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In-Depth Characterization and 
Validation of Human Urine 
Metabolomes Reveal Novel 
Metabolic Signatures of Lower 
Urinary Tract Symptoms
Ling Hao1, Tyler Greer2, David Page3, Yatao Shi1, Chad M. Vezina4,5, Jill A. Macoska5,6, 
Paul C. Marker1,5, Dale E. Bjorling4,5, Wade Bushman5,7,*, William A. Ricke5,7,* & Lingjun Li1,2

Lower urinary tract symptoms (LUTS) are a range of irritative or obstructive symptoms that commonly 
afflict aging population. The diagnosis is mostly based on patient-reported symptoms, and current 
medication often fails to completely eliminate these symptoms. There is a pressing need for objective 
non-invasive approaches to measure symptoms and understand disease mechanisms. We developed 
an in-depth workflow combining urine metabolomics analysis and machine learning bioinformatics 
to characterize metabolic alterations and support objective diagnosis of LUTS. Machine learning 
feature selection and statistical tests were combined to identify candidate biomarkers, which were 
statistically validated with leave-one-patient-out cross-validation and absolutely quantified by 
selected reaction monitoring assay. Receiver operating characteristic analysis showed highly-accurate 
prediction power of candidate biomarkers to stratify patients into disease or non-diseased categories. 
The key metabolites and pathways may be possibly correlated with smooth muscle tone changes, 
increased collagen content, and inflammation, which have been identified as potential contributors 
to urinary dysfunction in humans and rodents. Periurethral tissue staining revealed a significant 
increase in collagen content and tissue stiffness in men with LUTS. Together, our study provides the 
first characterization and validation of LUTS urinary metabolites and pathways to support the future 
development of a urine-based diagnostic test for LUTS.

Lower urinary tract dysfunction commonly afflicts the aging population and is manifested as a spectrum of symp-
toms including frequent urination, urgency, weak stream, incomplete bladder emptying, double-voiding and 
post-void dribbling. Lower urinary tract symptoms (LUTS) have historically been attributed to benign prostatic 
hyperplasia (BPH) and increased outlet resistance with secondary effects on bladder function1,2. However, recent 
studies suggested a multifactorial etiology and pathogenesis of LUTS, including changed smooth muscle tone, 
decreased detrusor contractility, prostatic inflammation, increase collagen content, and bladder dysfunction3–7. 
The diagnosis of LUTS is often based on patient-reported symptoms which do not always mirror objective meas-
urements, and current medical therapies are not effective in all patients. Though specialized uroflowmetry and 
cystometry tests can be used by specialists to make definitive diagnoses, these techniques are often not available to 
health care practitioners in community clinics8. Under these circumstances, identifying urine biomarkers indica-
tive of LUTS is of great significance to provide molecular targets to understand disease mechanisms and support 
objective diagnosis of LUTS.
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Metabolomics studies the entire small molecule profile in a biological sample and has been extensively used 
to characterize metabolic changes in disease states. It can reveal actual processes and cellular conditions within 
the body at the time of sampling, offering more immediate translational benefit than upstream genomics and 
proteomics9–14. Mass spectrometry (MS)-based metabolomics analysis has led the field in disease biomarker dis-
covery, because MS can provide sensitive, accurate and reproducible measurements of metabolites with a wide 
dynamic range15–17. For disorders of the urinary tract, examination of patient urine by MS-based metabolomics 
techniques is ideally suited to profile urinary small molecules and identify novel disease-specific signatures as 
candidate biomarkers.

Due to the large dataset generated from MS-based biomarker discovery, sophisticated bioinformatics tools are 
vital to eliminate systematic bias and interpret clinically important findings. Conventional statistical tests, such 
as Student's t-test, Mann-Whiney test, and ANOVA, are widely used for biomarker discovery and are simple, fast, 
and easily interpretable. However, p-value based univariate statistics could miss important information regarding 
the correlations of variables in complex biological processes and their association with specific sample classes. 
Additionally, it is unrealistic to obtain a sample size equaling the number of features (thousands of compounds) 
in clinical studies, which increases the statistical challenge and the risk of over-fitting the training data.

