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Abstract: The influence of freezing on the protein profile and quality traits in bovine Longissimus
thoracic (LT) muscle was investigated by the data-independent acquisition (DIA) technique. Compared
to fresh meat, a total of 262 proteins were identified as differential abundance proteins (DAPs) in four
frozen groups (−12 ◦C, −18 ◦C, −38 ◦C, and −80 ◦C). According to the bioinformatics analysis, most
of the DAPs in the significant Go terms and the KEGG pathway were structure proteins and enzymes.
Proteome changes in the frozen bovine muscle at −12 ◦C and −18 ◦C were more significant than
those at −38 ◦C and −80 ◦C. The result was consistent with the deterioration trend of the meat quality.
The correlation analysis revealed that 17 proteins were correlated closely with the color, shear force,
thawing loss, and cooking loss of the frozen meat, which could be used as putative biomarkers for
frozen meat quality. MYO18A and ME3 are newly discovered proteins that are associated with frozen
beef quality. In addition, CTTN and SERPINB6 were identified in frozen groups, which exhibited a
significant inverse correlation with thawing loss (p < 0.01). These findings reveal the quality changes
induced by freezing at the protein molecular level and provide new insights into the control of
quality deterioration.

Keywords: protein profile; meat quality; freezing temperatures; data-independent acquisition (DIA)

1. Introduction

As a protein source, beef is an essential part of the human diet, and the demand for it
is increasing worldwide [1]. In China, beef consumption has increased by 55% over the last
ten years, accounting for 11% of global consumption, making China the world’s fastest-
growing beef importer [2,3]. However, due to its high protein content and nutritional
value, beef is easily perishable and has a short shelf life. In this sense, freezing has been
commonly adopted as the safest and most cost-effective method of meat preservation, used
in both the meat industry and in household kitchens, and it also plays a vital role in both
export–import and regional trade [4,5]. Furthermore, freezing effectively inhibits microbial,
endogenous enzymes, oxygen, and heat-induced biochemical activity, making it ideal for
extending meat shelf life [6,7]. Nevertheless, the quality deteriorates with the freezing,
including discoloration, poor texture, a decrease in the water-holding capacity (WHC), etc.,
which has resulted in massive economic losses for the meat enterprise [8,9]. Therefore,
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an exhaustive understanding of the physical and chemical changes caused by freezing is
critical for the meat industry.

Protein is the main component of meat. The changes in protein properties such as struc-
ture and functionality are often cited as the primary cause of frozen meat deterioration [10].
Proteomics techniques have been used over the last two decades to identify biomarkers and
illuminate the molecular mechanism of the protein change associated with the development
of meat quality [11], such as color [12], tenderness [13,14], and water-holding capacity in
early postmortem and meat processing [15–17]. The iTRAQ method was used to analyze
the changes in mud shrimp and razor clam muscle proteins during frozen storage [18,19].
Triosephosphate isomerase, troponin, and peroxiredoxin-6 were discovered as potential
biomarkers for long-term frozen Hengshan goat meat using label-free technology based
on high-throughput proteomics [20]. Two-dimensional gel electrophoresis (2-DE) was
used to make a distinction between the fresh and frozen–thawed pork [21]. However, all
these approaches are established on the well-known Date Dependent Acquisition (DDA)
methodology, which has the major disadvantage of losing information on low abundance
peptides for accurate quantification [22]. In contrast to the traditional methods, the emerg-
ing data-independent acquisition (DIA) strategy has provided a new dimensionality for
unlabeled quantitative proteomics [16]. The DIA mode divides the full mass range into
many successive windows and captures all precursors and fragments in each window while
keeping the low abundant ions with great repeatability and quantitative accuracy [22]. DIA
has been used successfully to study disease-related cell lines, tissue, plasma samples, and
meat processing [16,22,23]. Temperature is the most fundamental prerequisite for freezing,
and it significantly impacts the quality of frozen meat [7,8]. Unfortunately, there is no
systematic investigation of proteome modifications and molecular mechanisms related to
frozen beef’s physical and chemical properties from a temperature perspective using the
DIA method.

Thus, DIA-coupled LC-MS/MS technology was used in this study to reveal the
differential expressivity and bioinformatics changes of frozen-induced bovine muscle
protein and to identify the potential biochemical markers related to frozen beef quality.
These findings will help improve the quality of frozen beef by revealing more information
about the internal mechanisms that cause the quality of bovine Longissimus thoracic (LT) to
decrease at different freezing temperatures.

2. Materials and Methods
2.1. Sample Collection and Preparation

A total of nine bull (Simmental × Qinchuan, aged 48 months old, live weight 600 ± 25 kg)
were collected from the slaughterhouse (Beijing Zhuochen Animal Husbandry Co., Ltd.,
Beijing, China). Longissimus thoracic (LT) muscle samples were removed from the left
side of each cold carcass (2–4 ◦C) after 36 h postmortem and transported in the ice-
boxes within 4 h to the laboratory at the Institute of Food Science and Technology, Chi-
nese Academy of Agricultural Sciences. After trimming the visible adipose and connec-
tive tissues, each LT muscle was cut into 15 identical parts. Each steak had a 5.0 cm
thickness, a 3.0 × 3.0 cm cross-section, perpendicular to the fiber direction, and weighed
71.61 ± 2.25 g. Subsequently, every steak was wrapped in polyethylene film (O2 permeability
of 23,000 ± 40% cm3/m2/24 h/atm, CO2 permeability of 102,000 ± 40% cm3/m2/24 h/atm,
and a moisture permeability rate of 39 g ± 40%/m2/24 h/atm). The 15 steaks from each
LT muscle were equally assigned to the fresh group (CON), and four freezing treatments
(−12 ◦C ± 0.5 ◦C, −18 ◦C ± 0.5 ◦C, −38 ◦C ± 0.5 ◦C, and −80 ◦C ± 0.5 ◦C), and each group
contained nine biological replicates. After the center temperature reached the desired level,
meat samples were kept at that level for 48 h, and then thawed to a central temperature
of 4 ◦C ± 0.5 ◦C and kept in balance for 24 h. Approximately 5 g of minced samples were
immediately frozen in liquid nitrogen and stored at −80 ◦C for proteomics analysis. The
others were performed for measurements of quality.
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2.2. Meat Quality Determination

To assess meat quality, the color, shear force, thawing, and cooking loss were de-
termined. The thawing loss was calculated by comparing the meat quality before and
after thawing according to the method of [24]. The surface CIE (L*, a*, and b*) values
were measured by a chroma colorimeter (CM-600D, Illuminant D65, 100 viewing angle,
2.54 cm diameter aperture, Konica Minolta Sensing Americas Inc., Ramsey, NJ, USA). The
lightness (L*), redness (a*), and yellowness (b*) were recorded in the manner recommended
by [25]. Shear force values were determined using the C-LM3 digital meat tenderness
meter (Tenovo International Co., Limited, Beijing, China) in accordance with [26]. In brief,
each muscle sample was cooked inside the cooking bag in a water bath at 80 ◦C until
the core temperature reached 72 ◦C, then cooled to room temperature. Before and after
cooking, the difference in quality was used to calculate the cooking loss [26]. After that, six
cores (1 × 1 × 2 cm) were removed from each treatment sample parallel to the muscle fiber
direction. The cross-head speed of the knife blade was 5 mm/s. The output was listed in
grams (g).

2.3. Protein Extraction and Digestion

Figure 1 depicts the experimental design and workflow. DIA proteomics analyses
were performed in the manner described by [16,23], with minor modifications. A sample
pooling strategy was used for the proteomic study. Minced meat gathered from 3 indi-
vidual LT muscles were combined as one replicate, with 3 replicates per treatment. Each
pooled sample (1 g) was dissolved in the lysis buffer containing 1% SDS, 8.0 M urea, and
1 × protease inhibitor cocktail, vibrated and milled for 400 s, repeating this procedure three
times, and then lysed for 30 min in an ice-cold bath. The supernatant was collected and
stored at −80 ◦C after 15 min of centrifugation at 4 ◦C and 21,500× g. Protein concentration
was determined via the BCA Protein Assay Kit (cat. no. P0010, Beyotime Institute of
Biotechnology, Shanghai, China) following the manufacturer’s instructions.

