRATIFY), and 

Hendrich’s High-Risk Fall Model [10–12]. These tools require clinician time for assessment 

and manual data entry, contributing to the clinician documentation burden [13,14]. 
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These instruments have low specificity, which cause difficulty in determining how to 

focus fall prevention tactics in the hospital setting [15]. Furthermore, the few features 

captured in these assessments focus primarily on intrinsic risk factors and are constrained 

by contemporaneous clinical and methodological knowledge of the 1980s and 1990s. 

Advancements in data science have strengthened investigators’ ability to use data captured 

from electronic health records (EHRs) and electronic administrative systems to identify 

robust prediction models [16].

The volume of clinical and administrative data captured in hospital systems is growing 

in electronic systems during routine patient care [17]. This data offers opportunities to 

improve the quality of inpatient care and fall prevention practices [18]. Many features could 

exist in these data to identify a generalizable fall prediction model. Decreases in fall rates 

have mostly been modest in hospitals and this type of data offers much promise [19,20]. 

However, large amounts of data can pose methodologic challenges with the use of traditional 

statistical approaches that are typically applied when testing the effects of a few features. 

When assumptions of traditional statistics cannot be met, machine learning techniques are 

able to screen a multitude of factors from big data and are capable of handling nonlinear 

interactions [21].

Advances in computing technology can increase the prospects of utilizing EHR and 

electronic administrative data to identify hospitalized patients at risk of falling, without 

added burden on clinicians [22,23]. Machine learning methods, including random forest and 

adaptive boosting, have emerged as powerful techniques that can accurately predict clinical 

outcomes and identify important predictors [24–26]. An advantage of these tree-based 

methods is that they are easily explained compared to other AI methods such as deep 

learning [27]. Robust model validation techniques like cross-validation can help generalize 

the prediction error on unseen data [28]. While fall prediction statistical models exist, their 

use is limited by the bias attributed to inadequate sample sizes, missing data, and not 

accounting for overfitting in models [29–36]. Automated methods such as machine learning 

can identify unknown plausible factors that could explain more fully the mechanisms of 

patient falls.

The objective of this study was to apply automated machine learning methods to identify the 

importance of known and unknown hospital inpatient fall risk factors, while also validating 

prediction performance of models on training and testing data sets.

2. MATERIALS AND METHODS

2.1. Study Setting, Design, and Ethical Considerations

This study used EHR data from the University of Florida’s (UF) Integrated Data Repository 

(IDR) and administrative records from UF Health Shands (curated by QuadraMed Co., 

Plano, TX). We included 14 medical/surgical units of a tertiary care hospital in the 

southeastern US. EHR and administrative data was collected between January 1, 2013 and 

October 31, 2013 for patients who were at least 21 years of age on January 1. We excluded 

14 patients who were hospitalized on a transition unit.
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This case-control study identified risk factors for patient falls. Cases were all patients 

who experienced a fall event during hospitalization. Controls were patients who did not 

experience a fall event during their hospitalization but were at risk of falling. Each case 

was matched with two randomly selected controls that overlapped on at least one day 

of hospitalization. Risk of falls was measured by the Morse Fall Scale, which has been 

demonstrated to be reliable [38,39].

This study was approved by the Institutional Review Board of the University of Florida 

(protocol #201600423). The original data was de-identified in compliance with the US 

Health Insurance Portability and Accountability Act (HIPAA) [40]. Expert determination 

was used for the HIPAA-anonymization method [41].

2.2. Model Predictors and Outcome

UF Health’s electronic incident reporting system was used to validate patients who fell 

during their hospitalization. For patients with multiple fall events, one was randomly chosen, 

which may have occurred over multiple admissions during the study timeframe. Variables 

included patient characteristics (e.g., age and sex), admission information (e.g., hospital 

unit), assessment information (e.g., the Morse Fall Scale and mobility assessment), clinical 

data (e.g., the Charlson Index), and staffing information (e.g., registered nurse staffing). 

Missing values were imputed. This study is an extension of the work of Choi et al. by 

adding the Charlson comorbidity index, nurse skill mix, percentage of nurses certified, 

percentage of nurses with a bachelor’s degree or higher, weekday/weekend shift, day/night 

shift, middle/end of a shift, and the nurse staffing ratio [37]. A list of variables used in this 

study are listed in Table 1 and their definitions are in Lucero [42].

