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A B S T R A C T   

This study examines the latent influence of spatial locations on the relative risks of crash injuries associated with 
distracted driving (DD) and identifies regions of excess risks for policy intervention. Using a sample of aggregated 
injury and fatal DD crash records for the period 2015–2019 across 1,024 census block groups in Central Ohio (i. 
e., the Columbus Metropolitan Area) in the United States, we investigate the role of latent effects along with 
several covariates such as land-use mix, sociodemographic features, and the built environment. To this end, we 
specifically leverage a full Bayesian hierarchical formulation with conditional autoregressive priors to account 
for uncertainty (i.e., spatially structured random effects) stemming from adjacent census block groups. 
Furthermore, we consider uncorrelated random effects from upper-level administrative units within which each 
block group is nested (i.e., census tracts and counties). Our analysis reveals that (1) addressing spatial correlation 
improves the model’s performance, (2) block-group-level variability substantially explains the residual random 
fluctuation, and (3) intersection density appears negatively associated with the relative risks of crash injuries, 
while more diversified land use can increase injury risk. Based on these findings, we present spatial clusters with 
twice the relative risks compared to other block groups, suggesting that policies be devised to mitigate severe 
injuries due to DD and therefore enhance public health.   

1. Introduction 

The National Highway Traffic Safety Administration (NHTSA) 
(2020) defines distracted driving (DD) as driving that involves any ac-
tivity (e.g., texting, cellphone usage, and drinking or eating) that takes 
the driver’s attention away from the primary task, that is, safe driving. 
Due to its negative consequences, DD-related transportation safety 
seemed to gain wider attention among scholars, planners, government 
agencies, and policymakers as well as health officials (ODOT, 2019; 
CDC, 2020). Chen and Lym (2021) showed that vehicle crashes associ-
ated with DD are more likely to lead to severe outcomes (i.e., injuries 
rather than property damage only) compared to their 
non-distraction-affected counterparts. In addition, Fatmi and Habib 
(2019) found that certain built-environment features such as higher 
land-use mix, higher population density, and longer sidewalks could 
mitigate the severity of crashes due to DD. Chen and Lym (2021) showed 
the negative influence of roundabouts on minimizing the severity of DD 

crashes in Ohio. From a different perspective, the effects of the built 
environment on DD crash risk reduction can be explained by drivers’ 
behavioral responses, as they are inclined to adjust their behavior with 
higher driving complexity (e.g., driving under demanding roadway en-
vironments) (Oviedo-Trespalacios et al., 2019, 2020). 

A number of studies have investigated various facets of DD, such as 
drivers’ behavioral responses (e.g., by teenagers, age and execution, and 
young adults) and risk compensation (Gershon et al., 2019; Ortiz et al., 
2018; Oviedo-Trespalacios et al., 2019), driving performance under 
experimental settings (Haque et al., 2016), the influence of the built 
environment on crash frequency and severity, and uncertainty from 
unobserved heterogeneity (e.g., Lym & Chen, 2020; Oviedo-Tres-
palacios et al., 2020). However, we believe that the literature has yet to 
fully consider unobserved heterogeneity in DD crashes. Hence, this 
research investigates the effects of unobserved heterogeneity on vehicle 
crashes associated with DD, focusing on latent influences from spatial 
alignments of administrative units (Dupont et al., 2013; Flask & 
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Schneider, 2013; Huang & Abdel-Aty, 2010). To this end, we aim to 
answer the following research questions:  

1. Does the inclusion of spatially structured latent effects in the 
modeling process better explain crash injury risks due to DD? 

2. How do we identify hot spots where policy intervention could miti-
gate the potential injury risks from DD in the Columbus Metropolitan 
Area (CMA), Ohio? 

To address these questions, this study adopted a full Bayesian hier-
archical approach with conditional autoregressive (CAR) priors (Besag 
et al., 1991), which allow us to account for latent spatial influences on 
DD injury risks along with other influential factors characterized by 
covariates. 

The remainder of this paper is outlined as follows. Section 2 reviews 
the relevant literature, while Section 3 explains the adopted methodol-
ogy. Section 4 presents and discusses our data. Section 5 evaluates our 
models and discusses our findings. Finally, Section 6 concludes our study 
and provides suggestions for future research. 