Protein extracts (100 µg) were diluted to the final volume of 100 µL with 8 M urea.
Then, the protein was reduced at 37 ◦C for 1 h using 2 µL 0.5 M Bond-Breaker TCEP
Solution (cat. no. 646547-10* 1 ML, SIGMA, New York, NY, USA), and the cysteines were
alkylated for 40 min at room temperature in the dark with 4 µL iodoacetamide (IAA, 1M).
The proteins were then precipitated overnight at −20 ◦C using five portions of prechilled
acetone. The solution was centrifuged at 12,000× g for 20 min at 4 ◦C, and the precipitates
were washed with 1 mL 90% prechilled acetone before being redissolved in 100 µL of
100 mM TEAB solution (this step was repeated two times). Each sample was digested
with trypsin (cat. no. V3155, Promega, Madison, WI, USA) in a 1:50 ratio and incubated
overnight at 37 ◦C. The desalted peptide mixture was accurately measured using the
PierceTM Quantitative Colorimetric Peptide Assay (cat. no. 23275, Thermo Fisher Scientific,
Waltham, MA, USA) before being freeze-dried for further analysis.

2.4. Spectral Library Generation
2.4.1. High-pH Reversed-Phase Separation

Tryptic-digested peptides were redissolved in 0.1% Trifluoroacetic acid (cat. no. 302031-
100 ML, SIGMA) and then fractionated by high-pH separation using the Pierce High pH
Reversed-Phase Peptide Fractionation Kit (cat. no. 84868, Thermo Fisher Scientific). A
linear gradient of acetonitrile ranging from 5% to 50% was used to separate high pH
solutions. Next, the eluted peptides were divided into 8 fractions and freeze-dried in a
vacuum concentrator for the next step.



Foods 2022, 11, 1791 4 of 18Foods 2022, 11, x FOR PEER REVIEW 4 of 17 
 

 

 
Figure 1. Experimental design and workflow for quantitative proteomic analysis of beef using DIA 
technology. 

2.4. Spectral Library Generation 
2.4.1. High-pH Reversed-Phase Separation 

Tryptic-digested peptides were redissolved in 0.1% Trifluoroacetic acid (cat. no. 
302031-100 ML, SIGMA) and then fractionated by high-pH separation using the Pierce 
High pH Reversed-Phase Peptide Fractionation Kit (cat. no. 84868, Thermo Fisher Scien-
tific). A linear gradient of acetonitrile ranging from 5% to 50% was used to separate high 
pH solutions. Next, the eluted peptides were divided into 8 fractions and freeze-dried in 
a vacuum concentrator for the next step. 

2.4.2. Nano-HPLC-MS/MS Analysis for DDA and DIA Analysis 
The analysis was performed using an online nanospray LC-MS/MS on an Orbitrap 

FusionTM LumosTM TribridTM coupled with an EASY-nLC 1200 system (Thermo Fisher Sci-
entific, MA, USA). For the DDA analysis, the peptide fractions were redissolved in mobile 
phase A (0.1% formic acid in water). First, 5 μL peptide solution was injected onto an 

Figure 1. Experimental design and workflow for quantitative proteomic analysis of beef using
DIA technology.

2.4.2. Nano-HPLC-MS/MS Analysis for DDA and DIA Analysis

The analysis was performed using an online nanospray LC-MS/MS on an Orbitrap
FusionTM LumosTM TribridTM coupled with an EASY-nLC 1200 system (Thermo Fisher
Scientific, MA, USA). For the DDA analysis, the peptide fractions were redissolved in
mobile phase A (0.1% formic acid in water). First, 5 µL peptide solution was injected onto
an analytical column (Thermo Fisher Scientific Acclaim PepMap C18, 75 µm × 25 cm) for
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separation at a flow rate of 250 nL/min at 40 ◦C. Then, the supernatant was eluted with
a linear gradient from 4% to 95% mobile phase B (0.1% formic acid in acetonitrile) for
130 min. The MS parameters were set to operate one full scan from m/z 350 to 1500 with a
resolution of 120,000, and the HCD-MS/MS scans were performed at a resolution of 30,000
with an isolation window of 4. The automatic gain control (AGC) value was set to 8 × 105

for M and 5 × 104 for MS/MS with a maximum injection time of 50 ms (MS) and 86 ms
(MS/MS), respectively. The precursor ions were fragmented at collision energies of 25%,
30%, and 35%.

Concerning DIA analysis, 1 µL 10 × iRT peptides (Ki3002, Biognosys AG, Schlieren,
Switzerland) were combined with redissolved solution (9 µL) and separated using the
same nano-LC system and gradient as for DDA analysis. The mass spectrometer was set
to DIA mode, which automatically alternated between MS and MS/MS modes. The full
mass values ranged from 350 to 1200 m/z (AGC 1 × 106, 100 ms maximum injection time),
with a 120,000 resolution. In addition, HCD-MS/MS was programmed with a resolution of
30,000, an AGC target of 1 × 105, and a collision energy of 33.

2.4.3. Database Search and Analysis

Spectronaut 13 (Biognosys AG) was used on all raw DDA data files to produce an
initial list of protein targets filtered to a 1% protein-level false discovery rate (FDR). The
files were searched against a database of Bos Taurus with 23,858 entries. DIA data were
analyzed by the BGS Factory Setting (default) of Spectronaut 13, which uses the iRT
peptides for retention time calibration. The decoy generation was set to “mutated”, and at
the precursor and protein levels, 1% FDR was used. In short, all selected precursors that
passed the filters were quantified. Except for the 3 least interfering ions, MS1 will remove
all interfering fragment ions. The major group quantities were computed using the average
of the top three filtered peptides that passed the 1% Q value cutoff. Following the Welch’s
ANOVA Test, differentially expressed proteins were filtered if their p-value < 0.05 and fold
change > 1.3.

2.5. Parallel Reaction Monitoring (PRM)

The protein expression levels measured by the DIA technology were validated using
the PRM approach. SpectroDive 9.10 was used to analyze the raw data. The Q-value cutoff
on the precursor was set at 1%. Protein amounts were calculated by taking the average of
the filtered peptides.

2.6. Bioinformatics and Statistical Analysis

Gene Ontology (GO) annotations were performed using the Blast2 GO version 5 soft-
ware to obtain a functional classification of the differentially abundant proteins. The
function classification of EuKaryotic Orthologous Groups (KOGs) was accomplished
through the phylogenetic classification of proteins encoded in complete genomes (NCBI,
http://www.ncbi.nlm.nih.gov/, accessed on 7 September 2021). The pathways annotation
of proteins was elucidated based on the Kyoto Encyclopedia of Genes and Genomes (KEGG)
using the KOBAS (http://kobas.cbi.pku.edu.cn/, accessed on 15 October 2021). STRING
v 11.5 software (http://string-db.org/, accessed on 12 December 2021) was applied to
process the protein–protein interaction network.