In this study, we applied tree-based, machine learning methods (a single classification tree, 

bagging, random forest and adaptive boosting) to identify the features most predictive of 

patient falls [43–47]. The Gini index was used for the single classification tree to identify 

the hierarchical structure of important features. We also calculated the variable importance 

values of all features used by bagging, random forest, and boosting methods, and listed 

the important features. For the bagging and random forest approaches, the permutation 

importance of all features was measured as a proportion of the largest value [45]. For 

adaptive boosting, the relative influence of all features was measured as a proportion of 

the largest value [48]. A description of each machine learning method and the variable 

importance assessment is provided in Appendix A. We compared the performance of the 

machine learning methods to a univariate logistic regression statistical model for the Morse 

Fall Scale score. To account for the possibility of multicollinearity among hospital units, 

we compared the of a multivariate regression model of all features to both a random effects 

model and a generalized estimating equation multivariate regression model.

We produced the Receiver Operating Characteristic (ROC) curve for each of the four tree­

based models as well as the Morse Fall Scale total score. We also calculated the sensitivity, 

specificity, the Area Under the Receiver Operating Characteristic (AUROC) curve, and 

their respective confidence intervals using ten-fold cross validation. These statistics were 

calculated at the cut-points of the ROC curves based on the Youden Index [49–51]. Pairwise 

t-tests were used to assess differences in the sensitivity, specificity, and the AUROC curves 
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among the predictive models. The t-tests were corrected to account for the bias in Type 

I error when applied to cross validation techniques [52]. All comparisons were made at a 

p-value of 0.05.

In order to determine which variables were the most important features selected for each 

of the machine learning models, we compared the AUROC of the full model to the same 

machine learning technique with only the K variables with the highest variable importance 

measure. A t-test was performed to compare the AUROC measures. We reported the 

smallest K for which there was no difference in AUROC between the models containing 

all 38 features and the models containing only the K variables with the highest variable 

importance measure.

All statistical analyses and graphs were generated using R (version 3.5.1) [53].

3. RESULTS

We identified a total of 272 patients who fell (cases) and matched them to 542 patients 

who did not fall (controls) during their hospitalization. A set of 38 patient, clinical, 

and administrative features were included with each of the machine learning methods. 

Hemoglobin level was the only feature with missing data, which comprised 3.7% cases 

and 4.2% controls. The median hemoglobin level was imputed for missing values. Overall 

summary statistics are provided in Table 1, and described by unit in Appendices C1 – C14 of 

the Supplementary Materials.

3.1. Analysis of important factors

Fig. 1 depicts the results of the single classification tree analysis. Six features were 

automatically selected for the hierarchical structure. The features in descending order 

included history of falls, Morse Fall Scale total score, age, percentage of registered nurses 

with specialty certification, mental status, and number of high risk fall risk increasing drugs 

(FRIDs).

Variable importance graphs for bagging, random forest, and adaptive boosting methods 

appear in Fig. 2. Based on the results of the t-test to compare AUROC between the models 

with all 38 variables and the models containing only the K variables with the highest 

variable importance measure, the bagging and boosting methods had a minimum of 4 

important features and the random forest method had a minimum of 6 important features 

that did not show a difference in AUROC. Among the top features, history of falls exhibited 

the greatest relevant importance to patient falls across the three approaches. Patient’s age 

and Morse Fall Scale total score were important in all three approaches. Mental status was 

important in two of the models, while Morse Fall Scale gait/transferring, and hospital unit 

type, and the number of high risk FRIDs were important in one. The variable importance 

measures of all 38 variables for each of the three methods are provided in Appendix B.

3.2. Model evaluation

The sensitivity, specificity, AUROC, and each of their 95% confidence intervals for each 

predictive model are presented in Table 2. The bagging approach yielded the most sensitive 
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model (0.79) while the Morse Fall Scale total score resulted in the least sensitive model 

(0.58). On the other hand, the Morse Fall Scale total score produced the most specific model 

(0.87) followed by adaptive boosting, random forest, bagging, and the single classification 

tree (i.e., 0.86; 0.86; 0.84; and 0.78, respectively). In terms of AUROC (Fig. 3), the 

random forest method showed the highest discriminatory ability (0.90) followed by adaptive 

boosting, bagging, the Morse Fall Scale total score, and finally the single classification 

tree (i.e., 0.89; 0.89; 0.86; and 0.85, respectively). Based on the pairwise comparisons we 

conducted to evaluate the performance measures among the five approaches, the Morse Fall 

Scale total score was lower than each of the other four methods in terms of sensitivity, 

and lower than the three forest based methods (bagging, random forest, and boosting) in 

terms of AUROC. The single classification tree model was lower than each of the four other 

predictive models in terms of specificity, and lower than the three forest based methods in 

terms of AUROC. The single classification tree predictive model and Morse Fall Scale total 

score had the poorest performance in terms of discriminatory ability. Finally, the Morse Fall 

Scale total score had the lowest sensitivity.