2. Literature review 

2.1. General description of distracted driving 

DD refers to anything that diverts drivers’ attention from safe driving 
(NHTSA, 2020). Recently, DD has become a major contributor to severe 
and fatal crashes, raising broad public awareness as well as research 
interests among scholars (Dingus et al., 2016, AAA Foundation for 
Traffic Safety [AAAFTS], 2018). For example, Kidd and Chaudhary’s 
(2019) study on the prevalence of DD among Northern Virginia drivers 
showed an approximately 57% increase in the likelihood of cellphone 
manipulation in 2018 compared with 2014. 

A considerable number of DD studies have attempted to clarify the 
association between drivers’ behavioral response or performance and a 
series of distraction factors under simulated settings. Birrell and Young 
(2011) showed that smart driving information has no influence on driver 
distraction. Kircher and Ahlstrom’s (2012) research on how tunnel 
design (tunnel wall color) and illumination affect drivers’ exhibited 
behavior revealed the relative importance of light-colored walls over 
illumination. Haque et al. (2016) investigated young drivers’ gap 
acceptance behavior at roundabouts under three mobile conditions (no 
phone, hands-free, and handheld conversation), identifying an accep-
tance of a smaller safety margin among distracted drivers. Kountouriotis 
and Merat (2016) found that driver distraction influenced speed, gaze 
patterns, and steering control, and that road geometry and the presence 
of other cars could interact with driver distraction. Using surveys and 
simulators, Oviedo-Trespalacios et al. (2016) and Papantoniou et al. 
(2017) provided systematic and comprehensive reviews of how 
distraction affects driving performance. Employing a different perspec-
tive, some scholars have considered whether age affects distraction. 
Gershon et al. (2017, 2019) suggested that teenagers are more likely to 
engage in secondary tasks associated with DD. Braitman and Braitman 
(2017), focusing on young adult drivers, conducted latent profile anal-
ysis to identify three profile classes of DD behaviors among them. Guo 
et al. (2017) and Ortiz et al. (2018) investigated the effects of age on 
crash risks related to DD, revealing that distraction more adversely af-
fects senior drivers than middle-aged drivers. 

In addition, many scholars have examined risk-compensating 
behavior, which refers to the avoidance of risky behavior to initiate 
secondary driving tasks (e.g., DD actions). For example, studies have 
used surveys (Parnell et al., 2020), simulations (Li et al., 2019), and 
empirical analysis (Oviedo-Trespalacios et al., 2017) to analyze factors 
leading to a driver’s decision to engage in DD. 

Meanwhile, other studies have examined various measures to reduce 
DD behavior and its consequences. Arnold et al. (2019, pp. 1–13) con-
ducted a comprehensive review of the effectiveness of DD-related 

legislation and regulations. They found that several measures are ex-
pected to reduce DD behavior and its associated crashes, but they rely on 
comparing pre- and post-intervention outcomes and controlling for po-
tential confounders; in addition, finding appropriate control groups is 
often challenging. Most existing measures focus on cellphone use while 
behind the wheel, and studies based on these might not fully reflect the 
true nature, leading to biased outcomes and requiring further research. 
Meanwhile, Chen and Lym (2021) and Fatmi and Habib (2019) analyzed 
actual crash data and investigated statistical linkages between the role of 
the built environment and outcomes of DD crashes. 

2.2. Understanding spatial correlation and unobserved heterogeneity 

Much effort has been devoted to overcoming the challenges in un-
derstanding vehicle crashes from a statistical modeling standpoint (see 
comprehensive review by Lord & Mannering, 2010; Savolainen et al., 
2011; Mannering et al., 2016). Since crashes tend to occur in certain 
locations (or coordinates), they inevitably entail spatial features. If a 
location is associated with many crashes, nearby locations may also 
share many of its characteristics (e.g., unobserved effects). For example, 
road segments or census units with higher frequencies of crashes may 
share certain geometric features or traffic flows or sociodemographic 
characteristics with adjacent ones. This leads to the potential influences 
of space between observations, and failure to account for these in the 
modeling process may result in incorrect inferences of covariate effects. 
Thus, it is reasonable to address the spatially structured random/latent 
effects in statistical models for vehicle crashes, which help visually 
identify regions of higher/excess crash risks to improve our under-
standing of relative risks of crashes. 

