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Abstract 

The increasing global life expectancy brings forth challenges associated with age-related 

cognitive and motor declines. To better understand underlying mechanisms, we investigated 

the connection between markers of biological brain aging based on magnetic resonance 

imaging (MRI), cognitive and motor performance, as well as modifiable vascular risk factors, 

using a large-scale neuroimaging analysis in 40,579 individuals of the population-based UK 

Biobank and Hamburg City Health Study. Employing partial least squares correlation 

analysis (PLS), we investigated multivariate associative effects between three imaging 

markers of biological brain aging – relative brain age, white matter hyperintensities of 

presumed vascular origin, and peak-width of skeletonized mean diffusivity – and multi-

domain cognitive test performances and motor test results. The PLS identified a latent 

dimension linking higher markers of biological brain aging to poorer cognitive and motor 

performances, accounting for 94.7% of shared variance. Furthermore, a mediation analysis 

revealed that biological brain aging mediated the relationship of vascular risk factors — 

including hypertension, glucose, obesity, and smoking — to cognitive and motor function. 

These results were replicable in both cohorts. By integrating multi-domain data with a 

comprehensive methodological approach, our study contributes evidence of a direct 

association between vascular health, biological brain aging, and functional cognitive as well 

as motor performance, emphasizing the need for early and targeted preventive strategies to 

maintain cognitive and motor independence in aging populations. 
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1 Introduction  

Rising global life expectancy amplifies the challenge of age-related cognitive and 

motor impairment, threatening functional independence of individuals and burdening 

societies and healthcare systems worldwide [1]. Although cognitive and motor 

abilities generally decline with age, there is substantial interindividual variability. 

While some individuals face cognitive impairment, dementia, and loss of 

independence, others maintain their cognitive and physical abilities well into 

advanced age [2]. Unraveling the processes that uphold functional ability in older 

adults is essential for devising effective prevention and management strategies. 

One theory suggests that biological age might diverge from chronological age, 

potentially offering a more accurate reflection of an individual's health status in 

relation to aging [3]. Mechanistic models have thus been proposed, suggesting that 

interindividual variability in mid and late life functionality arises from variations in 

biological brain aging, with some individuals exhibiting slower aging processes and 

others showing accelerated changes [3]. While some contributors to these variations, 

such as genetic factors, are unmodifiable, others, including lifestyle and 

environmental influences, are modifiable. Here, cerebrovascular risk factors are 

considered to contribute to the variation in the rate of biological aging [4].  

Indicators of biological brain aging include changes in brain morphology, white matter 

microstructure, and presence of cerebral small vessel disease (CSVD) [5–8]. 

Magnetic resonance imaging (MRI) enables to characterize these brain anatomical 

aspects in vivo. There are multiple neuroimaging markers theorized to capture 

variation in biological brain aging. These include (1) relative brain age, which 

measures the the brain age gap – i.e., the discrepancy between chronological age 

and predicted biological age based on regional brain morphology [9,10], (2) white 
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matter hyperintensities of presumed vascular origin (WMH) indicative of CSVD 

[11,12], and (3) peak-width of skeletonized mean diffusivity (PSMD) reflecting global 

microstructural white matter integrity known to decline with increasing age [13].  

Despite evidence linking these markers to cognition and motor function, an 

understanding of the associations remains limited for several reasons [14–16]. Much 

of the existing research has focused on individual imaging markers, vascular risk 

factors and cognitive or motor function scores without considering the potentially high 

covariance of the measures. Moreover, studies often have limited sample sizes, 

leading to inconsistent results, as emphasized by recent research highlighting the 

need for larger cohorts to establish reliable links between neuroimaging markers and 

behavior [17]. Lastly, the role of vascular risk factors in biological brain aging, 

cognition and motor function is not fully understood, which is particularly relevant 

given their potential as intervention targets. 