There were no differences between the main effects models and the random effects and 

generalized estimating equation multivariate models.

4. DISCUSSION

This study investigated AI techniques to detect and rank important predictive factors of 

hospitalized patient falls. Additionally, we produced cross-validated prediction models from 

EHR and administrative data that identify risk of falls based on easily obtainable patient, 

clinical, and organizational factors. Building on the advantages of organizational investments 

and computing technologies, the prediction models have the potential to support healthcare 

provider and organizational leadership decision-making that results in improved quality of 

care.

There is growing interest in using EHR data for clinical outcome prediction, but the context 

in which these data are generated could also exert influence on the quality of patient 

care outcomes [23]. Nonetheless, EHR data can be better suited for using AI to predict 

clinical outcomes. An advantage of EHR data is its size. EHR data provides opportunities 

to improve the quality of care by examining simultaneously multiple related outcomes, 

for example heart failure, 30-day readmission, stroke, and diabetes readmission [56–59]. 

EHR data also provides access to many predictor variables, which opens the prospects of 

observing changes in patients and care over time. Another key benefit is that EHR data 

contains many observations that can could be used as prediction model validation datasets. 

There are also pitfalls in using EHR data including missing data and informative presence 

[60–62]. Hospital systems are increasingly storing EHR data which can be used to facilitate 

studying rare events, such as patient falls. In this study, we analyzed 30 features from EHR 

and 8 features from administrative data among 814 hospitalized patients who fell and did 

not fall during their admission. Three AI models (i.e., bagging, random forest, and adaptive 

boosting) exhibited satisfactory performance in predicting patient falls and warrant further 

testing to establish external validity.
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Given the advantages of EHR data and feasibility of AI techniques, we considered multiple 

interactions among features. Previous studies of patient fall prediction have primarily 

considered individual patient characteristics and conventional risk assessment tools with 

few interaction terms [10–12]. However, researchers have documented various independent 

relationships between nursing care and hospital patient falls [63–67]. Several features, 

including mental status and number of high risk FRIDs, were important across the prediction 

models and could be managed through clinical care and nursing unit management. We 

have shown that bagging, random forest, and boosting have a substantially higher ability to 

identify fallers over the Morse Fall Scale total score. Robust prediction models identify 

patients at varying degrees of risk would be of great clinical significance. With the 

disproportionate growth of older adults, one in five Americans will be at least 65 by 

2030, and will occupy the most hospital beds on any given day [68,69]. Although AI risk 

prediction models cannot currently replace clinical judgment, these tools could provide 

immediate information to avoiding falls at critical stages of deterioration or increased 

environmental safety hazards [42,70].

To better understand patient fall risk and improve the interpretability of the prediction 

models, we ranked all features in this study, and reported the most important according 

to their contribution to predicting falls. Among these features, history of falls, age, Morse 

Fall Scale total score, mental status, unit type, gait/transferring and the number of high 

risk FRIDs were the most relevant factors across bagging, random forest, and boosting. 

While some of these factors have been identified as predictors of patient falls in previous 

studies, there is still room to learn whether a patient’s mental status, score of a Morse Fall 

Scale assessment, and the number of high risk FRIDs they are taking are valid predictors 

of falls when hospitalized on a medical or surgical nursing unit. It’s worth noting that 

existing fall risk assessments do not contain all the items identified in our list of important 

features (such as age, unit type, FRIDs, and impaired mental status) [10–12]. Validation of 

accurate prediction models that combine simple and interpretable assessment tools with high 

performance contemporary machine learning methods can provide valuable clinical decision 

support, including prioritizing of fall prevention interventions and resources in medical and 

surgical nursing units.

Advances in computing technology and the availability EHR and administrative data 

presents opportunities to prevent and reduce patient falls through a learning health system 

[71,72]. A learning health system can result in personalized clinical care and quality 

improvements by learning throughout the delivery of care. Fall risk could be automatically 

measured when features change during a patient’s admission. While ideas of learning health 

systems have been discussed, little evidence exists on the implementation or impact of 

such a system [73]. Among use cases, there have been efforts to improve the quality 

of care for pediatric patients suffering from Crohn’s disease and cerebral palsy, optimize 

care delivery for palliative care and lung cancer patients, and reduce missed primary care 

appointments [74–78]. Most healthcare systems lack the infrastructure to support these 

components reliably and efficiently [79]. However, requirements for knowledge generation 

to improve the quality of care include reliable data capture and analysis methods that can 

yield timely feedback of knowledge to the system [79].
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There are limitations that should be discussed before applying in clinical practice. 