Barua et al. (2014) found that crashes (collisions) are georeferenced 
(i.e., with known locations) and that the number of crashes observed in a 
certain period is likely to exhibit spatial dependency across different 
locations. Others have argued that properly incorporating spatial cor-
relation into the crash modeling procedure substantially enhances the 
model’s explanatory power (Aguero-Valverde, 2013; Aguero-Valverde 
& Jovanis, 2006; Boulieri et al., 2017; Liu & Sharma, 2018; Lym & Chen, 
2020). In this regard, Cressie (2015) asserted that spatial random effects 
can successfully account for unknown and relevant covariates as well as 
unobserved heterogeneity. 

Several traffic safety studies have adopted the Bayesian hierarchical 
approach as an analytic operational framework because of its flexibility 
in handling small samples (MacNab, 2004; Quddus, 2008). To address 
spatial correlation and unobserved heterogeneity, the 
Besag–York–Mollié (BYM or convolution) prior,1 suggested by Besag 
et al. (1991), has been widely leveraged within transportation safety 
research (Aguero-Valverde & Jovanis, 2006; Barua et al., 2014; Boulieri 
et al., 2017; Lym & Chen, 2020; Ma et al., 2017; Zeng et al., 2019, 2020). 
Furthermore, Huang and Abdel-Aty (2010) argued that ignoring the 
multilevel structure of crash data can lead to unreliable parameter es-
timates and result in incorrect inferences about the crash generation 
process. This implies that properly addressing cross-group unobserved 
heterogeneity produces more trustworthy estimates and can improve 
the statistical model. In the same vein, Dupont et al. (2013) compre-
hensively discussed multilevel analysis in road safety research, and Flask 
and Schneider (2013) and Park et al. (2017) showed empirical evidence 
of its relative strength over its nonhierarchical counterpart. 

2.3. Key features of this research 

As noted, crash modeling studies have highlighted the importance of 
the proper inclusion of unobserved heterogeneity and random effects 

1 The Besag–York–Mollié (BYM) prior or model considers latent spatial effects 
as the sum of a spatially structured component for spatial smoothing and an 
additional unstructured random component for unobserved heterogeneity. 
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into statistical analysis; however, only a few have considered both 
spatial correlation and multilevel heterogeneity. To the best of our 
knowledge, research on crashes relative to DD that specifically empha-
sizes spatially structured random effects as well as latent influences from 
various levels of crash data aggregation is scant. Thus, we investigated 
the unique features of DD crashes along with the latent influences of 
space on the relative risks of DD. Through model-based approaches, we 
intend to provide different insights into vehicle crashes associated with 
DD, and our study can help fill the knowledge gap in traffic safety 
research. 

3. Methodology 

As a preliminary measure to formal statistical investigation, we 
conducted an exploratory data analysis to summarize data, find anom-
alies, and detect spatial patterns in the area of interest. To verify the 
existence of spatial correlation in DD-related injury crashes, we used a 
commonly adopted measure of spatial association, Moran’s I, which 
tests for global spatial association among areal (lattice) units (in our 
study, census block groups) (Anselin, 1988). Transportation safety 
studies that have used this measure include Quddus (2008), Liu and 
Sharma (2018), and Lym and Chen (2020). 

We also adopted a hierarchical Bayesian approach, which provides 
the flexibility to easily account for a multilevel cross-correlation 
alongside between-level spatial random effects. This means we consid-
ered the spatial correlation between census block groups (the lowest 
administrative unit in our study) and attempted to include latent effects 
from the alignment of higher-level administrative units such as census 
tracts and counties. To address between-level spatial random effects, we 
specifically followed a Bayesian disease mapping methodology, whose 
major focus is the relative risks of disease occurrence within small areas 
and their smoothing (Blangiardo & Cameletti, 2015; Lawson, 2018; 
Moraga, 2019). The relative risk of each unit (here, the number of 
crashes aggregated to each census block group) {θi}, indexed by 
geographical unit i, was assumed to be random so that it (i.e., distri-
bution of the relative risk θi) is generated from a set of hyperparameters. 