To bridge these gaps, we present a large-scale multi-modal neuroimaging analysis in 

two large-scale epidemiological studies, the UK Biobank (UKB) and the Hamburg 

City Health Study (HCHS), combining key brain MRI markers of biological brain 

aging, vascular risk information, and comprehensive cognitive and motor phenotyping 

with advanced statistics that can aptly capture multivariate and potentially covarying 

associative effects. In this analysis, we applied data-driven statistics in form of a 

partial least squares correlation analysis (PLS) to model the multivariate associative 

effects of biological brain aging, cognition, and motor function. Expanding on this, we 

investigated the role of biological brain aging in mediating the relationship between 

vascular risk, cognition and motor function in a mediation analysis. In sum, our 

analysis aimed to contribute to the understanding of the neurobiology underlying the 
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decline in everyday cognitive and motor functioning to help identify potential 

diagnostic and treatment targets.  
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2. Material and Methods 

An overview of our methodology is provided in figure 1. In brief, we utilized imaging 

and clinical data from the UKB and HCHS to investigate the complex relationships 

among biological brain aging, modifiable vascular risk, and cognitive and motor 

function. Following preprocessing, we derived relative brain age, WMH load, and 

PSMD from the imaging data. We then employed PLS to model the multivariate 

associations between these imaging markers and clinical scores of cognitive and 

motor function. Using the resulting subject-level PLS scores, which capture the 

associative effects between biological brain aging and clinical performance, we 

conducted a mediation analysis to test whether biological brain aging mediates the 

relationship between vascular risk measures and cognitive and motor test 

performance. All these analyses were performed separately in both the UKB 

(discovery cohort) and HCHS (replication cohort). 

2.1 Study population 

The presented study is based on behavioral and neuroimaging data from two large-

scale population-based cohort studies, the UKB (n=43,098, age range 40-69 years) 

and HCHS (n=2,652, age range 45-74 years).  

2.2 Ethics statement 

The UKB’s ethical approval was granted by the North West Multi-Centre Research 

Ethics Committee (MREC). Details on the Ethics and Governance framework are 

provided online (https://www.ukbiobank.ac.uk/media/0xsbmfmw/egf.pdf) [18]. The 

HCHS was approved by the local ethics committee of the Landesärztekammer 

Hamburg (State of Hamburg Chamber of Medical Practitioners, PV5131). Written 

informed consent was obtained from all participants. Data acquisition procedures 
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followed the Good Clinical Practice (GCP) and Good Epidemiological Practice (GEP) 

guidelines according to the Declaration of Helsinki [19]. 

2.3 Clinical Data 

Measurements of cognitive and motor function were investigated in this work. For 

more detailed descriptions of the administered cognitive and motor tests used in this 

study also refer to the supplementary materials S1. 

In brief, cognitive functioning was assessed in the UKB administering tests for 

executive functioning (Tower Rearranging Test, Trail Making Test B), processing 

speed (Reaction Time Test, Symbol Digit Substitution Test, Trail Making Test A), 

memory (Numeric Memory Test, Paired Associate Learning Test), and reasoning 

(Fluid Intelligence Test, Matrix Pattern Completion Test). In the UKB, cognitive tests 

were administered as computerized test versions. Motor capacity was characterized 

via hand grip strength measurements of right and left hand and evaluation of 

accelerometry as an indicator of physical activity [20]. 

In the HCHS, cognitive testing covered executive functioning (Trail Making Test B), 

processing speed (Trail Making Test A), memory (Word List Recall Test), reasoning 

(Multiple Choice Vocabulary Intelligence Test B) and language (Animal Naming 

Test). Motor function was examined via hand grip strength measurements of the right 

and left hand and the Timed Up And Go Test. In the HCHS, tests were administered 

by trained professionals. 

To facilitate interpretability and enhance comparability between examined cohorts 

cognitive test results were harmonized. The harmonization procedure was based on 

previous protocols [21]. First, cognitive test scores were assigned to cognitive 

domains. Within the cognitive domains, the corresponding tests were z-scored and 

averaged to obtain domain scores. Domain scores were computed for the domains 

executive functioning, processing speed, memory and reasoning for the UKB and 
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executive functioning, processing speed, memory, reasoning, and language for the 

HCHS. If multiple tests were available for a specific cognitive domain, their z-scores 

were averaged. Trail Making Test and reaction time results were inverted and log 

transformed beforehand according to previous work [20]. Furthermore, grip strength 

of the left and right hand was averaged. Mean hand grip strength was normalized 

based on division by the square of individual height following previous procedures 

[22].  

 

2.4 Image processing 

MRI acquisition protocols, preprocessing and quality assessment are documented in 

detail in supplementary materials S2. Three measures of biological brain aging were 

derived from MR images: relative brain age, WMH load and PSMD. For the UKB, 

precomputed data were used, if possible. This included morphometric data computed 

via FreeSurfer, WMH segmentations as well as preprocessed diffusion-weighted 

imaging data. HCHS data was fully processed by our team. 