In recent years, machine learning algorithms have been applied to data analysis for many different biological 
disciplines18–21. Predictive models can be built using machine learning algorithms to classify samples into specific 
groups; such models possess great potential for disease diagnosis and therapeutic evaluation. Feature selection 
can also be conducted to find the subset of features with the highest discriminatory power; this approach has 
been applied to drug screening and discovery22. Machine learning tools have been proven to provide as good 
or better classification results than other multivariate analysis methods such as principal component analysis 
(PCA) or clustering analysis23. Many machine learning algorithms can be extended to nonlinear cases whereas 
PCA is based on linearity assumption. In particular, Bayesian classifiers, the random forest (RF) algorithm, and 
the support vector machine (SVM) algorithm have been successfully applied to interpret data in microarray gene 
expression, proteomics, and metabolomics studies18–20,24. Recognizing the characteristics of different bioinformat-
ics tools, often a combination of several tools is better than any single technique.

Despite the widespread application of LC-MS to disease biomarker discovery, few studies have been designed 
for the aim of diagnosing disease. Challenges that need to be addressed prior to the general clinical applicability 
of biomarkers include but are not limited to, the consistency and stability of analytical platforms, the efficiency 
and accuracy of data analysis methods, the evaluation of biomarker sensitivity and specificity, and the validation 
of biomarker candidates in general population13,20,25–28. In this study, we established a comprehensive workflow 
integrating MS-based analytical approaches and advanced bioinformatics tools to address some of these issues, 
and we then applied this workflow to LUTS biomarker discovery. Recognizing the complex manifestations of 
LUTS, we have focused on the subpopulation of male patients with urinary frequency and urgency symptoms and 
hypothesized that urinary metabolomics profiling can generate a panel of biomarkers that are sufficient to classify 
patients into disease or non-diseased groups.

Results
The workflow for LUTS biomarker discovery is shown in Fig. 1. It integrates urine sample preparation, instru-
mental analysis, data processing, machine learning feature selection combined with statistical test for biomarker 
selection, metabolite identification, classification model construction, metabolic pathway analysis, and biomarker 
verification by absolute quantification.

Figure 1. Comprehensive workflow of urinary metabolite biomarker discovery of LUTS (A) and flowchart of 
metabolite identification process (B). Accurate mass matching with multiple online databases was conducted 
with a mass error ∆ ppm <  5. Because there are much fewer entries in MS/MS metabolite database compared 
to MS database, features with matching results in MS but not in MS/MS databases were considered putative 
identifications.
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Technical Reproducibility of Metabolomics Platform. Quality control (QC) is of utmost importance 
in large-scale metabolomics biomarker studies to ensure stable system performance and limit experimental bias. 
A QC standard was prepared as a pooled mixture of aliquots from all urine specimens (26 LUTS patients and 20 
control patients). The QC sample was injected before and frequently throughout the analytical run to monitor 
instrument stability. Technical reproducibility of the platform was assessed by analyzing the QC sample repeti-
tively within the same day and across months. The average mass deviation was less than 1 ppm across months and 
the average relative standard deviation (RSD) for retention time were 0.9% (intraday) and 5.4% (interday). The 
average RSD for peak areas were 7.8% (intraday) and 19.6% (interday). LC-MS peak areas are highly correlated 
between technical replicates of both inter-and intra-day injections (Supplementary Fig. S1). The metabolomics 
profiling platform yielded consistent peak area, m/z and retention time for reliable comparisons of metabolite 
profiles between LUTS patients and controls.

Selection and Identification of Candidate Biomarkers. Overall 2802 aligned spectral features were 
detected in the LUTS patients vs. control data set. The accurate and efficient selection of candidate biomarkers is 
achieved by combining machine learning feature selection and traditional statistical test, where 118 features were 
selected from all 2802 peaks for subsequent metabolite identification.