R software was used to perform principal component analysis (PCA), partial least
squares discrimination analysis (PLS-DA), hierarchical cluster analysis (HCA). Furthermore,
Pearson correlation coefficient analysis between the differentially abundant proteins and
meat quality was also completed using R software. The data of meat quality were analyzed
by SPSS.20.0 software. PRM data was analyzed and graphed with the GraphPad Prism 9
software. Statistical analysis was made with the one-way analysis of variance (ANOVA)
and Tukey’s multiple comparisons test at 5% of significance. All results were expressed as
means ± standard deviations (SD) and p < 0.05 was considered significant.

http://www.ncbi.nlm.nih.gov/
http://kobas.cbi.pku.edu.cn/
http://string-db.org/
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3. Results and Discussion
3.1. Meat Quality of the Beef Samples

There was marked variation in meat quality from different frozen temperatures, and
the main factors, including color, thawing loss, cooking loss, and shear force, are shown in
Table 1. The results indicated that freezing significantly impacted the meat color, which
corroborates the previous research findings [6]. Frozen/thawed samples of −12 ◦C group
were shown to be lighter (higher L*, p < 0.05) than the fresh samples, which could be owing
to myofibril contraction resulting in increased water flow onto the muscle surface and
greater light reflection [10]. Additionally, with the decrease in the freezing temperature,
L* values decreased gradually, with no significant difference among the frozen groups
(p > 0.05). The a* values declined significantly in the frozen group muscles compared with
the CON (p < 0.05). The oxidation of myoglobin to MetMb, which was accelerated by the
high freezing temperatures, was linked to lowering a* levels [9]. This was consistent with
the findings of Qian et al. [26], who confirmed the a* values deteriorated less under ultra-
fast freezing conditions. Regarding the b* values, there was an increase in the frozen group
muscle compared with the CON. This could be related to the degree of lipid oxidation, the
denaturation of myoglobin, and metmyoglobin formation during the freezing process [27].
Freezing affected the degree of protein and lipid oxidation as well as the redox ability of
enzymes [6]; low freezing temperatures could also limit color deterioration.

The water-holding capacity (WHC) was characterized as thawing loss and cooking
loss in this study. As expected, a decreasing trend in thawing loss and cooking loss can
be observed with the decrease in the freezing temperatures. The thawing loss of the
−12 ◦C sample was significantly higher (p < 0.05) than that of the −18 ◦C, −38 ◦C, and
−80 ◦C samples (Table 1), most likely due to the significant breakdown of the muscle
fiber architecture and protein denaturation that occurred at −12 ◦C freezing temperatures.
Therefore, meat with low cooking loss may have a better eating quality. The influence of
different freezing temperatures on the cooking loss of the samples is presented in Table 1.
As shown, the cooking loss was significantly lower in the CON group than in the frozen
groups (p < 0.05). Moreover, the higher freezing temperatures (−12 ◦C and −18 ◦C) were
associated with higher cooking losses. The shear force significantly decreased (p < 0.05)
after freezing and it also exhibited similar trends to the WHC among the −12 ◦C, −18 ◦C,
−38 ◦C, and −80 ◦C groups. This is also in good agreement with the results of Lagerstedt
et al. [7]. They hypothesized that ice crystal formation and growth during freezing stresses
muscle fibers, causing severe fiber damage, affecting the shear force and the WHC.

Table 1. Quality characteristics of beef in fresh control (CON) and different frozen treatments (−12 ◦C,
−18 ◦C, −38 ◦C, −80 ◦C).

Attribute CON −12 ◦C −18 ◦C −38 ◦C −80 ◦C p-Value

L* 38.05 ± 0.51 b 40.06 ± 0.70 a 39.59 ± 1.81 ab 39.17 ± 0.90 ab 39.04 ± 0.79 ab 0.034
a* 15.38 ± 0.71 a 12.94 ± 0.34 c 13.40 ± 0.18 c 14.42 ± 0.28 b 14.47 ± 0.24 b <0.001
b* 11.66 ± 1.38 c 13.19 ± 0.23 a 12.78 ± 0.39 ab 12.03 ± 0.12 bc 11.75 ± 0.18 bc 0.001

Thawing
Loss/% – 10.50 ± 0.84 a 8.83 ± 0.75 b 7.67 ± 0.52 bc 7.17 ± 0.7 c <0.001

Cooking
Loss/% 28.28 ± 2.12 c 34.0 ± 26 a 32.33 ± 2.34 ab 30.33 ± 3.14 abc 29.83 ± 172 bc 0.001

Shear Force/kg 7.81 ± 0.69 b 10.72 ± 0.52 a 9.94 ± 0.64 a 8.36 ± 0.57 b 8.22 ± 0.58 b <0.001

All the values are presented as means ± SD, n = 6. Different letters, a–c, represent the significance between the
different treatments. p < 0.05 was considered significant.
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3.2. Protein Profiling in Fresh and Frozen Samples

DIA technology was used to investigate the protein profile changes of beef muscle in
the fresh (CON) and frozen groups (−12 ◦C, −18 ◦C, −38 ◦C, and −80 ◦C). In general, a
total of 32,416 precursors were obtained, which were matched to 32,005 unique peptides
and 2287 protein groups with 1.0% FDR (Supplementary Tables S1 and S2). A total of
2610 proteins were used for quantitative analysis. To better visualize the aggregation and
dispersion of the proteins among the four groups, PCA and PLS-DA were used in this
study. Based on the first two principal components, there was a clear separation between
both the CON and each treatment group (Figure 2A), which indicated that freezing could
remarkably alter the protein expression level of the beef samples. Among all the identified
proteins, 262 displayed significant differences in expression levels when filtered with a
fold change > 1.3 and a p-value < 0.05 in −12 ◦C/CON, −18 ◦C/CON, −38 ◦C/CON,
and −80 ◦C/CON, as shown in Supplementary Table S3. Following statistical analysis,
volcano plots displayed the differentially abundant proteins (DAPs) between each frozen
group and CON (Figure 2B). DAPs were found to be 109 between −12 ◦C and CON
(59 downregulated and 50 upregulated), 79 between −18 ◦C and CON (43 downregulated
and 36 upregulated), 81 between −38 ◦C and CON (37 downregulated and 44 upregulated),
and 78 between −80 ◦C and CON (39 downregulated and 39 upregulated) (Figure 2B,C).
More significant amounts of DAPs, in the comparison between the −12 ◦C/CON and the
other three temperatures, indicated many more variations in the protein profile of the beef
stored at −12 ◦C. These results were consistent with the quality changes.

The top ten most noticeably up- or downregulated proteins were CTTN, STAT3, EIF3G,
THYN1, PDXP, SARS2, TBCC, and GAA. As shown in Supplementary Table S3, the most
significantly downregulated protein was TBCC, which was found in the −80 ◦C/CON group,
while SARS2 was the most significantly upregulated protein, which occurred at the
−38 ◦C/CON condition. Moreover, CTTN (cortactin), a member of the actin-binding
protein family that regulates the structure of the actin cytoskeleton, was the protein shared
by the −12 ◦C, −38 ◦C, and −80 ◦C treatments. The changes in cortactin might affect
the contraction of myofibrillar protein and further lead to quality deterioration [17]. Hier-
archical cluster analysis (HCA) was performed to visually display the expression of the
DAPs in each treatment. The dynamic changes of the DAPs were presented in Figure 2D.
The change in the content of the differentially expressed proteins from high to low was
represented by the color scale from red to purple. Colors in different freezing temperature
groups were significantly different, confirming that the freezing temperature had the most
significant influence on the DAP profile in the beef samples.

The top 10 highest abundance proteins among the fresh and frozen treatments included
MYH1, TNNT3, MYH13, ENO3, TPM1, ACTN3, ATP2A1, PSMD7, ATP5F1B, and PGM1.
As can be seen in Figure 2D, all the proteins occurred at −12 ◦C except for PSMD7, which
changed in the −80 ◦C group. Myosin is an actin-based motor protein that uses ATP
hydrolysis energy to move actin filaments and generate force [28]. It is essential for muscle
organization, structure, and function. The structural integrity of muscle fibers may be
damaged if a heavy chain of myosin is oxidized [29]. Myosin-1 (MYH1), a myosin family
member that can connect to actin filaments and cellular membranes at the same time and is
involved in muscle contraction [12], was found to be the most abundant protein in this study.
Gagaoua et al. [30] also reported MYH1 in their review of beef color biomarkers. Myosin
heavy chain (MYH13), a TRAFAC class myosin–kinesin ATPase superfamily member, plays
a critical role in muscle structure and calcium ion binding [31]. Troponin T3 (TNNT3) was
also reported as a structural protein and significantly associated with meat tenderness [32].
In addition, tropomyosin alpha-1 chain (TPM1) and alpha-actinin-3 (ACTN3), known as the
binding protein, played a central role in muscle contraction and calcium ion binding [14].
According to the previous studies, a few remaining proteins were identified as metabolic
enzymes and participated in the glycolysis (ENO3, PGM1), energy metabolism (ATP5F1B),
the regulation of calcium ion (ATP2A1), and cellular processes such as cycle progression
and apoptosis [20].
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(B) Volcano plots showing differential abundance proteins (DAPs) in the beef muscle of −12 ◦C/CON,
−18 ◦C/CON, −38 ◦C/CON, and −80 ◦C/CON comparisons. (C) Venn diagrams representing the
overlap of DAPs from the −12 ◦C/CON, −18 ◦C/CON, −38 ◦C/CON, and −80 ◦C/CON compar-
isons. (D) Hierarchical cluster analysis of differential abundance proteins (DAPs) in the beef muscle
of different treatments compared with CON. (In PCA score plots, PLS-DA score plots, and Venn
diagrams, A represents CON; B represents −12 ◦C; C represents −18 ◦C; D represents −38 ◦C; and E
represents −80 ◦C.)