 

2.4.1 Brain morphometry and relative brain age 

Estimation of cortical and subcortical volumetric indices was performed leveraging 

Freesurfer. Technical details of the comprised procedures were described before 

[23–25]. In brief, the processing included motion correction, intensity normalization, 

removal of non-brain tissue, segmentation of subcortical structures and cortical 

surface reconstruction. Cortical thickness was measured on the vertex level as the 

distance between the pial surface and grey matter-white matter-boundary [26]. 

Cortical thickness and subcortical volumes were aggregated within regions of interest 

defined by the Desikan-Killiany cortical atlas and the aseg subcortical atlas [25,27].  
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Subsequently, region of interest-level morphological measures were used for relative 

brain age estimation. Notably, the estimation of relative brain age can be based on 

various imaging modalities. We chose to implement it using regional brain 

morphology, as this method is both common and computationally feasible for the 

scale of our study [10]. Hence, the implemented measure captures the morphology of 

an individual brain in comparison to the population average: a positive relative brain 

age score represents advanced biological brain age, i.e., an “older appearing brain” 

compared to age-matched peers, whereas a negative relative brain age score 

indicates a relatively younger biological brain age [28]. Importantly, relative brain age 

represents a variation of the commonly used brain age gap, i.e., the difference 

between chronological age and the predicted biological age from neuroimaging data 

(predicted age), also referred to as brainAGE or brain predicted-age difference score 

(brainPAD) [10]. Due to regression dilution bias, this original brain age gap measure 

can be negatively correlated with chronological age [28,29]. Relative brain age 

addresses this ensuring orthogonality with chronological age [9,29]. Computations 

were performed leveraging julearn (v. 0.2.4) and scikit-learn (v. 0.24.1) [30]. First, 

predicted age was obtained by fitting an ordinary least squares regression model with 

cortical thickness and subcortical volumetric indices as features and chronological 

age as the target [23,25]. Fitting procedures were performed in a 5-fold cross-

validation (see supplementary table S3 for prediction scores). In a second step, 

expected age was determined by fitting a separate linear model, but this time using 

chronological age as the input feature and predicted age as the target. Finally, 

relative brain age was calculated as the difference between predicted and expected 

brain age.  

�������� 	
��� �� � �
������� �� � �������� �� 
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In accordance to previous procedures, predictions were performed separately for 

male and female participants [31]. For regression plots displaying orthogonality 

between relative brain age and chronological age see supplementary figure S4. 

 

2.4.2 White matter hyperintensity segmentation 

White matter hyperintensities of presumed vascular origin (WMH) indicate regions 

with severe age-related small vessel pathology. WMH segmentation was performed 

by applying FSL’s Brain Intensity AbNormality Classification Algorithm (BIANCA) – a 

fully automated, supervised machine learning approach for WMH detection based on 

k-nearest neighbor classification – to FLAIR and T1w images [32]. WMH load was 

calculated as the ratio of WMH volume to intracranial volume computed via 

FreeSurfer and logarithmized to ensure a normal distribution following previous 

procedures [33]. 

 

2.4.3 Peak width of skeletonized mean diffusivity 

The PSMD is a global marker of microstructural white matter integrity [34]. PSMD 

was calculated via diffusion tensor imaging based on preprocessed diffusion-

weighted images. First, diffusion tensors were modelled via a least-squares fit. From 

the resulting tensors, mean diffusivity maps were derived. Skeletonized maps of 

mean diffusivity were obtained following the tract-based spatial statistics (TBBS) 

procedure [35]. PSMD was calculated as the difference between the 95th and 5th 

percentiles of the MD voxel values within the skeleton [33]. 

 

2.6 Statistics 
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Visualization and statistical analysis were performed using Python (v. 3.9.7) 

leveraging julearn (v. 0.2.4), matplotlib (v. 3.3.4), numpy (v. 1.2.1), pyls (v. 0.0.1), 

pandas (v. 1.2.4.), pingouin (v. 0.5.0), scikit-learn (v. 0.24.1), seaborn (v. 0.11.1), 

statsmodels (v. 0.13.1), confounds (v. 0.1.3), proplot (v. 0.9.5). Results were 

considered significant at a p-value of < 0.05. To address multiple testing, reported p-

values were false discovery rate-corrected. Descriptive statistics of the UKB and 

HCHS involved calculation of mean and standard deviations.  

 

2.6.1 Partial least square correlation analysis 

PLS was leveraged to investigate the multivariate associative effects between 

imaging and behavioral markers. Prior to PLS, imaging and clinical variables were 

residualized against chronological age, sex and education for deconfounding. 