Because of the complexity of a metabolome and the absence of a complete metabolite database, metabolite 
identification is one of the most challenging tasks in metabolomics studies. The use of a high-resolution and 
accurate-mass (HR/AM) Orbitrap MS and the strict evaluation of QC samples to ensure system reproducibility 
laid the basis of the successful metabolite identification. Following the designed flowchart in Fig. 1B, a total of 
63 metabolites were identified (Supplementary Table S3), and examples of ID confirmation were illustrated in 
Supplementary Fig. S2. A list of representative metabolites was shown in Table 1. The heat map of the 63 identified 
metabolites was displayed in Fig. 2A. The blue and red heat map provided a direct visual comparison of relative 
expression levels of metabolites (rows) grouped by the sample type (columns).

Binary Classification Model and Statistical Validation. A predictive model for patient classification 
was constructed using the 63 identified metabolites dataset with the linear SVM algorithm. SVM algorithm is 
especially robust in handling noisy data and generally not susceptible to outliers, which is well-suited for metab-
olomics data set29. On the training set, this model classified the LUTS vs. control patients with an AUC ROC 
of 0.93 (Fig. 2B). In order to evaluate whether this model is over-fitting and how it can be expected to perform 
on future patients, our process of biomarker selection and classification model construction was evaluated: the 
entire biomarker selection process was repeated using just the training set for each fold, and the resulting features 
were used to construct the predictive model for that fold, which was then applied to the held-aside test patient 
for that fold. This cross-validated AUC ROC was 0.90; relatively modest difference from 0.93, indicating that the 
over-fitting was small. By comparing the results without biomarker selection (AUC ROC of 0.68 for 2802 fea-
tures), the established model demonstrated significantly increased discriminatory power and prediction accuracy.

Metabolic Pathway Analysis. In the human body, metabolites can act synergistically within functionally 
defined pathways. Metabolic pathway analysis is based on the association between identified metabolites and their 
related biological processes. Besides the 63 identified candidate biomarkers, an additional 105 metabolites were 
putatively identified by accurate mass matching (Δ ppm <  1) in order to include as many metabolites in given 
pathways regardless of their statistical significance. Eventually, four potentially regulated metabolic pathways 
were identified, the lysine degradation pathway, the arginine and proline metabolism pathway, the nicotinate and 

Metabolite Pathway KEGG ID HMDB ID m/z ∆ ppmc Time Ratiod p-valuee q-value

N6,N6-Dimethyl-lysinea Lysine degradation C05545 HMDB13287 175.1440 0.16 0.76 1.25 0.023 0.025

N-Acetyl-glutamatea Arginine and proline 
metabolism C00624 HMDB00341 190.0710 0.12 1.75 − 1.59 < 0.001 < 0.001

Tyrosinea Tyrosine metabolism C00082 HMDB00158 182.0813 0.59 1.56 − 1.41 < 0.001 0.001

Spermidinea Arginine and proline 
metabolism C00315 HMDB01257 146.1652 0.02 0.64 1.62 0.009 0.016

Carnitinea Lysine degradation C00318 HMDB00062 162.1125 0.04 0.90 − 2.40 < 0.001 < 0.001

Sperminea Arginine and proline 
metabolism C00750 HMDB01256 203.2232 0.76 0.67 2.47 0.007 0.014

Citrullinea Arginine and proline 
metabolism C00327 HMDB00904 176.1029 0.05 0.92 − 1.69 < 0.001 < 0.001

2-Octenedioic acidb Unsaturated fatty acid NA HMDB00341 173.0809 0.24 12.67 − 1.62 0.003 0.009

6-Hydroxypseudooxynicotineb Nicotinate and nicotinamide 
metabolism C01297 NA 195.1129 0.52 12.48 − 1.57 0.006 < 0.001

Pipecolic acida Lysine degradation C00408 HMDB00070 130.0865 1.72 1.17 2.02 0.010 0.016