3.3. GO, KOG, and KEGG Pathway Analysis of DAPs

GO analysis was applied to investigate the potential functions of 262 DAPs under
various freezing temperature conditions. Based on the analysis, there were 911 items of
biological process, 242 items of molecular function, and 150 items of cellular component
between the frozen group samples and the CON comparison (Supplementary Table S4).
Figure 3A presents the top 20 enriched GO terms for these DAPs. In the biological process,
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the DAPs were mainly distributed in the cellular (74.81%), metabolic process (50.38%), cel-
lular metabolic (45.80%), localization (27.86%), and regulation of biological quality (22.90%).
Proteins with the cellular component were mainly located in the cell part (75.95%), intracel-
lular (73.28%), cytoplasmic (58.40%), organelle (48.47%), and intracellular organelle part
(47.71%). Regarding the molecular function, most DAPs were involved in the binding and
activity process, mainly including binding (68.70%), protein binding (44.27%), cytoskeletal
protein binding (12.21%), catalytic activity (49.24%), hydrolase activity (23.28%), and so
on. These results were comparable to those obtained by Jia et al. for Hengshan goat
during freezing storage [20]. This suggests that freezing significantly affects protein func-
tion. In fact, there were fewer GO change terms in the −18 ◦C/CON, −38 ◦C/CON, and
−80 ◦C/CON groups (649, 778, and 697 categories, respectively) than in the −12 ◦C/CON
(888 categories) (Supplementary Table S5), implying that lower freezing temperatures had
less of an impact on the protein functions.

As shown in Figure 3B, the KOG database was used to annotate and predict the func-
tional classification of differential proteins based on sequence similarity. Notably, a total of
25 categories were identified based on the statistical analysis. The number of upregulated
proteins in energy production and conversion, amino acid and lipid transport metabolism,
protein turnover, chaperones, general function prediction only, and cytoskeleton were
higher than the downregulated proteins. Additionally, the number of proteins involved
in the chromatin structure and dynamics, transcription, recombination and repair, sec-
ondary metabolites biosynthesis, and extracellular exhibited increasing trends, whereas
the coenzyme transport and metabolism, membrane biogenesis, and cell motility showed
decreasing trends. The top three function classes were the general function prediction
only, cytoskeleton, and post-translational modification, protein turnover, and chaperones.
This was consistent with the findings of Song Yu et al. [16], indicating that, regardless
of whether meat is processed at a low or high temperature, the protein function will be
affected, particularly its structural function.

KEGG pathway enrichment was performed in this study to further analyze the bio-
logical processes and functions of the DAPs in response to the frozen treatment. Among
the 262 DAPs, a total of 210 KEGG pathways were matched, and those with p < 0.05 were
regarded as significantly enriched pathways (Supplementary Table S6). Compared with
the CON, the 20 pathways with the highest p-values are presented in Figure 3C. DAPs
were shown to be enriched in the metabolism (metabolic, oxidative phosphorylation, fatty
acid metabolism, carbon metabolism, and glycolysis/gluconeogenesis), genetic informa-
tion processing (proteasome), environmental information processing (AMPK signaling
pathway), and cellular processes (tight junction and focal adhesion pathway). In-depth
analysis indicated that the pathways with the highest p-values in the −12 ◦C/CON compar-
ison were also mainly metabolic pathways, followed by oxidative phosphorylation, tight
junction, and glycolysis/gluconeogenesis. As shown in Supplementary Table S6, seven
proteins (SDHA, NDUFA13, NDUFA6, NDUFB9, NDUFS7, ATP5F1B, and NDUFA11)
participated in the oxidative phosphorylation under the −12 ◦C/CON group. Previous
studies confirmed that oxidative phosphorylation is the main pathway that produces ATP
in mitochondria and is related to meat quality [33]. The downregulation of these proteins
shown in the −12◦C group might be the main reason for their significantly lower quality
compared to −18 ◦C, −38 ◦C, and −80 ◦C. In addition, TECR, ACADVL, FASN, and HADH
were identified in the −12 ◦C group, and these four proteins participated in fatty acid
metabolism, fatty acid elongation, degradation, and biosynthesis pathways. The metabolic
pathway at −18 ◦C was essentially the same as −12 ◦C, focusing on the structure and
energy metabolism pathways, such as endocytosis, the regulation of actin cytoskeleton,
focal adhesion, and glycolysis/gluconeogenesis (Table S6). Jia et al. [20] and Hou et al. [15]
reported that adhesion maintained the integrity of muscle cells and influenced the forma-
tion of drip channels, which could affect the quality of the meat. Redox stability myoglobin
is significantly affected by glycolysis [11]. This may account for the significant difference in
the a* value between the −12 ◦C group and the other groups. The tight junction and the



Foods 2022, 11, 1791 10 of 18

AMPK signaling pathways were the primary pathways at −38 ◦C, but the AMPK and FoxO
signaling pathways dominated at −80 ◦C. PRKAG1, FASN, PRKAB1, and MAPK9 were
upregulated in the −80 ◦C group and participated in these two signaling pathways, which
inhibited the energy-consuming biosynthetic pathways while activating the ATP-producing
catabolic pathways, regulating oxidative phosphorylation, glucose metabolism, apoptosis,
and oxidative stress [34].
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3.4. Protein–Protein Interaction Analysis

String 11.5 was used for the protein–protein interaction (PPI) analysis to comprehen-
sively understand the functions and relationships of these differentially expressed proteins
in four comparable groups. As seen in Figure 4A, the PPI enrichment p-value < 1.0 × 1016

and the local clustering coefficient was 0.397. Most of these proteins attended the metabolic
pathways in our study. Meanwhile, the close connection of NDUFA11 with COX5A, ND-
UFA13, NDUFV3, NDUFB9, NDUFS7, UQCRH, SDHA, and ATP6 indicated that these
proteins regulated the oxidative phosphorylation of thawed muscle together, whereas
proteins (CTTN, ACTN1, and ACTR2) involved in the tight junction pathway interacted.
Yu et al. [12] reported that the protein subunits of complex I, complex II, and complex IV
of the mitochondrial electron transfer chain might well be linked to beef discoloration.
Proteins (ADRM1, PSME1, PSMB3, PSMD8, and PSMD7) participated in the proteasome
pathway. In addition, proteins (ACADL, FASN, HADH, ACADVL, and TECR) that were
implicated in fatty acid metabolism interacted strongly with each other. However, it can be
noticed that the changes of the main functions and metabolic pathways (such as oxidore-
ductase activity, cytoskeletal protein binding in the MF, and the oxidative phosphorylation
pathway) of all the DAPs at −12 ◦C and −18 ◦C were greater than that at −38 ◦C and
−80 ◦C. This result was consistent with the GO, KOG, and KEGG pathway analysis results.
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3.5. Correlations between DAPs and Meat Quality

Pearson correlation analysis was used to examine the possible connection between
262 DAPs and meat quality attributes (thawing loss, cooking loss, shear force, and color)
under various conditions (CON, −12 ◦C, −18 ◦C, −38 ◦C and −80 ◦C). Among them, 90
overlapping DAPs showed a significant (p < 0.05) correlation with at least one quality
indicator (Supplementary Table S7). The proteins with r > 0.60 and p < 0.05 were shown in
Figure 4B.