Associations between imaging and clinical variables to age before residualization can 

be found in supplementary figures S5 and S6. PLS was performed via pyls 

(https://github.com/rmarkello/pyls). For a detailed methodological description of PLS 

please refer to supplementary text S7 [18]. In brief, PLS identifies associative effects 

between two sets of variables by identifying latent variables maximizing their 

covariance. In case of the presented study, the relationship of imaging markers of 

brain aging (relative brain age, WMH load, PSMD) and clinical data (cognitive 

function, motor test results and chronological age, sex, education) was modeled. A 

latent variable consists of a singular value as well as loadings for both input domains 

respectively quantifying the contribution of imaging and clinical variables to the 

overall covariance profile represented by the latent variable. In a simplified 

perspective, PLS can be considered as a dual regression resulting in interpretable 

coefficients for both multivariable data domains – i.e., a many-to-many mapping 
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instead of a many-to-one mapping as provided by β coefficients in multiple 

regression. Significance testing of latent variables was performed by permuting 

subject labels of the imaging data domain and comparison of empirical singular 

values to the permuted distribution (npermutation = 5000). Robustness of individual 

singular vector loadings was assessed via bootstrap resampling (nbootstrap = 5000). 

Bootstrapping involves random resampling with replacement, yielding a distribution of 

loadings for each variable. This enables the computation of 95% confidence intervals 

for the clinical variables and a bootstrap ratio (�  
�������� 
���� �����

��������������� ������� �����
) for 

the brain imaging markers. The bootstrap ratio measures the robustness of a brain 

imaging markers contribution to the observed covariance pattern. A region with a 

robust contribution demonstrates a high loading alongside a small standard error, i.e., 

stability across bootstraps. For clinical variables, a confidence interval excluding 0 (0 

∉ [Confidence interval]) indicated significance. For imaging markers, a bootstrap ratio 

exceeding 1.96 or less than -1.96 for imaging markers was considered as significant. 

Furthermore, subject-level imaging and clinical PLS scores were calculated 

quantifying the extent an individual expressed the identified imaging or clinical 

covariance profile. For instance, a higher imaging score indicates a higher adherence 

of a participant to the respective differences in imaging markers of brain aging [5]. 

To enhance comparability with previous studies, we supplemented a linear 

regression analysis of the imaging and clinical variables associated in the PLS. 

Therefore, relative brain age, WMH load and PSMD were individually related to the 

cognitive and motor variables in linear regression analyses. All models were adjusted 

for chronological age, sex and education. Effect sizes were reported as standardized 

β estimates. 
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Unlike relative brain age computations, WMH load and PSMD calculations are 

absolute measures and do not quantify deviations from the population mean. To 

investigate the stability our results, we derived measures that quantify these 

deviations for WMH load and PSMD, aligning with the relative brain age concept. 

Essentially, we computed relative brain age measures but based on WMH load and 

PSMD instead of regional brain morphology to reflect deviations in CSVD burden and 

white matter microstructure. We then included these gap measures – termed WMH 

brain age and microstructural brain age – in place of the original absolute measures, 

alongside the initial relative brain age, in the PLS analysis. 

 

2.6.2 Mediation analysis 

To disentangle the complex interplay between vascular risk factors, cognitive function 

and motor performance, we performed a post-hoc mediation analysis enabling the 

examination of biological brain aging as a potentially relevant intermediary in this link 

[36]. For this analysis, we used the subject-level imaging score and clinical score 

resulting from the PLS. These scores can be interpreted as summary measures like 

factors or principal components from other dimensionality reduction techniques: The 

subject-level imaging score represents a data-driven summary measure of biological 

brain aging markers while the subject-level clinical score summarizes cognitive and 

motor performance. We tested the mediating effect of the subject-level imaging score 

on the association of vascular risk factors and the subject-level clinical score. The 

considered vascular risk factors included arterial hypertension (systolic and diastolic 

blood pressure), dyslipidemia (blood levels of cholesterol, HDL, LDL, triglycerides) 

and glycemia (blood glucose), obesity (waist-hip-ratio) and smoking (pack years). A 

mediation analysis decomposes the total effect of the vascular risk factors on the 
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subject-level clinical score into two components: (1) the direct, i.e., non-mediated, 

effect of vascular risk on the clinical score, and (2) the indirect effect, i.e., the 

proportion of the effect that can be attributed to the subject-level imaging score. An 

indirect effect was considered to mediate the relationship between vascular risk and 

clinical performance when a vascular risk factor was significantly associated with the 

mediator, the mediator was significantly associated with the subject-level clinical 

score and the link between a vascular risk factor and the subject-level clinical score 

was reduced (partial mediation) or became non-significant (full mediation) when 

controlling for the mediator. The presence of a significant mediating effect was 

determined using bootstrapping (nbootstrap=5000). Models were adjusted for 

chronological age, sex and education. Input variables to the mediation analysis were 

z-scored beforehand, so standardized effect measures are reported. 