Table 1.  Representative candidate metabolite biomarkers of LUTS. aMetabolite ID was confirmed 
with standard compound. bMetabolite ID was confirmed with MS/MS fragmentation. c∆ ppm mass 
error =  1 ×  106 ×  |detected m/z – theoretical m/z|/theoretical m/z. dRatio >  0 (positive value) represents up-
regulated metabolite; Ratio <  0 (negative value) represents down-regulated metabolite. eP-value is calculated 
using two-tailed Student’s t-test.
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Figure 2. Heat map (A) and ROC analysis (B) using 63 identified metabolites. The heat map is grouped by 
disease status and the trend of relative quantification. Shades of red and blue represent metabolite peak areas 
relative to the median. ROC analysis was carried out to evaluate classification model established with linear 
SVM algorithm and leave-one-patient-out cross-validation.
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nicotinamide metabolism pathway, and the tyrosine metabolism pathway (Supplementary Table S1). The poten-
tially disrupted metabolic pathways were illustrated in Fig. 3 (important pathway segments) and Supplementary 
Fig. S3 (complete KEGG maps). Given the complexity of the selected metabolic pathways, it is possible that the 
entire pathway was altered, or only specific fragments within the pathway were perturbed in the disease state.

Biomarker Verification by Absolute Quantification. Candidate biomarkers were further verified by 
absolute quantification using selected reaction monitoring (SRM). Seven metabolites were selected from repre-
sented metabolic pathways including proline, pipecolic acid, lysine, carnitine, spermine, spermidine, and tyrosine 
(Table 2). An eight-point standard curve was constructed for each metabolite with a fixed concentration of the 
corresponding isotopically labeled internal standard. Excellent linearity (average R2 =  0.9986) was achieved for 
each metabolite across three orders of magnitude in dynamic range (Supplementary Fig. S4). Following this 
assessment of dynamic range, we performed targeted absolute quantification of the seven metabolites in 46 clin-
ical urine samples. As illustrated in Fig. 4, all of the metabolites exhibited consistent changing trend between 
absolute and relative quantification, validating our quantitation method and producing important molecular 
targets for future mechanistic study.

Collagen Assessment. Lower urinary tract inflammation and fibrosis are very commonly observed in pros-
tatic tissues from male LUTS patients, which has recently been associated with increased symptom severity and 
risk for clinical progression of LUTS/BPH3,30–32. But the mechanistic and molecular basis for this association are 
unclear. Fibrosis is an aberrant wound-healing process downstream of inflammation, which can be characterized 
by myofibroblast accumulation, collagen deposition, extracellular matrix remodeling and tissue rigidity5. Many 
identified dysregulated metabolites in urine are related to collagen synthesis and deposition, such as metabolites 
in the arginine and proline metabolism pathway33–35. In order to investigate prostatic fibrosis as a potential con-
tributor of LUTS and correlate metabolite dysregulations with changed collagen deposition indicating fibrosis, 

Figure 3. Potentially regulated metabolic pathways. Identified metabolites with direction of changes 
were indicated with different colored circles. The complete KEGG pathway maps including all the identified 
metabolites are displayed in Supplementary Fig. S3.
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we performed a follow-up study to assess collagen content and tissue stiffness in periurethral prostatic tissues 
of LUTS patients vs. controls. The collagen content was determined to be significantly higher in LUTS patients 
(n =  5) than in control patients (n =  7), as illustrated by Picrosirius red staining images and colorimetrically quan-
tified birefringes (Fig. 5). Total collagen content was significantly (p-value =  0.04) increased in men with LUTS 
and large collagen fibers (orange, p-value =  0.02) were significantly increased as well. Median collagen fibers 
(yellow, p-value =  0.37) and very large fibers (red, p-value =  0.13) were also increased in LUTS patients but not 
reaching statistically significance, probably due to limited sample size. The average tangent modulus of periure-
thral prostatic tissue was 1978 ±  314 kPa for LUTS patients vs. 411 ±  274 kPa for controls (p-value =  0.00002), 
representing significantly greater tissue stiffness in LUTS group. These data suggest that increased collagen con-
tent and tissue stiffness in the periurethral prostatic area indicating fibrosis may contribute to the dysregulation 
of urine metabolites related to collagen synthesis and deposition.