The Poisson parameter, expected rate of occurrence {λi}, was 
decomposed into λi = Ei × θi. Ei is an offset to adjust for differences in 
traffic volume (i.e., vehicle miles traveled, VMT) across block groups, 
while θi denotes a relative risk of injury crashes. Conditional on the 
observed response Yi, a natural framework that follows a full Bayesian 
hierarchical structure: 

Data : Yi|λi ∼ Poisson(λi), λi =Ei × θi (1)  

Process : θi| ψ ∼ p(•|ψ), ηi = log(θi)

ηi =
∑p

m=1
βmXim + si +αk(i) + αl(k(i))

αk ∼ Normal (0, τk)

αl ∼ Normal (0, τl)

si ∼ BYM2 specification (φ, τs)

Parameter : ψ ∼ f ( • )

i= 1, 2,⋯, n; k = 1, 2,⋯,K; l = 1, 2,⋯, L  

where ηi corresponds to a linear predictor (i.e., logarithmic link func-
tion) that linearly relates a vector of predictors and random components 
to θi. Regarding the latent influences from coarser spatial units, we 
assumed two independent Gaussian distributions for the second (census 
tract, k) and third (county, l) levels. These can be characterized by two 
uncorrelated random effects (i.e., αk ∼ Normal (0, τk) and αl ∼

Normal (0, τl)) after accounting for both fixed and spatially correlated 
random effects from the first-level observations (census block group, i). τ 

denotes the precision parameter, which is an inverse of the variance of 
Gaussian distribution (i.e., τ− 1 = σ2; here, τk and τl denote the precisions 
of census tracts and counties, respectively), for unobserved heteroge-
neity. p(•|ψ) and f(•) are probability distributions that generate ηi and 
(hyper)parameters ψ , respectively. 

Meanwhile, we paid particular attention to the influences from the 
observation level (census block group). Fixed effects (coefficients) are 
estimated by a series of covariates at census block groups (i.e., Xi =

(Xi1,Xi2,Xi3,⋯,Xip)
T) as β = (β1, β2, β3,⋯, βp)

T. For the block-group- 
level random effects, we employed the BYM2 model proposed by Rie-
bler et al. (2016) and Simpson et al. (2017), which was modified (rep-
arametrized) from the BYM (convolution) model (Besag et al., 1991). 
When considering priors for the hyperparameters of the BYM2 model (i. 
e., marginal precision (τs) and a mixing parameter (φ)), we used weakly 
informative penalized complexity (PC) priors (Simpson et al., 2017). See 
Simpson et al. (2017) for technical details. 

Based on equation (1) above, we designed three models (models 1, 2, 
and 3) for the logarithm of relative risks of DD injuries (ηi = log(θi)) as 
follows: 

Model 1: independent variables + block-group-level heterogeneity. 
Model 2: Model 1 + census-tract-level heterogeneity. 
Model 3: Model 2 + county-level heterogeneity. 
Model 1 concerns only latent effects/unobserved heterogeneity from 

the arrangement of census block groups whereas models 2 and 3 further 
incorporate random influences from coarser levels of the hierarchy of 
the administrative units besides those in model 1. 

4. Description of data 

4.1. Study area 

The study region included 1,024 census block groups within five 
counties in the CMA in Ohio. Although the CMA has ten counties, we 
focused on five counties following the 2016–2040 Metropolitan Trans-
portation Plan (MTP)2 by the Mid-Ohio Regional Planning Commission 
(MORPC) to support the goals and objectives of the plan (Mid-Ohio 
Regional Planning Commission (MORPC), 2020). Therefore, to adhere 
to this plan and potentially contribute to its implementation, we 
restricted our focus to DD crashes in these five counties between 2015 
and 2019. 