 

3 Results 

The main manuscript reports results for the UKB. For details on HCHS results refer to 

the supplementary materials. 

3.1 Descriptive statistics of UKB and HCHS 

Application of exclusion criteria and quality assessment resulted in the exclusion of 

n=5,016 subjects in the UKB sample and n=155 subjects in the HCHS sample. The 

final analysis sample consisted of n=38,082 UKB subjects and n=2,497 HCHS 

subjects. For a more detailed overview of the sample selection procedure also refer 

to supplementary figure S8. Descriptive statistics are displayed in table 1. 

3.2 Imaging markers of biological brain aging are associated with 

cognitive and motor function 
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PLS was performed to map the multivariate associative effect pattern of imaging 

markers of biological brain aging, motor and cognitive performance measures within 

a single model. PLS revealed three significant latent variables (figure 2a) each 

representing a many-to-many mapping relating imaging and clinical markers. The first 

latent variable accounted for 94.7 % of shared variance and was thus further 

examined.  

Specifically, the first latent variable corresponded with a clinical covariance pattern of 

significantly worse cognitive and motor performance across all considered clinical 

variables (0 ∉ [95% confidence interval]; figure 2b), i.e., executive function, 

processing speed, memory, reasoning, hand grip strength and average acceleration 

(for details see supplementary table S9). Notably, cognitive domain scores of 

executive function and processing speed showed the strongest contribution to the 

covariance profile as indicated by the highest loading to the latent variable. 

Chronological age, sex and education did not significantly contribute to the 

covariance pattern (0 ∈ [95% confidence interval]) indicating sufficient effects of 

deconfounding. Regarding the imaging markers of biological brain aging, relative 

brain age ([boostrap ratio], 19.8), PSMD (12.8) and WMH load (12.4) exhibited a 

significant positive (>1.96) contribution to the covariance pattern (figure 2c). 

Therefore, a higher relative brain age, WMH load and PSMD corresponded with 

worse cognitive and motor performance. Of note, relative brain age contributed most 

strongly among investigated imaging markers as indicated by the highest bootstrap 

ratio. Subject-specific imaging and clinical scores were calculated that illustrate the 

subject-specific expression of the respective covariance profiles. For instance, a 

participant with a higher positive imaging score exhibits a higher agreement with the 

imaging covariance profile – i.e., higher relative brain age, WMH load and PSMD – 

and vice versa. Per definition, the scores are correlated (��� = 0.077, � <0.05, figure 
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2d) indicating that individuals expressing the clinical covariance pattern (worse 

cognitive and motor performance) also express the imaging pattern (higher relative 

brain age, WMH load, PSMD). This relationship was robust across a 10-fold cross-

validation (avg. ��� = 0.096 supplementary table S10). The PLS results remained 

stable when incorporating brain age gap measures based on WMH load and PSMD 

alongside relative brain age (see supplementary figure S11). A PLS including all 

individual cognitive scores instead of domain scores is shown in supplementary 

figure S12. 

In addition, we performed multiple linear regression analyses between individual 

imaging markers of biological brain aging as well as cognitive and motor 

performances confirming the associations suggested by the PLS. For multiple linear 

regression analysis results of the associations between individual clinical and 

imaging markers please refer to supplementary materials S13 and S14. Cross 

correlation matrices of imaging and clinical markers are shown in supplementary 

materials S15 and S16. The abovementioned results were reproducible in the HCHS 

sample. For details on the HCHS results refer to supplementary materials S17 – S25.  