Discussion
A panel of metabolite biomarker candidates and their related metabolic pathways were successfully generated 
from our designed workflow. The established binary classification model has great potential for future develop-
ment of a urine-based diagnostic test of LUTS. In addition, the key metabolites and their related bioprocesses 
are discussed here to help elucidate the underlying molecular functions involved in LUTS development and pro-
gression; particularly their possible associations with the function of lower urinary tract which involves complex 
regulation of smooth muscle contraction and relaxation and also the coordination of neural networks.

The arginine and proline metabolism pathway was found to be distinctly perturbed with more than 30 identi-
fied metabolites (Fig. 3B and Supplementary Fig. S3B). This pathway has been known to be related to the synthe-
sis of collagen33–36. Two crucial polyamines, spermine and its precursor spermidine were significantly increased 
in LUTS patients’ urine and verified by absolute quantification. Prostatic tissue is one of the highest polyamine 
producing organs in the body37. Studies suggested that polyamines can promote collagen production and cell 
proliferation. Arginase activity can also have direct effects on fibrosis, which is a potential contributor to LUTS/
BPH3,36,38. The increased collagen content and extracellular proteins causes tissue stiffness as well as reduced tis-
sue elasticity and compliance5. Additionally, spermidine regulates Ca2+ influx and Na+, K+ ATPase activity, which 
is closely related to the contraction activity in the detrusor of urinary tract and the bladder smooth muscle39. 
Given that we and others have identified that the accumulation of extracellular matrix3,5, especially collagen31, is 
associated with LUTS in men, the identification of collagen precursors found within the urine is suggestive that 
these metabolites are putative biomarkers of LUTS. Perhaps more importantly, these putative biomarkers may 
be informative to personalized medical therapy treatment in men presenting with LUTS as current therapies do 
not target the extracellular matrix and hence may not be effective in men presenting with these urinary markers.

Methylated intermediates in the lysine degradation pathway were found to be significantly increased in LUTS 
patient urine, including dimethyllysine, trimethyllysine, and hydroxy-trimethyllysine (Fig. 3A). Methylation pat-
terns of lysine serve as important biological signals which establish chromatin structure and regulate carnitine 
biosynthesis and fatty acid oxidation40,41. It was reported that the methylation of histone H3 at lysine 4 (H3-K4) 
is associated with transcriptional regulation of the prostate-specific antigen (PSA) gene in the prostate cancer cell 
line42. But further targeted investigation into methylated metabolites is necessary.

Tyrosine metabolism is related to signal transduction in human body, and tyrosine kinase can modulate 
smooth muscle contraction through Ca2+ sensitization43. Majority of the identified metabolites in tyrosine 
metabolism were down-regulated in LUTS patients (Fig. 3C). Results of pathway analysis also indicated potential 
disruption of the nicotinate and nicotinamide metabolism pathway in LUTS (Fig. 3D), in which NADP+  and 
NAD+  are important cofactors for energy metabolism such as glycolysis and fatty acid catabolism. Nicotinamide, 