We followed the U.S. Census Bureau’s standard hierarchy of census 
geographical entities, in which lower levels of statistical areas are 
completely nested within higher levels (U.S. Census Bureau, 2020). 
Hence, each block group is nested within a census tract, which then 
belongs to a CMA county. Fig. 1 illustrates the hierarchical relations 
among different entities in the CMA. The MORPC region, our point of 
interest, is highlighted in blue and is filled with census tracts and census 
block groups. This allows us to incorporate the unobserved multilevel 
cross-correlation stemming from higher levels of administrative units (i. 
e., census tracts and counties) and between-level spatial correlation 
across census block groups. When block groups share a border 
(boundary), we regarded them as neighbors. 

4.2. Crash data 

The Ohio Department of Public Safety (ODPS) publishes a database 
of motor vehicle crashes in the state (ODPS, 2020). We obtained five 
years (2015–2019) of crash data for the five CMA counties and consid-
ered and geocoded each record over the region as the raw dataset 

2 The 2016–2040 Metropolitan Transportation Plan (MTP; https://www. 
morpc.org/mtp2040/) documents the ongoing transportation planning pro-
cess for Columbus and its surrounding regions and identifies strategies and 
projects to maintain and enhance the regional transportation system (Mid-Ohio 
Regional Planning Commission (MORPC), 2020). 
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including the crash locations (latitude and longitude of each crash).3 We 
assigned each record to its census block group, which is then nested 
within a census tract as well as a county, resulting in the multilevel 
(hierarchical) structure addressed in the formal analysis. One issue here 
is that distraction-affected crashes were identified based on law 
enforcement reports. People’s reluctance to admit that crashes are due 
to DD may indicate an underreporting problem (Lym & Chen, 2021). 
Nevertheless, we assumed that our dataset provides an accurate reflec-
tion or at least a random sample of DD-related vehicle crashes in Central 
Ohio. 

Our dataset consisted of 12,541 reported DD crashes for the period 
2015–2019 in 1,024 block groups, which are completely nested within 
338 census tracts across the 5 CMA counties. We focused on crashes 
leading to injury, aggregating the reported categories of evident injury, 
severe injury, and fatality (FA), and excluding crashes resulting in 

Fig. 1. Study region.  

Table 1 
Systemic breakdown of distraction-affected crashes by severity and level of 
urbanization.  

Severity Level of urbanization 

Urban Suburban Rural Total 

PDO (A) 3,499 
(41.5%) 

3,954 
(46.9%) 

972 
(11.5%) 

8,425 
(100%) 

Possible Injury (B) 782 
(34.8%) 

969 (48.2%) 283 
(16.9%) 

2,034 
(100%) 

Evident, Severe, and 
Fatal (C) 

864 
(41.5%) 

928 (44.6%) 290 
(13.9%) 

2,082 
(100%) 

Total crashes (A + B 
+ C) 

5,145 
(41.0%) 

5,851 
(46.7%) 

1,545 
(12.3%) 

12,541 
(100%) 

Note: Numbers in parentheses are calculated based on the last column on the 
right (authors’ calculation). 
Source: Ohio Department of Public Safety (ODPS, 2020). 

3 Raw crash data are publicly available. The data can be requested via https: 
//ohtrafficdata.dps.ohio.gov/crashstatistics/home (ODPS, 2020). 
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property damage only (PDO) or possible injury. Based on this definition, 
our injury measure represented the most severe category of crashes (C in 
Table 1).4 Of the 12,541 reported crashes in our study area, 2,082 
(16.6%) fell under this class. We also found that this proportion varied 
according to the degree of urbanization of crash locations (Table 1), 
suggesting that urbanization is an important variable. For example, 
about 67.18% (8,425) of the total DD crashes were classified as PDO, of 
which 88.4% (41.5% + 46.9%) occurred in either urban or suburban 
locations during that period. Regarding injuries and fatal crashes 
(2,082), 86.1% (41.5% + 44.6%) happened in urban and suburban 
areas. 