3.5.1. Structure Proteins

Structure proteins (MYH, TNNT, ACTN3, and MYBP) were found to be the most
abundant proteins in beef that had a positive or negative correlation with the meat qual-
ity [12,14,35,36]. Similar results were obtained in our work. There were nine-, seven-,
three-, and three-structure proteins associated with the color, shear force, thawing loss, and
cooking loss, respectively (Figure 4B). Most of these proteins were involved in the tight
junction, actin cytoskeleton regulation, and focal adhesion pathways. This is consistent
with previous research [4], which suggested that protein contractile properties may influ-
ence the correlation between protein and quality traits. In contrast to previous studies
that found structural proteins more related to tenderness, they were primarily associated
with color in this study. Holman et al. [10] also confirmed that muscle fiber shrinkage
impacts the achromatic light scattering properties. As shown in Supplementary Table S7,
myosin-1(MYH1) presented a negative correlation with the a* values (r = −0.708; p = 0.003)
and was positively related to the shear force (r = 0.614; p = 0.015). This result was in line
with the research of Yu et al. [12], who reported that MYH1 was negatively correlated with
the a* value of Holstein beef muscle during postmortem storage. According to Shi et al. [18],
myosin is important in muscle structure and function, as well as muscle color at low storage
temperatures. MYBPC2, a myosin-binding protein involved in the regulation of muscle
contraction, had a negative relationship with the a* values (r = −0.603; p = 0.017). It was
reported that MYBPH is also a myosin-binding protein which had been linked to meat color
in frozen Japanese pufferfish [37]. Actinin alpha 3 (ACTN3) and Troponin T3 (TNNT3)
were also observed to have a significant negative correlation with the a* values (r = −0.626;
p = 0.013). It was similar to the result of Gagaoua et al. [36]. However, myosin XVIIIA
(MYO18A) was identified as a new quality-related protein in the current study. There was
a high negative correlation with the b* values (r = −0.806; p = 2.874 × 10−4) and L* values
(r = −0.673; p = 0.006), and a positive relationship with the a* values (r = 0.693; p = 0.004)
in −12 ◦C group, with a downregulation trend. Simultaneously, MYO18A was found to
be significantly negatively related to the shear force (r = −0.788; p = 4.892 × 10−4) and
cooking loss (r = −0.581; p = 0.023). MYO18A is an unconventional myosin that has been
linked to a number of cellular processes, including retrograde actin treadmilling and focal
adhesion function. A previous study shed light on MYO18A’s abundant phosphorylation
and other post-translational modifications [28]. This could be the primary reason why
MYO18A has such a strong influence on meat quality. Cortactin (CTTN) is a cytoskeletal
actin-binding regulatory protein that regulates the actin cytoskeleton structure. It had a
noteworthy negative relationship with thawing loss (r = −0.756; p = 0.001). CTTN expres-
sion levels in this study were twice as high at −38 ◦C and −80 ◦C as they were at −12 ◦C,
indicating that the freezing conditions affect the cytoskeleton, with −12 ◦C being especially
harsh. As a binding protein, CDGSH iron–sulfur domain-containing protein 2 (CISD2)
was proven to have a strong correlation with cooking loss (r = −0.712; p = 0.003) and
shear force (r = −0.668; p = 0.006), respectively. The majority of these proteins are found at
−12 ◦C, indicating that −12 ◦C has a greater impact on the degradation and aggregation of
structural proteins, which destroys the cytoskeletal integrity, thus affecting quality.
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3.5.2. Enzymes

Variations of enzymes are tightly associated with glycolysis/gluconeogenesis, ox-
idative phosphorylation, and the metabolic pathway of frozen samples under different
temperatures. To some extent, the glycolytic content and rate of glycogenolysis affect the
meat quality [15]. Phosphoglycerate mutase (BPGM) and phosphoglucomutase-1 (PGM1)
are enzymes involved in glycolysis/gluconeogenesis metabolism. These two proteins
were found to be differentially expressed between −12 ◦C and the CON. BPGM was
discovered to be upregulated and showed a significant negative relationship with the a*
values (r = −0.613; p =0.015). This result was consistent with a previous study in which
Faustman et al. [38] discovered that an increase in glycolytic enzymes harmed myoglobin’s
redox stability. Contrary to expectations, PGM1 was not only associated with color but
also had a positive correlation with cooking loss (r = 0.665; p = 0.007) in this investigation.
Glycogen is gradually converted into lactic acid during glycolysis, resulting in a drop in
pH, which affects protein stability and muscle water retention [12].

NADH dehydrogenase is an enzyme that transfers electrons from NADH to the respi-
ratory chain in the mitochondrial membrane [20]. According to the findings of this study,
NDUFA6 was an accessory subunit of NADH dehydrogenase (complex I) that partici-
pated in the oxidative phosphorylation pathway and exhibited a correlation with meat
quality. NDUFA6 showed a strong positive relationship with the a* values (r = 0.773;
p = 7.335 × 10−4) and a negative association with the L* values (r = −0.644; p = 0.009), cook-
ing loss (r = −0.646; p = 0.009), thawing loss (r = −0.717; p = 0.003), and shear force (r = −0.7;
p = 0.004). This was in accordance with the report by Yu et al. [12]. NADH is primarily
concentrated in downregulated protein and promotes the reduction of metmyoglobin,
which improves the stability of meat color in muscle. Meat in the CON group was redder
than in the other groups, probably due to the interaction of phosphorylated mitochondrial
proteins and glycolytic enzymes in the energy metabolism [39]. On the other hand, a higher
abundance in the −12 ◦C group indicated a lower tenderness, which is consistent with the
shear force result. Myosin light chain kinase 2 (MYLK2) as a new biomarker, there was
a negative relationship with the a* values (r = −0.845; p = 7.381 × 10−5), and a positive
correlation with the b* values (r = 0.644; p = 0.009), thawing loss (r = 0.648; p = 0.009),
cooking loss (r = 0.791; p =4.408 × 10−4), and shear force (r = 0.709; p = 0.003). This could
be related to the phosphorylation of a specific serine in a myosin light chain’s N-terminus.
The upregulated phosphorylated proteins may have slowed the degradation of the protein
structure and thus contributed to the WHC [39].

The mitochondrial NADP (+)-dependent malic enzyme 3 (ME3) is a key malate de-
hydrogenase that is primarily responsible for catalyzing the reversible oxidative decar-
boxylation of malate to form pyruvate. Most of the previous research has focused on the
relationship between MDH or LDH and muscle quality. However, this study revealed a
positive correlation with the a* values (r = 0.704; p = 0.003), as well as a negative relation-
ship with the thawing loss (r = −0.783; p =5.509 × 10−4). Gill et al. [40] hypothesized that
the change in the quality was caused by ME-catalyzed pyruvate conversion. SERPINB6
is a downregulated shared protein found in four frozen groups that are involved in the
regulation of serpin peptidase. It displayed a close relationship with the thawing loss
(r = −0.825; p =1.514 × 10−4). Lopez-Pedrouso et al. [41] discovered SERPINB6 to be highly
correlated with IMF, but little is known about its connection to meat quality. Carbonic
anhydrase 2 was found to be downregulated in frozen groups at −12 ◦C and −18 ◦C.
CA2 has long been known to promote the rapid conversion of glycolytic intermediates
to oxaloacetate and citrate, thereby increasing ATP synthesis [42]. It had a high positive
association with the a* values (r = 0.811; p = 2.4 × 10−4), and a negative relationship with
the thawing loss (r = −0.832; p = 1.181 × 10−4) and cooking loss (r = −0.723; p = 0.02) in
our study. Proteasome subunit beta type-3 (PSMB3) was discovered in the −12 ◦C group. It
is a component of the 20S proteasome that is involved in the ATP-dependent degradation
of ubiquitinated proteins while closely binding to ACTN3. It had a negative correlation
with thawing (r = −0.616; p = 0.015). Aspartate aminotransferase (GOT1), adenylosuccinate
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lyase (ADSL), and very-long-chain enoyl-CoA reductase (TECR) were mainly involved in
the metabolism of amino acids and fatty acids. GOT1 showed a negative relation to the
thawing loss (r = −0.632; p = 0.011). TECR and ADSL were positively correlated with the
shear force (r = 0.689; p = 0.005), cooking loss (r = 0.631; p = 0.012) and was negatively related
to the a* value (r = −0.719; p = 0.003). The changes in the protein expression may be related
to the oxidation reaction that occurs during the freezing process. Protein phosphatase 1 reg-
ulatory subunit (PPP1R12A) is concerned with skeletal integrity and the muscle contractile
function. There was a negative relationship with the cooking loss (r = −0.701; p = 0.004).
Xia et al. [43] reported that PPP1R12A was related to meat tenderness. The results of this
study agree with it. Moreover, this protein was found to have a negative correlation with
the shear force.