Compounds m/z →  MS/MS Time CEa Ratiob p-valuec Pathway

Proline 116.0710 →  70.07 0.90 35 1.42 0.01 Arginine and proline metabolism

Proline-D3 (I.S.) 119.0896 →  73.08 0.90 35

Pipecolic acid 130.0865 →  84.08 1.72 30 1.61 0.0003 Lysine degradation

Pipecolic acid-D9 (I.S.) 139.1428 →  93.14 1.72 30

Lysine 147.1128 →  84.08 0.68 30 − 2.03 0.03 Lysine degradation

Lysine-D4 (I.S.) 151.1379 →  88.11 0.68 30

Carnitine 162.1125 →  60.08 0.90 45 − 1.76 0.02 Lysine degradation

Carnitine-D9 (I.S.) 171.1688 →  69.14 0.88 45

Spermine 203.2230 →  129.1 0.67 30 1.89 0.14 Arginine and proline metabolism

Spermine-D8 (I.S.) 211.2731 →  137.2 0.67 30

Spermidine 146.1652 →  72.08 0.64 30 1.36 0.09 Arginine and proline metabolism

Spermidine-D8 (I.S.) 154.2153 →  80.13 0.64 30

Tyrosine 182.0813 →  136.1 1.56 25 − 1.27 0.09 Tyrosine metabolism 

Tyrosine-D4 (I.S.) 186.1062 →  140.1 1.54 25  

Table 2.  SRM absolute quantification of selected metabolites and their stable isotope-labeled internal 
standards. aOptimized collision energy to obtain the highest MS/MS target ion for quantification. bRatio >  0 : 
up-regulated metabolite; Ratio <  0 : down-regulated metabolite. cP-value is calculated using two-tailed Student’s 
t-test.
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significantly elevated in the LUTS patient, was also found to associate with the regulation of inflammatory actions 
which is one of the most important etiologies of LUTS4,44.

These possible metabolic correlations with disease etiologies are consistent with our recent urinary proteomics  
study of LUTS in men, which identified and relatively quantified a group of proteins related to fibrosis and inflam-
matory responses45. Changes in smooth muscle tone, prostatic hyperplasia, inflammation, and increased collagen 
content have been identified in urology studies as possible contributors to urinary dysfunction3,4,7,31,44. However, 
in order to confirm the possible correlation between the changes of metabolites and functional bioprocesses of 
LUTS, future targeted mechanistic studies are necessary via cell culture or justified mouse models of LUTS4,15,46–50.

In summary, we have developed and implemented an in-depth metabolomics analytical platform combining 
MS-based analysis and advanced machine learning bioinformatics tools. The established method was successfully 
applied to study LUTS in men, resulting in important disease-associated biomarker and pathway candidates as 
well as a sensitive and specific classification model for potential non-invasive diagnosis of LUTS. The hypoth-
esized metabolic correlation with collagen deposition was further studied in periurethral prostatic collagen 
staining. Aging female patients are also known to develop LUTS symptoms. Unlike LUTS in male which has his-
torically been attributed to benign prostatic hyperplasia, LUTS in female is more likely associated with other fac-
tors such as bladder dysfunction, urinary tract infection, and postmenopausal urogenital changes. Because of the 
different etiology of LUTS in female51,52, we only focused on LUTS in male in the present study. The established 
workflow can also be applied to future studies of LUTS in female. It is also worth pointing out that the metabolites 
and pathways generated in this study are only candidate signatures of LUTS. Future targeted mechanistic study 
and clinical validation with a separate large cohort of patient samples are necessary before the real usage in clini-
cal practice. Together, this study provided a well-designed methodology and promising molecular targets that are 
useful for future clinical diagnosis and pathophysiological study of disease.

Methods
Clinical Sample Collection. This study was approved by Institutional Review Board (IRB) Protocol and 
conducted under the guidance of the University of Wisconsin-Madison Human Research Protection Program 
(HRPP). All human subjects provided informed consent before participating in this study. Midstream urine 
samples were collected from 26 patients with LUTS and 20 controls without LUTS in the Urology clinic of the 
University of Wisconsin Hospital according to the approved IRB. Because of the physiological and anatomic 
differences of lower urinary tract between female and male, the etiology and risk factors of developing LUTS 
are often separately studied for female and male patients51,53. In this study, the recruited LUTS patients were 