From a different perspective, Fig. 2 presents the frequency distribu-
tion of injuries and fatal distraction-induced crashes (C in Table 1) ac-
cording to urbanization levels. The number of crashes varied with 
urbanization; that is, 241 of 1,024 census block groups (23.5%) showed 
zero injury crashes in urban areas, while no injury crashes were 
observed in 76 suburban (7.42%) and 19 rural (1.9%) block groups. The 
average number of crashes was 2.03 with a variance of 7.49, indicating a 
significant overdispersion that requires a model to address such vari-
ability. In addition, 336 of 1,024 block groups (32.8%) observed neither 
injury nor fatal crashes, leading us to suspect a potential zero inflation.5 

Fig. 3 illustrates the spatial distribution of DD-induced injuries and 
fatal crashes at the census block-group level. We considered raw crash 
counts (left panel) and crash rates adjusted by VMT6 (right panel) to 
reveal patterns. Although some differences seemed to exist in the degree 
of each distribution, we could verify that census block groups with 
similar injuries and fatal crashes appear closely located, indicating a 
positive spatial autocorrelation. The measures of global spatial auto-
correlation, Moran’s I test statistic, were estimated as 0.230 for raw 
crash counts (p-value < 0.0001) and 0.207 for crash rates (p-value <
0.0001). The formal statistical assessment results clearly confirm a 
spatial dependency or correlation in DD injury crashes occurring across 
the MORPC region. Ignoring the latent influences of space may result in 
unreliable estimates of relative injury risks, justifying our adoption of 
spatial models. 

4.3. Variables considered for this study 

Following previous transportation safety studies, we considered 
explanatory variables such as the built environment (e.g., land-use mix, 
urbanization level, gross activity density, and roadway network), soci-
odemographic features (e.g., proportion of age cohorts, educational at-
tainments, and employment status) to differentiate the latent spatial 
influences on DD-induced crash injuries. 

To develop several sociodemographic, employment-related, and 
built-environment variables for each census block group in the CMA, we 
used the Smart Location Database (SLD)7 provided by the 

Environmental Protection Agency (EPA) (SLD, 2020). For example, total 
network density and intersection density reflected the existing roadway 
built environment. Gross activity density was defined by the sum of jobs 
and housing units per unprotected land in each census block group, 
while the employment mix (entropy)8 of the five-tier employment cat-
egories was used to measure land-use diversity. To account for differ-
ences in the likelihood of exposure to vehicle crashes, we leveraged VMT 
as an exposure measure (an offset). Table 2 summarizes the statistics of 
the candidate variables for this study. Notably, there seem to be strong 
correlations among several covariates, leading us to be highly selective 
in terms of modeling.9 

5. Results and discussion 

5.1. Model selection 

Bayesian models rely on a computationally expensive Markov chain 
Monte Carlo (MCMC) simulation. To circumvent the computational 
costs of an MCMC simulation for Bayesian spatial models, we leveraged 
R-INLA (Rue et al., 2017), an efficient alternative that provides 
approximate Bayesian results for latent Gaussian models (Rue et al., 
2009; Rue & Held, 2005). 

As previously discussed, we suggested three models that could ac-
count for unobserved heterogeneity from the multilevel structure of 
administrative units. Table 3 presents the results of the computed 
goodness-of-fit measures for several models considered in this study. 

Regarding the performance of each model, we employed the devi-
ance information criterion (DIC), the widely applicable information 
criterion (WAIC), and log pseudo marginal likelihood (LPML) for an 
optimal model selection. DIC, a Bayesian analog of the AIC, penalizes 
model complexity (e.g., models with more parameters or latent effects) 
by adding the effective number of parameters to the posterior mean of 
deviance (Spiegelhalter et al., 2002). Thus, models with a smaller DIC 
are preferable, and the same is true of the WAIC. Conversely, models 
with higher LPML values are preferred. In that regard, we found that the 
spatial models appeared to outperform their nonspatial counterparts 
because of significant drops in DIC and WAIC values in spatial models. 
Moreover, we have already observed excessive zeros in the crash data 
(Fig. 2); hence, we also employed zero-inflated Poisson (ZIP) models to 
address them. The performance metrics (i.e., DIC, WAIC, and LPML 
values) were in favor of nonspatial and spatial models, indicating that 
the spatial ZIP models are likely to overfit the data, and after accounting 
for fixed effects by independent variables, the potential zero-inflation 
problems were resolved. 