3.5.3. Other Proteins

Eukaryotic initiation factor 2A (EIF2A) is a multimeric protein. According to the
previous report, EIF2A is required for the maintenance of the rate-limiting step in mRNA
translation and is in charge of binding GTP and transferring Met-tRNA to the 40S ribosomal
subunit [44]. It was found to have a significant negative relationship with the thawing loss
(r = −0.768; p = 8.336 × 10−4) and cooking loss (r = −0.682; p = 0.05), as well as a positive
relation with the a* value (r = 0.629; p = 0.012) in this study. WW domain-binding protein
2 (WBP2) was identified to have a significant negative relationship with the shear force
(r = −0.646; p = 0.009) and thawing loss (r = −0.664; p = 0.007), and a positive correlation
with the a* value (r = 0.734; p = 0.002) in this study. WBP2 was a binding partner of the WW
domain protein, interacting with several WW-domain-containing proteins, and regulating
cytoskeletal activity; this might also explain its association with the shear force and thawing
loss [45]. Protein1B4 (ATP1B4) was involved in muscle contraction and had a positive
relationship to the cooking loss (r = 0.707; p = 0.003). Rho GDP-dissociation inhibitor-
1(ARHGDIA) showed a negative relation to the thawing loss (r = −0.697; p = 0.004). It
might be used as a new potential biomarker for the frozen bovine Longissimus thoracic
muscle at −12 ◦C, −38 ◦C, and −80 ◦C. However, the relationship between these proteins
and the meat quality is not well understood, and the molecular mechanism requires further
investigation.

3.6. Validation of DAPs by PRM

MYH1, ACTN3, CTTN, MYBPC2, ARHGDIA, PSMB3, NDUFB9, and SERPINB6 were
selected for RPM analyses to validate the DIA proteomics results. As shown in Figure 5A,
the expression levels of SERPINB6 (serpin B6) and ACTN3 (alpha-actinin-3) increased in
the four frozen groups compared to the CON, whereas the other six proteins presented
decreasing expression levels. Thus, the PRM results for these proteins were consistent with
those obtained from the DIA analysis, indicating that the DIA proteomic analysis approach
is trustworthy.
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4. Conclusions

In summary, the changes in the muscle proteomics profiles and biological information
at different temperatures were understood in this study. Compared with the CON group, a
total of 262 proteins were identified as DAPs, of which 109, 79, 81, and 78 proteins were
in overabundance in −12 ◦C/CON, −18 ◦C/CON, −38 ◦C/CON, and −80 ◦C/CON,
respectively. The bioinformatics analysis revealed that most of the DAPs were involved in
the protein binding and catalytic activity of GO items, and participated in the oxidative
phosphorylation, glycolysis/gluconeogenesis, tight junction, and focal adhesion pathways.
Furthermore, the changes in the meat quality were more severe in the −12 ◦C condition
than in the −18 ◦C, −38 ◦C, and −80 ◦C. As expected, −80 ◦C had better freezing quality
traits. Correlation analysis between the DAPs and the quality traits showed that 90 proteins
were significantly correlated with the color (L*, a*, and b*), thawing loss, cooking loss, and
shear fore of the frozen beef. Among them, 17 closely related proteins could be potential
biomarkers for frozen beef quality. The putative biomarkers identified in this study should
be evaluated and validated in a larger group of animals to predict the frozen beef quality.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/foods11121791/s1. Supporting Table S1: A list of unique peptides
identified in the current study using DIA technology.; Supporting Table S2: A list of protein groups
identified in the current study using DIA technology; Supporting Table S3: A list of differentially
abundant proteins (DAPs) in the current study using DIA technology; Supporting Table S4: Detailed
explanations for the GO enrichment of differentially abundant proteins (DAPs) between frozen
groups and CON; Supporting Table S5: Detailed explanations for the GO enrichment of differentially
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abundant proteins (DAPs) of each comparison group (−12 ◦C/CON, −18 ◦C/CON, −38 ◦C/CON,
and −80 ◦C/CON); Supporting Table S6: Detailed explanations for the KEGG pathway enrichment
of differentially abundant proteins (DAPs) between frozen groups and CON; Supporting Table S7:
Detailed explanations for the correlation analysis results between DAPs and meat quality.

Author Contributions: Conceptualization, X.L., C.Z., and C.B.; Data curation, X.L., K.L., and Y.G.;
Formal analysis, X.L., S.Q., K.L., Y.S., and Y.G.; Funding acquisition, X.L.; Investigation, X.L.; Method-
ology, X.L., S.Q., and F.H.; Supervision, C.Z.; Writing—original draft, X.L.; Writing—review and
editing, S.Q., F.H., Y.S., J.L., C.Z., and C.B. All authors have read and agreed to the published version
of the manuscript.

Funding: The research was supported by the general program (no. 32172150) from National Natural
Science Foundation of China.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available upon request from the
corresponding author.

Conflicts of Interest: The authors declare that they have no known competing financial interests or
personal relationships that could have appeared to influence the work reported in this paper.

References
1. Smith, S.B.; Gotoh, T.; Greenwood, P.L. Current situation and future prospects for global beef production: Overview of special

issue. Asian Australas. J. Anim. Sci. 2018, 31, 927–932. [CrossRef]
2. Zhu, W.B.; Chen, Y.F.; Zhao, J.; Wu, B.B. Impacts of household income on beef at-home consumption: Evidence from urban China.

J. Integr. Agric. 2021, 20, 1701–1715. [CrossRef]
3. OECD and Food and Agriculture Organization of the United Nations. OECD-FAO Agricultural Outlook 2019–2028; OECD: Paris,

France, 2019; pp. 12–20.
4. Kim, H.W.; Kim, J.H.; Seo, J.K.; Setyabrata, D.; Kim, Y.H.B. Effects of aging/freezing sequence and freezing rate on meat quality

and oxidative stability of pork loins. Meat Sci. 2018, 139, 162–170. [CrossRef]
5. Gao, S.J.; Wang, R.G.; Bi, Y.L.; Qu, H.; Chen, Y.; Zheng, L. Identification of frozen/thawed beef based on label-free detection of

hemin (Iron Porphyrin) with solution-gated graphene transistor sensors. Sens. Actuators B Chem. 2020, 305, 127167. [CrossRef]
6. Leygonie, C.; Britz, T.J.; Hoffman, L.C. Impact of freezing and thawing on the quality of meat: Review. Meat Sci. 2012, 91, 93–98.