Figure 4. Box plots of absolute quantification of selected metabolites in urine. Each box contains the 
metabolite concentrations from 26 (LUTS) or 20 (Control) urine samples. Box denotes 25th and 75th percentiles; 
line within box denotes 50th percentile; whisker denotes standard deviation.
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men with significant urinary frequency and urgency for a duration of more than 6 months as described by the 
American Urological Association Symptom Index (AUASI) frequency +  urgency symptom scores of > 78. Control 
male patients had no history of significant LUTS and the symptom score ≤ 3 (detailed patient inclusion and 
exclusion criteria are provided in Supplementary Fig. S5). Because many LUTS patients have a history of other 
urologic conditions, including renal cell carcinoma, renal cystic disease, kidney stones, erectile dysfunction, 
hydrocele, and low-grade prostate cancer, controls were also selected from patients with such diagnostic history 
not specifically associated with LUTS in order to provide a spectrum of patients that can dilute the effect of con-
founding variables. The age and body mass index were matched between recruited LUTS and control patients 
(Supplementary Table S2). After collection, all midstream urine samples were centrifuged at 1000 g for 10 min, 
spiked with sodium azide, de-identified, and stored at − 80 °C until analysis.

In order to compare collagen levels in men with or without LUTS, human periurethral prostatic tissues were 
collected from a separate group of LUTS patients (n =  5) and age-matched controls (n =  7) assessed under AUASI 
criteria. Periurethral tissues were procured at surgery from men undergoing radical prostatectomy, who had 
completed the AUASI within 30 days before surgery. Patient clinical information was provided in Supplementary 
Table S2. Experimental details were described previously3,31. Tissue samples and related clinical information were 
obtained with IRB approval.

Figure 5. Determination of prostatic collagen content in patients. Picrosirius red stained images of tissues 
were captured under brightfield illumination (A, Control; B, LUTS) and under polarized light (C, Control; D, 
LUTS). Collagen content was colormetrically quantified for fibers with different sizes and the total collagen (E). 
(Note, * p-value <  0.05).
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Urine Sample Preparation. Urinary metabolites were separated from large molecules using 3 kDa 
molecular weight cut-off (MWCO) ultracentrifugation filters (Millipore Amicon Ultra, MA) according to the 
manufacturer’s protocol. The flow-through fractions were collected as urinary metabolites. Osmolality of each 
metabolite fraction was measured by a freezing-point depression osmometer (Osmometer Model 3250, Advanced 
Instruments, MA) and metabolite samples were diluted to achieve the same osmolality. By pre-acquisition nor-
malization of the urine, we ensured that each sample has the same osmolality and similar total metabolite concen-
tration before instrumental analysis (Supplementary Fig. S6). For absolute quantification, a mixture of isotopically 
labeled internal standard (I.S.) was spiked in urine samples before instrumental analysis.

LC-MS and LC-MS/MS Analysis. Ultra-performance LC-MS analyses of urine samples were con-
ducted using a Dionex UltiMate 3000 LC system coupled with a Q-ExactiveTM Orbitrap mass spectrometer 
(San Jose, CA). Urinary metabolites were separated with a 20 min gradient on a Phenomenex biphenyl col-
umn (2.1 ×  100 mm, 2.6 μ m, 100 Å) at a flow rate of 0.3 ml/min. Mobile phase A was 0.1% formic acid in H2O 
and mobile phase B was 0.1% formic acid in MeOH. The gradient was set as follows: 0–5 min, 0–3% solvent B; 
5–15 min, 3–40% solvent B; 15–18 min, 80% solvent B. Full MS acquisition scanned from 70 to 1000 m/z at a res-
olution of 70 K. Automatic gain control (AGC) target was 1 ×  106 and maximum injection time (IT) was 100 ms. 
UPLC targeted-MS/MS analyses were acquired at a resolution of 35 K with AGC target of 5 ×  105, maximum IT 
of 50 ms, and isolation window of 2 m/z. Collision energy was optimized for each target with higher-energy col-
lisional dissociation (HCD) fragmentation. The injection order of urine samples with 3 technical replicates was 
randomized to reduce the experimental bias.