3.3 Mediation analysis 

To investigate whether subject-level imaging scores mediate the relationship 

between vascular risk factors and subject-level clinical scores, we performed a post-

hoc mediation analysis (figure 3). We found the subject-level imaging scores to 

partially mediate the link between vascular risk factors and clinical scores. This held 

true for systolic blood pressure (ab = 0.004, ���� < 0.001; c’ = 0.025, ���� < 0.001; c 

= 0.029, ���� < 0.001), diastolic blood pressure (ab = 0.005, ���� < 0.001; c’ = 0.036, 

���� < 0.001; c = 0.041, ���� < 0.001), triglycerides (ab = 0.003, ���� < 0.001; c’ = 

0.065, ���� < 0.001; c = 0.068, ���� < 0.001), glucose (ab = 0.006, ���� < 0.001; c’ = 
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0.020, ���� < 0.001; c = 0.026, ���� < 0.001), waist-hip ratio  (ab = 0.009, ���� < 

0.001; c’ = 0.126, ���� < 0.001; c = 0.135, ���� < 0.001) and pack years (ab = 0.008, 

���� < 0.001; c’ = 0.064, ���� < 0.001; c = 0.072, ���� < 0.001). The links between 

the subject-level cholesterol, HDL cholesterol, LDL cholesterol and the clinical score 

were not significantly mediated. These results were reproducible in the HCHS except 

for systolic and diastolic blood pressure showing no significant link to the subject-

level clinical score (supplementary figure S26). 
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4 Discussion  

Understanding individual differences in aging trajectories is vital for informing 

strategies to maintain physical and cognitive health in mid and later life. In this work, 

we linked structural neuroimaging markers of biological brain aging with cognitive and 

motor test performances in two population-based samples with a total of 40,579 

individuals. We report on three main findings: (1) multivariate, data-driven statistics 

revealed a latent dimension of interindividual variation that linked advanced biological 

brain aging to lower cognitive and motor performance independent of chronological 

age, sex and education; (2) Vascular risk factors were significantly linked to PLS-

derived aggregate measures of both biological brain aging as well as cognitive and 

motor performance; (3) Biological brain aging mediated the link between the vascular 

risk factors and cognitive as well as motor performance. These results applied to both 

investigated subcohorts: the UKB (discovery cohort) and the HCHS (replication 

cohort). In essence, our study demonstrates a clear link between biological brain 

aging and cognitive as well as motor abilities which also mediates the association 

between common vascular risk factors and impaired cognition and motor functioning. 

4.1 PLS reveals a latent dimension integrating biological brain aging, 

cognition and motor function 

We applied multivariate, data-driven statistics in form of a PLS in two large-scale 

population-based studies to map associative effects of three different global imaging 

markers of biological brain aging, i.e., relative brain age, WMH load and PSMD, to 

multiple measures of cognitive and motor function. The PLS models an underlying 

latent relationship that represents a multivariate mapping between imaging and 

clinical markers. The analysis identified a dominant latent variable associating higher 
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markers biological brain aging with lower cognitive and motor scores, suggesting a 

direct link between increased biological brain aging and reduced performance in 

clinical tests. This variable accounted for 94.7% of the shared variance between 

imaging and clinical data, indicating a single axis of variation for the interplay 

between biological brain aging, cognitive and physical function. Bootstrapping of PLS 

results revealed that all biological brain aging markers as well as all clinical markers 

were significantly contributing to this association. Taken together, we interpret these 

findings as evidence that relative brain age, WMH and PSMD are considerably 

similar in their relationship to cognitive and motor performance and vice versa, i.e., 

the relationship is low dimensional.  This notion is plausible given previous work 

showing high covariance of the investigated imaging markers as well as covariance 

between cognitive and motor test performances [11,37,38]. 

4.2 Biological brain aging is associated to worse cognitive performance 

across domains 

Previous studies have individually connected single imaging markers of biological 

brain aging such as brain age gap, WMH, or PSMD with cognitive performance, yet 

the involvement of all cognitive domains is uncertain due to inconsistent findings 

[16,39,40]. Our results from PLS and multiple linear regression underscore that 

associations between brain aging and cognition are not confined to specific cognitive 

domains, a result likely attributable to our study's ability to robustly detect subtle 

effects due to a large sample size. This aligns with previous research showing 

widespread influence of WMH and brain age gap measures across key cognitive 

areas [15,41]. An alternative hypothesis could be that the observed covariance in 

domain-specific cognitive tests stems from their shared reliance on certain cognitive 

functions, such as memory tests also tapping into attention and executive function. 
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Importantly, while all cognitive domains were found to be associated with brain aging, 

our findings highlight executive function and processing speed as the most strongly 

affected areas, consistent with existing literature linking age-related brain changes to 

declines in these faculties [5,42]. Furthermore, these results corroborate past studies 

connecting WMH and PSMD to specific impairments in executive function and 

processing speed, characteristic of cerebral small vessel disease [40,43].  