[CrossRef]
7. Lagerstedt, A.; Enfalt, L.; Johansson, L.; Lundstrom, K. Effect of freezing on sensory quality, shear force and water loss in beef M.

longissimus dorsi. Meat Sci. 2008, 80, 457–461. [CrossRef] [PubMed]
8. Lee, S.; Kim, E.J.; Park, D.H.; Ji, Y.R.; Kang, G.; Choi, M.J. Deep freezing to maintain the freshness of pork loin during long-term

storage. Food Sci. Biotechnol. 2021, 30, 701–710. [CrossRef]
9. Wang, F.; Liang, R.; Zhang, Y.; Gao, S.; Zhu, L.; Niu, L.; Hopkins, D.L. Effects of packaging methods combined with frozen

temperature on the color of frozen beef rolls. Meat Sci. 2021, 171, 108292. [CrossRef]
10. Holman, B.W.B.; Coombs, C.E.O.; Morris, S.; Kerr, M.J.; Hopkins, D.L. Effect of long term chilled (up to 5weeks) then frozen (up

to 12months) storage at two different sub-zero holding temperatures on beef: 1. Meat quality and microbial loads. Meat Sci. 2017,
133, 133–142. [CrossRef]

11. Wang, Y.Y.; Yan, J.K.; Ding, Y.H.; Ma, H.L. Effects of ultrasound on the thawing of quick-frozen small yellow croaker (Larimichthys
polyactis) based on TMT-labeled quantitative proteomic. Food Chem. 2022, 366, 130600. [CrossRef]

12. Yu, Q.Q.; Wu, W.; Tian, X.J.; Hou, M.; Dai, R.T.; Li, X.M. Unraveling proteome changes of Holstein beef M. semitendinosus and its
relationship to meat discoloration during post-mortem storage analyzed by label-free mass spectrometry. J. Proteom. 2017, 154,
85–93. [CrossRef] [PubMed]

13. Picard, B.; Gagaoua, M.; Micol, D.; Cassar-Malek, I.; Hocquette, J.F.; Terlouw, C.E. Inverse relationships between biomarkers
and beef tenderness according to contractile and metabolic properties of the muscle. J. Agric. Food Chem. 2014, 62, 9808–9818.
[CrossRef] [PubMed]

14. Picard, B.; Gagaoua, M. Meta-proteomics for the discovery of protein biomarkers of beef tenderness: An overview of integrated
studies. Food Res. Int. 2020, 127, 108739. [CrossRef] [PubMed]

15. Hou, X.H.; Liu, Q.F.; Meng, Q.S.; Wang, L.G.; Yan, H.; Zhang, L.C.; Wang, L.X. TMT-based quantitative proteomic analysis of
porcine muscle associated with postmortem meat quality. Food Chem. 2020, 328, 127133. [CrossRef] [PubMed]

http://doi.org/10.5713/ajas.18.0405
http://doi.org/10.1016/S2095-3119(20)63582-1
http://doi.org/10.1016/j.meatsci.2018.01.024
http://doi.org/10.1016/j.snb.2019.127167
http://doi.org/10.1016/j.meatsci.2012.01.013
http://doi.org/10.1016/j.meatsci.2008.01.009
http://www.ncbi.nlm.nih.gov/pubmed/22063353
http://doi.org/10.1007/s10068-021-00896-x
http://doi.org/10.1016/j.meatsci.2020.108292
http://doi.org/10.1016/j.meatsci.2017.06.015
http://doi.org/10.1016/j.foodchem.2021.130600
http://doi.org/10.1016/j.jprot.2016.12.012
http://www.ncbi.nlm.nih.gov/pubmed/28039026
http://doi.org/10.1021/jf501528s
http://www.ncbi.nlm.nih.gov/pubmed/25175407
http://doi.org/10.1016/j.foodres.2019.108739
http://www.ncbi.nlm.nih.gov/pubmed/31882086
http://doi.org/10.1016/j.foodchem.2020.127133
http://www.ncbi.nlm.nih.gov/pubmed/32480263


Foods 2022, 11, 1791 17 of 18

16. Song, Y.; Huang, F.; Li, X.; Zhang, H.R.; Liu, J.Q.; Han, D.; Zhang, C.H. DIA-based quantitative proteomic analysis on the meat
quality of porcine Longissimus thoracis et lumborum cooked by different procedures. Food Chem. 2022, 371, 131206. [CrossRef]
[PubMed]

17. Wang, Z.Y.; He, F.; Rao, W.L.; Ni, N.; Shen, Q.W.; Zhang, D.Q. Proteomic analysis of goat Longissimus dorsi muscles with different
drip loss values related to meat quality traits. Food Sci. Biotechnol. 2016, 25, 425–431. [CrossRef]

18. Shi, J.; Zhang, L.T.; Lei, Y.T.; Shen, H.X.; Yu, X.P.; Luo, Y.K. Differential proteomic analysis to identify proteins associated with
quality traits of frozen mud shrimp (Solenocera melantho) using an iTRAQ-based strategy. Food Chem. 2018, 251, 25–32. [CrossRef]

19. Wang, C.; Chu, J.J.; Fu, L.L.; Wang, Y.B.; Zhao, F.; Zhou, D.Q. iTRAQ-based quantitative proteomics reveals the biochemical
mechanism of cold stress adaption of razor clam during controlled freezing-point storage. Food Chem. 2018, 247, 73–80. [CrossRef]

20. Jia, W.; Zhang, R.; Liu, L.; Zhu, Z.B.; Xu, M.D.; Shi, L. Molecular mechanism of protein dynamic change for Hengshan goat meat
during freezing storage based on high-throughput proteomics. Food Res. Int. 2021, 143, 110289. [CrossRef]

21. Kim, G.D.; Jeong, T.C.; Yang, H.S.; Joo, S.T.; Hur, S.J.; Jeong, J.Y. Proteomic analysis of meat exudates to discriminate fresh and
freeze-thawed porcine longissimus thoracis muscle. LWT Food Sci. Technol. 2015, 62, 1235–1238. [CrossRef]

22. Lin, L.; Zheng, J.X.; Yu, Q.; Chen, W.D.; Xing, J.C.; Chen, C.X.; Tian, R.J. High throughput and accurate serum proteome profiling
by integrated sample preparation technology and single-run data independent mass spectrometry analysis. J. Proteom. 2018, 174,
9–16. [CrossRef]

23. Malmstrom, L.; Bakochi, A.; Svensson, G.; Kilsgard, O.; Lantz, H.; Petersson, A.C.; Malmstrom, J. Quantitative proteogenomics of
human pathogens using DIA-MS. J. Proteom. 2015, 129, 98–107. [CrossRef]

24. Qian, S.Y.; Li, X.; Wang, H.; Mehmood, W.; Zhong, M.; Zhang, C.H.; Blecker, C. Effects of low voltage electrostatic field thawing
on the changes in physicochemical properties of myofibrillar proteins of bovine Longissimus dorsi muscle. J. Food Eng. 2019, 261,
140–149. [CrossRef]

25. CIE. Colorimetry, 2nd ed.; Centre International de L’Eclairage: Vienna, Austria, 1986; Volume 15.2.
26. Qian, S.Y.; Hu, F.F.; Mehmood, W.; Li, X.; Zhang, C.H.; Blecker, C. The rise of thawing drip: Freezing rate effects on ice

crystallization and myowater dynamics changes. Food Chem. 2022, 373, 131461. [CrossRef]
27. Muela, E.; Monge, P.; Sanudo, C.; Campo, M.M.; Beltran, J.A. Meat quality of lamb frozen stored up to 21 months: Instrumental

analyses on thawed meat during display. Meat Sci. 2015, 102, 35–40. [CrossRef]
28. Coluccio, L.M. Myosins: A Superfamily of Molecular Motors, 2nd ed.; Springer Nature: Gewerbestrasse, Switzerland, 2020; pp. 1,