Regarding study design, the investigation was limited to data from one hospital setting. 

Cross-validation can be affected by population bias. Testing our models on data from other 

hospitals is needed to establish external validity. Secondly, the Morse Fall Score was used 

to measure fall risk. Not all hospitals use this assessment, which may hinder generalizability 

to all hospital settings. Thirdly, this study focuses on all inpatients who are at risk for falls, 

not just first time fallers. This presents an opportunity to conduct additional research to 

identify the risk factors associated with first time inpatient fallers. Fourthly, although we 

identified models with relatively stable performance, sensitivity, specificity and AUROC, 

estimates were subject to case-control study design. The model performance tests would 

be best performed with a population sample, which would reflect the true calibration and 

discrimination of the prediction model. Although it is possible to re-weight the sample of 

the case-control to match the prevalence of falls to the population, this prevalence varies 

widely across hospital populations [80–85]. The results for the bagging, random forest, and 

adaptive boosting algorithms are subject to variability in sensitivity and specificity measures 

due to using a binary classifier. Instead, it would be ideal to use a probability classification 

scheme [86]. In terms of AI techniques, the automated feature selection methods from 

machine learning models may fail in determining the true causal variables, not being able 

to identify confounders [87]. Even if the prediction model includes actionable features, their 

applicability in practice (not only prediction) may not be recommended without prospective 

testing or further causal analysis on observational data, e.g. defining a causal structure for 

variables. Finally, organizational differences can also influence how patient and clinical data 

are recorded in the EHR and administrative data by healthcare providers.

In summary, this preliminary study established cross-validated prediction models based on 

analyses of 38 individual, clinical, and organizational features. Our findings are of great 

clinical and organizational importance because we identified relevant and novel factors 

for hospital patient fall prediction. The prediction models have the potential to support 

personalized care and improve the quality of patient care by complementing health care 

provider’s judgment and decision making. Specifically, nurses could assist patients directly, 

such as improving mental status or administering fall risk inducing drugs, to effectively 

reduce fall risk. More broadly, our study may provide a reference for the development of 

AI-based prediction models that are modifiable by health care providers and leaders.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Summary Points

What was known:

• Existing fall risk prediction methods, such as the Morse Fall Scale, do not 

fully capture all risk factors associated with inpatient falls.

• Electronic Health Record (EHR) data has the potential to be used to identify 

the most important factors of inpatient falls via machine learning methods.

• Few existing studies have applied artificial intelligence (AI) to determining 

the most important factors of inpatient falls.

What we add:

• Tree based artificial intelligence methods can effectively determine the most 

important factors of inpatient falls via variable importance measures.

• Equipped with the knowledge of these additional factors of inpatient falls not 

found in the existing fall risk prediction tools, nurses can better care for their 

patients and effectively reduce the number of falls in the hospital setting.

• This study can serve as a reference in the development of AI-based prediction 

models of other iatrogenic conditions.
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Fig. 1. 
Classification tree of fall risk factors and number of patients affected at each node.
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Fig. 2. 
Variable importance graphs of the most important features for bagging, random forest, and 

adaptive boosting tree-based machine learing methods
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Fig. 3. 
ROC curves for single classification tree, random forest, bagging, adaptive boosting and 

Morse Fall Scale total score prediction models.
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Table 1

Distribution of patient, clinical, and organizational features among fallers, non-fallers, and both fallers and 

non-fallers

Item Fallers (n = 272) Non-Fallers (n = 542) Total
a
 (n = 814)

Patient Characteristics, n (%)

Male 139 (51%) 258 (48%) 397 (49%)

Age (Mean, SD) 56.8 (14.9) 58.3 (17.0) 57.8 (16.3)

Medications, n (%)

High dose of high risk FRIDs
b 121 (44%) 138 (25%) 259 (32%)

Number of high risk FRIDs
b
 (Mean, SD) 4.9 (4.1) 3.4 (3.5) 3.9 (3.8)

Morse Fall Scale (MFS), n (%)

History of falls 244 (90%) 146 (27%) 390 (48%)

Presence of a secondary diagnosis 263 (97%) 496 (92%) 759 (93%)

Ambulatory aids

Crutches, cane, or walker 87 (32%) 87 (16%) 174 (21%)

Furniture 13 (5%) 6 (1%) 19 (2%)