4.3 Imaging markers of brain aging link to motor performance 

Turning to motor function, we could show that imaging markers of biological brain 

aging link to motor performance, notably hand grip strength and physical activity 

measured via accelerometry, though the correlation was weaker than with cognitive 

function. The association between biological brain aging markers and motor function 

is less documented than that with cognitive measures; however, this link is supported 

by the known relationship between motor skills and cognition in mid to later life 

indicating shared variance [44]. Our findings align with previous studies 

demonstrating a negative correlation between brain aging and motor performance, 

specifically with hand grip strength and physical activity [45,46]. 

Pathomechanistically, older adults engage a more widespread network of brain areas 

for motor control, particularly the prefrontal cortex and basal ganglia, which are highly 

susceptible to aging [47]. This could lead to a mismatch in neural resource allocation. 

Moreover, decreased physical activity may both result from and contribute to 

biological brain aging. Given the neuroprotective benefits of physical exercise, a lack 

of it might increase the risk for onset and progression of neurodegenerative 

processes, highlighting an opportunity for targeted interventions [48]. 

4.4 Biological brain aging mediates the link between vascular risk, 

cognition and motor function 
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Vascular risk is a key modifiable factor influencing brain structure and function, with 

higher risk linked to poorer structural brain integrity and cognitive performance 

[18,49]. We examined the role of biological brain aging in mediating the relationship 

between vascular risk factors and cognitive/motor performance in a mediation 

analysis. Our findings show significant links between vascular risk factors (such as 

hypertension, dyslipidemia, glycemia, obesity, and smoking) and clinical PLS scores, 

which represent the overall adherence to the identified clinical covariance pattern - 

i.e., worse performance. This association was statistically mediated by the imaging 

PLS score, which captures the degree of biological brain aging. This implies that the 

association between vascular risk and cognitive as well as motor abilities is 

contingent on variations in biological brain aging markers, highlighting the importance 

of macrostructural and microstructural brain changes in clinical sequelae of age-

related cerebrovascular disease [18,50]. Our results elucidate the connections 

between vascular risk and both structural and functional brain health, suggesting 

clinical applications. Modifying vascular risk through prevention and treatment could 

potentially mitigate biological brain aging. Future approaches could involve using 

brain imaging to tailor therapies and identify individuals most likely to benefit from 

interventions aimed at reducing cognitive and motor decline. 

4.5 Strengths and limitations 

Strengths of this work lie in its large sample size, which minimizes the overestimation 

of effects and enhances reproducibility [17]. Further strengths include the replication 

of findings in an independent sample, advanced neuroimaging and statistical 

techniques, and comprehensive cognitive phenotyping. However, there are 

limitations to this study. These include the cross-sectional study design, which limits 

causal interpretability. Longitudinal data would provide more definitive insights into 
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these associations. Additionally, while the effect sizes observed were statistically 

significant, they were modest. It is important to note that these effect sizes were 

calculated after adjusting for chronological age, a major influencer of variance in 

cognitive and motor functions in population-based studies. Chronological age did not 

significantly influence the observed associative patterns, indicating that our analysis 

effectively isolated the impact of biological brain aging markers on motor and 

cognitive performance. 

4.6 Conclusion 

Drawing upon a comprehensive neuroimaging analysis, our research converges on a 

dominant latent dimension of interindividual differences that links biological brain 

aging to cognitive and motor performance. Our findings highlight the role of vascular 

risk factors in contributing to accelerated brain aging and worse cognitive and motor 

performance, advocating for the implementation of effective preventive strategies for 

upholding functional independence up until higher age. 
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Tables 