284–285, 422–430.
29. Wang, H.N.; Wu, J.P.; Betti, M. Chemical, rheological and surface morphologic characterisation of spent hen proteins extracted by

pH-shift processing with or without the presence of cryoprotectants. Food Chem. 2013, 139, 710–719. [CrossRef] [PubMed]
30. Gagaoua, M.; Hughes, J.; Terlouw, E.M.C.; Warner, R.D.; Purslow, P.P.; Lorenzo, J.M.; Picard, B. Proteomic biomarkers of beef

colour. Trends Food Sci. Tech. 2020, 101, 234–252. [CrossRef]
31. Liu, Y.B.; Chu, A.; Chakroun, I.; Islam, U.; Blais, A. Cooperation between myogenic regulatory factors and SIX family transcription

factors is important for myoblast differentiation. Nucleic Acids Res. 2010, 38, 6857–6871. [CrossRef]
32. Boudon, S.; Henry-Berger, J.; Cassar-Malek, I. Aggregation of Omic Data and Secretome Prediction Enable the Discovery of

Candidate Plasma Biomarkers for Beef Tenderness. Int. J. Mol. Sci. 2020, 21, 664. [CrossRef]
33. Silva, L.H.P.; Rodrigues, R.T.S.; Assis, D.E.F.; Benedeti, P.D.B.; Duarte, M.S.; Chizzotti, M.L. Explaining meat quality of bulls and

steers by differential proteome and phosphoproteome analysis of skeletal muscle. J. Proteom. 2019, 199, 51–66. [CrossRef]
34. Yan, Y.; Zhou, X.E.; Xu, H.E.; Melcher, K. Structure and Physiological Regulation of AMPK. Int. J. Mol. Sci. 2018, 19, 3534.

[CrossRef]
35. Franco, D.; Mato, A.; Salgado, F.J.; Lopez-Pedrouso, M.; Carrera, M.; Bravo, S.; Zapata, C. Tackling proteome changes in the

longissimus thoracis bovine muscle in response to pre-slaughter stress. J. Proteom. 2015, 122, 73–85. [CrossRef] [PubMed]
36. Gagaoua, M.; Bonnet, M.; De Koning, L.; Picard, B. Reverse Phase Protein array for the quantification and validation of protein

biomarkers of beef qualities: The case of meat color from Charolais breed. Meat Sci. 2018, 145, 308–319. [CrossRef] [PubMed]
37. Men, L.; Li, Y.Z.; Wang, X.L.; Li, R.J.; Zhang, T.; Meng, X.S.; Liu, S.C.; Gong, X.J.; Gou, M. Protein biomarkers associated with

frozen Japanese puffer fish (Takifugu rubripes) quality traits. Food Chem. 2020, 327, 127002. [CrossRef] [PubMed]
38. Faustman, C.; Sun, Q.; Mancini, R.; Suman, S.P. Myoglobin and lipid oxidation interactions: Mechanistic bases and control. Meat

Sci. 2010, 86, 86–94. [CrossRef]
39. Weng, K.Q.; Huo, W.R.; Gu, T.T.; Bao, Q.; Cao, Z.F.; Zhang, Y.; Zhang, Y.; Xu, Q.; Chen, G.H. Quantitative phosphoproteomic

analysis unveil the effect of marketable ages on meat quality in geese. Food Chem. 2021, 361, 130093. [CrossRef]
40. Gill, J.L.; Bishop, S.C.; McCorquodale, C.; Williams, J.L.; Wiener, P. Identification of polymorphisms in the malic enzyme 1,

NADP(+)-dependent, cytosolic and nuclear receptor subfamily 0, group B, member 2 genes and their associations with meat and
carcass quality traits in commercial Angus cattle. Anim. Genet. 2012, 43, 88–92. [CrossRef]

41. Lopez-Pedrouso, M.; Franco, D.; Serrano, M.P.; Maggiolino, A.; Landete-Castillejos, T.; De Palo, P.; Lorenzo, J.M. A proteomic-
based approach for the search of biomarkers in Iberian wild deer (Cervus elaphus) as indicators of meat quality. J. Proteom. 2019,
205, 103422. [CrossRef]

42. Shen, Y.N.; Kim, S.H.; Yoon, D.H.; Lee, H.G.; Kang, H.S.; Seo, K.S. Proteome Analysis of Bovine Longissimus dorsi Muscle
Associated with the Marbling Score. Asian Australas. J. Anim. Sci. 2012, 25, 1083–1088. [CrossRef]

http://doi.org/10.1016/j.foodchem.2021.131206
http://www.ncbi.nlm.nih.gov/pubmed/34619635
http://doi.org/10.1007/s10068-016-0058-y
http://doi.org/10.1016/j.foodchem.2018.01.046
http://doi.org/10.1016/j.foodchem.2017.12.004
http://doi.org/10.1016/j.foodres.2021.110289
http://doi.org/10.1016/j.lwt.2015.02.016
http://doi.org/10.1016/j.jprot.2017.12.014
http://doi.org/10.1016/j.jprot.2015.09.012
http://doi.org/10.1016/j.jfoodeng.2019.06.013
http://doi.org/10.1016/j.foodchem.2021.131461
http://doi.org/10.1016/j.meatsci.2014.12.003
http://doi.org/10.1016/j.foodchem.2013.01.123
http://www.ncbi.nlm.nih.gov/pubmed/23561165
http://doi.org/10.1016/j.tifs.2020.05.005
http://doi.org/10.1093/nar/gkq585
http://doi.org/10.3390/ijms21020664
http://doi.org/10.1016/j.jprot.2019.03.004
http://doi.org/10.3390/ijms19113534
http://doi.org/10.1016/j.jprot.2015.03.029
http://www.ncbi.nlm.nih.gov/pubmed/25857277
http://doi.org/10.1016/j.meatsci.2018.06.039
http://www.ncbi.nlm.nih.gov/pubmed/30015160
http://doi.org/10.1016/j.foodchem.2020.127002
http://www.ncbi.nlm.nih.gov/pubmed/32438262
http://doi.org/10.1016/j.meatsci.2010.04.025
http://doi.org/10.1016/j.foodchem.2021.130093
http://doi.org/10.1111/j.1365-2052.2011.02216.x
http://doi.org/10.1016/j.jprot.2019.103422
http://doi.org/10.5713/ajas.2012.12127


Foods 2022, 11, 1791 18 of 18

43. Xia, X.T.; Zhang, S.J.; Zhang, H.J.; Zhang, Z.J.; Li, Z.G.; Sun, H.X.; Liu, X.; Lyu, S.J.; Wang, X.W.; Li, Z.M.; et al. Assessing
genomic diversity and signatures of selection in Jiaxian Red cattle using whole-genome sequencing data. BMC Genom. 2021,
22, 43. [CrossRef]

44. Kimball, S.R. Eukaryotic initiation factor eif2. Int J Biochem Cell Biol. 1999, 31, 25–29. [CrossRef]
45. Mccollum, A.K.; Angelos, M.G.; Fischione, A.D.; Mineo, M.; Kohn, E.C. Abstract 2032: A novel function of ww domain binding

protein 2 (wbp2) in regulating cytoskeletal function and cellular division through binding to co-chaperone bag3. Cancer Res. 2012,
72 (Suppl. S8), 2032.

http://doi.org/10.1186/s12864-020-07340-0
http://doi.org/10.1016/S1357-2725(98)00128-9

	Introduction 
	Materials and Methods 
	Sample Collection and Preparation 
	Meat Quality Determination 
	Protein Extraction and Digestion 
	Spectral Library Generation 
	High-pH Reversed-Phase Separation 
	Nano-HPLC-MS/MS Analysis for DDA and DIA Analysis 
	Database Search and Analysis 

	Parallel Reaction Monitoring (PRM) 
	Bioinformatics and Statistical Analysis 

	Results and Discussion 
	Meat Quality of the Beef Samples 
	Protein Profiling in Fresh and Frozen Samples 
	GO, KOG, and KEGG Pathway Analysis of DAPs 
	Protein–Protein Interaction Analysis 
	Correlations between DAPs and Meat Quality 
	Structure Proteins 
	Enzymes 
	Other Proteins 

	Validation of DAPs by PRM 

	Conclusions 
	References