Use of a IV/Heparin lock 264 (97%) 516 (95%) 780 (96%)

Gait/Transferring

Weak 153 (56%) 162 (30%) 315 (39%)

Impaired 59 (22%) 55 (10%) 114 (14%)

Impaired mental status 136 (50%) 88 (16%) 224 (28%)

MFS total score (Mean, SD) 79.3 (17.0) 51.3 (19.7) 60.7 (23.0)

Medical Conditions and Indicators of Health Status, n (%)

Heart failure 92 (34%) 172 (32%) 264 (32%)

Visual or language impairment 43 (16%) 35 (6%) 78 (10%)

Hypoglycemic event 17 (6%) 26 (5%) 43 (5%)

Uncontrolled diabetes mellitus 38 (14%) 42 (8%) 80 (10%)

Impaired Mobility 204 (75%) 398 (73%) 602 (74%)

Confusion 111 (41%) 88 (16%) 199 (24%)

Alcohol withdrawal 17 (6%) 9 (2%) 26 (3%)

Hemoglobin Level (g/dL) (Mean, SD) 10.4 (2.2) 11.1 (2.3) 10.8 (2.3)

Orthopedic surgery 6 (2%) 18 (3%) 24 (3%)

Hypotension 56 (21%) 99 (18%) 155 (19%)

Physical Therapy initiation 139 (51%) 148 (27%) 287 (35%)

Charlson Comorbidity Index
c
 (Mean, SD)

3.5 (3.1) 2.6 (2.8) 2.9 (2.9)

Dizziness or Vertigo 33 (12%) 46 (8%) 79 (10%)

Hallucinations
f — — —

Visual Impairment 5 (2%) 16 (3%) 21 (3%)

Hearing Loss 18 (7%) 11 (2%) 29 (4%)

Language Impairment 20 (7%) 19 (4%) 39 (5%)

Int J Med Inform. Author manuscript; available in PMC 2021 November 02.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Lindberg et al. Page 19

Item Fallers (n = 272) Non-Fallers (n = 542) Total
a
 (n = 814)

Parkinson’s Disease
f — 9 (2%) 10 (1%)

Seizure Disorders 60 (22%) 50 (9%) 110 (14%)

Organizational characteristics

Hospital Unit Type, n (%)

Cardiology/CV telemetry 20 (7%) 69 (13%) 89 (11%)

Medicine 1 25 (9%) 44 (8%) 69 (8%)

Medicine 2 29 (11%) 52 (10%) 81 (10%)

Medicine 3 34 (13%) 39 (7%) 73 (9%)

Medicine 4 15 (6%) 61 (11%) 76 (9%)

Vascular/ENT/Tele medicine 18 (7%) 50 (9%) 68 (8%)

Neurology/Burn/Plastics/GI medicine 27 (10%) 43 (8%) 70 (9%)

Neurosurgery 31 (11%) 34 (6%) 65 (8%)

Oncology 11 (4%) 20 (4%) 31 (4%)

Bone marrow transplant 12 (4%) 14 (3%) 26 (3%)

Trauma/Lung transplant 14 (5%) 31 (6%) 45 (6%)

Orthopedics 12 (4%) 30 (6%) 42 (5%)

General/GI surgery 10 (4%) 25 (5%) 35 (4%)

Urology 14 (5%) 30 (6%) 44 (5%)

Nurse Skill Mix
d 71% 72% 71%

Percent Nurses Certified 22% 23% 23%

Percent Nurses with Bachelor of nursing 48% 47% 47%

Weekday (Weekday vs. Weekend shift) 205 (75%) 417 (77%) 622 (76%)

Day (Day vs. Night shift) 138 (51%) 304 (56%) 442 (54%)

Middle of Shift (Middle vs. End of shift) 135 (50%) 260 (48%) 395 (49%)

Staffing Ratio
e

0.95 < Ratio < 1.05 [Baseline] 60 (22%) 135 (25%) 195 (24%)

Ratio < 0.85 68 (25%) 139 (26%) 207 (25%)

0.85 < Ratio < 0.95 69 (25%) 140 (26%) 209 (26%)

Ratio > 1.05 75 (28%) 128 (24%) 203 (25%)

a
Fallers and Non-Fallers.

b
FRID: Fall risk increasing drug.

c
As calculated in Charlson and Quan [54,55]

d
Calculated as the proportion of registered nurses on a shift

e
Calculated as the ratio of actual registered nurses to the recommended registered nurses on a shift

f
Cell counts with an en-dash indicate a count less than 5
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