Demographics and 

vascular risk factors 
UKB (n = 38,082)a HCHS  (n = 2,497) a 

Age, years 63.7 ± 7.6 63.79 ± 8.3 

Sex, % female 50.2 44.13 

Education, ISCED 4.5 ± 1.3 2.43 ± 0.6 

Pack years 18.8 ± 15.7 8.09 ± 17.4 

Waist-hip ratio 0.9 ± 0.1 0.94 ± 0.09 

RRsystolic, mmHg 138.6 ± 18.6 141.41 ± 19.5 

RRdiastolic, mmHg 78.7 ± 10 82.64 ± 10.1 

Cholesterol, mmol/l 5.7 ± 1.1  5.43 ± 1.1 

LDL, mmol/l 3.6 ± 0.8 3.15 ± 1 

HDL, mmol/l 1.5 ± 0.4  1.66 ± 0.5 

Triglycerides, mmol/l 1.6 ± 1 1.36 ± 0.8 

Glucose, mmol/l 5.0 ± 1 5.38 ± 1.1 

Imaging markers   

Relative brain age -0.01 ± 3.8 -0.001 ± 4.6 

PSMD, 10-4 mm²/s 2.29 ± 0.4 2.26 ± 0.3 

WMH load, % 0.29 ± 0.4 0.17 ± 0.2 

WMH volume, ml 4.63 ± 5.5 2.56 ± 3.2 

Cognitive tests   

Numeric Memory Test 6.79 ± 1.3  

Trail Marking Test A, s 22.45 ± 8.1 39.92 ± 14.3 

Trail Marking Test B, s 57.13 ± 25.7 89.26 ± 38.3 

Matrix Pattern Completion 

Test 

8.03 ± 2.1  
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Fluid intelligence 6.66 ± 2.1  

Reaction time, s 0.59 ± 0.1  

Paired Associate Learning 

Test 

6.98 ± 2.6  

Tower Rearranging Test 9.97 ± 3.2   

Symbol Digit Substituion Test 19.06 ± 5.2  

Word List Recall Test  7.77 ± 1.8 

Multiple Choice Vocabulary 

Intelligence Test B 

 31.26 ± 3.6 

Animal Naming Test  24.85 ± 6.9 

Motor tests   

Mean hand grip strength, kg 30.3 ± 10.3 34.26 ± 10.6 

Average acceleration, milli-

gravity 

28.5 ± 7.8  

Timed Up And Go Test (s)  7.02 ± 1.7 

Table 1: Descriptive statistics.  Abbreviations: ISCED = International Standard 

Classification of Education, kg = kilogram, l = liter, mm = millimeters, mmHg = 

millimeter mercury, sec = seconds,  

aPresented as mean ± standard deviation. 
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Figures 

 
Figure 1. Methodology. a) Population-based data from the UK Biobank and Hamburg 

City Health Study were used including cognitive test scores, motor performance 
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scores, vascular risk measures and multimodal brain MRI. Three different measures 

of biological brain aging were derived from anatomical and diffusion-weighted MRI: 

WMH, PSMD and relative brain age. b) Imaging measures of biological brain age 

were related to cognitive and motor performance scores via partial least squares 

correlation analysis (PLS). PLS computes subject-specific scores (here imaging and 

clinical score), combining input data (X & Y) and respective loadings (U & V) through 

a linear combination. The loadings reveal the associative impact of the two input data 

domains, comparable to β-coefficients in linear regression. Together, subject-specific 

scores and loadings represent a latent variable. c) The interplay between biological 

brain aging, vascular health, as well as cognitive and motor performance was 

investigated in a post-hoc mediation analysis. We tested whether the relationship 

between different vascular risk measures and the clinical score – representing 

cognitive and motor performance, was statistically mediated by the imaging score – 

representing biological brain aging. Abbreviations: PSMD – peak width of 

skeletonized of mean diffusivity, WMH – white matter hyperintensities of presumed 

vascular origin,  
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Figure 2. Partial least squares correlation results. a) Overview of detected latent 

variables with the first latent variables explaining 94.7% of observed shared variance. 

b) Loadings of the clinical variable set consisting of cognitive and motor test results. 

Error bars indicate the 95% confidence interval obtained by bootstrap resampling. c) 

Bootstrap ratios of the imaging variable set. The vertical dashed line represents the 

significance threshold (bootstrap ratio > 1.96). d) Relationship of subject-level 

imaging and clinical scores.  Abbreviations: rsp – Spearman correlation, Log. WMH 

load – logarithmized white matter hyperintensity load, PSMD – peak width of 

skeletonized mean diffusivity.  
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Figure 3. Mediation analysis results. Mediation effects of subject-level imaging score 

on the relationship between vascular risk factors and subject-level clinical scores 

summarizing cognitive and motor performance. Path plots display standardized 

effects and p-values: (a) vascular risk factor to subject-level imaging score, (b) 

subject-level imaging sore to clinical score, (ab) indirect effect (c’) direct effect and (c) 

total effect. Significant paths are highlighted in blue; non-significant in light gray. If the 

indirect path was significant the text for ab is highlighted in blue. Abbreviations: pFDR 

– false discovery rate-corrected p-value.  
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