Data Processing and Statistical Analysis. Data files acquired by Thermo Scientific Xcalibur software 
were processed by commercial SIEVETM software for peak alignment and framing. Total ion current (TIC) nor-
malization embedded in SIEVE was performed to reduce instrumental variation before directing to statistical 
analysis. A total of 2802 aligned spectral features were detected after filtering out irreproducible peaks that were 
present in fewer than three biological replicates from each group (LUTS or control). In order to select mass 
features whose peak areas differentiate between disease and control group, a Student’s t-test was conducted to 
generate the average fold change and p-value of each detected feature. False discovery rate (FDR) correction 
was used to estimate the chance of false positives and correct for multiple hypothesis testing. The distribution of 
p-values was used to calculate q-values using the Benjamin-Hochberg algorithm in R package54. Features with 
both p-value and q-value <  0.05 were considered statistically significant. For metabolic pathway analysis, the 
pathway’s p-value was calculated as the median of p-values of all the identified metabolites involved in the specific 
pathway. For absolute quantification and collagen staining experiments, the two-tailed Student’s t-test was con-
ducted and p-value <  0.05 was considered statistically significant.

Machine Learning Feature Selection. Chromatographic peak areas of detected features generated from 
SIEVE was input into WEKA 3.6 software55 for machine learning based feature selection. Support vector machine 
(SVM) based attribute evaluation and information gain (IG) based attribute filtering were used to conduct feature 
selection and rank features based on their contributions to separate LUTS versus control groups. SVM constructs 
a hyperplane with the maximum margin to separate two groups as widely as possible29. IG measures the effective-
ness of an attribute in classifying the data based on the entropy measure in information theory56. After obtaining 
the rank of all detected features, the top 100 features in SVM and IG evaluation were selected.

Metabolite Identification. Significantly altered features from statistical test (both p-value and 
q-value <  0.05) and feature selection (top 100 ranking features from both SVM and IG algorithms) were over-
lapped to compile a list of most significant features. Metabolite identification was performed according to our 
designed flowchart in Fig. 1B. First, accurate masses of selected features were searched against multiple databases 
(mass error <  5 ppm) using the MetaboSearch software57, including Human Metabolome Database, Madison 
Metabolomics Consortium Database, Metlin, and LIPID MAPS. Features with matching results from the data-
bases were subjected to LC targeted-MS/MS analysis, and their MS/MS fragments were searched using the 
MetFrag software58 to confirm identities. Metabolite IDs were also confirmed with available metabolite standard 
compounds.

Machine Learning Classification. Chromatographic peak areas of identified metabolites were directed 
into WEKA software to build binary classification models with the linear SVM algorithm, which has been shown 
to work well in high dimensional data. Leave-one-patient-out cross-validation was carried out to evaluate classi-
fication accuracy and measure the proportion of patient subjects correctly classified in this task. This procedure 
withholds one patient at a time as a test set and uses the rest of the data as a training set and repeats this process 
until all patients have been used exactly once as the test set and classified. The resulting probability values of LUTS 
for each patient, when that patient is used for testing, can be used to compute a ROC curve. To test the value of the 
biomarker selection, a ROC curve was also generated using all the features in the dataset for comparison.

Metabolic Pathway Analysis. For metabolic pathway analysis, the identities of candidate biomarkers were 
input into the MetaboAnalyst 2.0 software59 to query against the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) database and generate a list of involved pathways60. Only pathways with more than two identified com-
pounds were considered and additional metabolites were identified in order to maximize the metabolite coverage 
associated with a given pathway, regardless of their p-value and feature ranker.
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Collagen Staining. Human periurethral prostatic tissues were subjected to mechanical testing to assess 
rigidity and stiffness as described previously3. The tangent modulus of a tissue sample was measured as the termi-
nal slope of the nominal stress vs nominal strain response in kPa, representing passive tissue stiffness. For collagen 
staining, human periurethral prostatic tissues were fixed in 10% neutral buffered formalin, embedded in paraffin, 
and sectioned onto positively charged microscope slides. The tissue sections were stained with Picrosirius red 
and images were acquired under polarized light as described previously31. The different collagen fiber sizes were 
assessed by imaging and quantitating different colors of birefringence using Image J software suite. Student’s t-test 
was performed for each color (green, yellow, orange, and red) and total birefringence.
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