5.2. Results 

Table 3 allows us to select optimal structures for further inferences 
(in this case, spatial models), and Table 4 presents the detailed results, 
which include posterior means, standard deviations, and 95% Bayesian 
credible intervals for models 1, 2, and 3. We observed that models 2 and 
3 outperformed model 1 and had minor differences in DIC values (the 

4 Although we focused on injury and fatal crashes relative to distracted 
driving, we also conducted a formal assessment of total DD crashes for com-
parison purposes, available in Appendix Table A1.  

5 The zero-inflation issue seems to emerge if we only consider the raw crash 
data, but this is resolved by the formal modeling process (by accounting for 
fixed and random effects). We also employed models that specifically address 
zero inflation (i.e., zero-inflated Poisson model), which results in poorer per-
formance (i.e., zero-inflated models appear to overfit the data) compared to our 
optimal (suggested) model. These models are compared in Table 3.  

6 We calculated crash rates as the ratio of crash counts to vehicle miles 
traveled in thousands.  

7 https://www.epa.gov/sites/production/files/2014-03/documents/sld_user 
guide.pdf. 

8 Entropy = −
∑5

i=1piln pi where pi is the proportion of employment in type i 
in the census block group (U.S. Department of Transportation, 2021). We 
considered a five-tier employment classification scheme (retail, office, indus-
trial, service, and entertainment) from the U.S. Census LEHD Origin-Destination 
Employment Statistics Work Area Characteristics tables (LEHD, 2021).  

9 We excluded covariates that showed a correlation greater than 0.4 in our 
final variable selection for advanced spatial models since the estimated effects 
of correlated variables appeared to swing widely and weaken the statistical 
power of the regression model. 
10 With regard to nonspatial models (baseline models), we employed gener-

alized linear mixed models. It is worth noting that the difference between 
nonspatial and spatial models is the adoption of BYM2 priors to account for 
spatial correlation. 
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LPML of model 3 is even higher than that of model 2). Among the spatial 
models, we selected model 3 as our optimal choice; thus, our discussion 
of outcomes will be based on model 3. When interpreting the results, one 
should note that the effects are linked to the relative risks of injury and 
fatal crashes because the VMT offset effectively makes the dependent 
variable λ/VMT. 

Regarding fixed effects, we considered several contextual variables 
including sociodemographic factors, transportation-related variables, 
and built-environment features in each census block group.11 Our results 
showed that the relative risks of crashes are positively associated with 
having a high school or college education, while population density was 
negatively correlated with the risks. Additionally, although the esti-
mated parameters were not statistically meaningful, the influence of 
younger cohorts (aged 15–19 and 20–24) appeared to be positive, 
indicating an elevated risk in these age groups (consistent with the 
findings of other studies such as Huang et al. (2010), Aguero-Valverde 
(2013), and Lym and Chen (2020)). Gross activity density seemed to be 
negatively associated with DD-related injuries. 

Regarding the effects of built environments, intersection density was 
positively associated with relative injury risks by DD. Due to the strong 
multicollinearity, however, we were unable to utilize the roadway 
network density variable, which may be an important contributing 

factor in understanding injury risks. We also considered the level of 
urbanization, consisting of rural, suburban, and urban, and selected 
rural as the reference category for comparison with the influence of 
other categories. In reference to a rural block group, a census block 
group classified as urban is more likely to have elevated injury and fa-
tality risks whereas based on a 95% Bayesian credible interval, we did 
not find any strong statistical evidence for suburban block groups. A 
higher proportion of commercial land use in a census block group in-
creases risks of injury and fatal crashes. Likewise, we verified that land- 
use diversity was positively correlated with relative risks, suggesting 
possible higher risks due to more diversified land use. 

Table 4 also presents a systemic breakdown of random effects, 
focusing on various types of unobserved heterogeneity originating from 
the spatial alignments of the study region. We assumed that the unob-
served heterogeneity (latent influences) of level 1 (block group) is 
characterized by spatially structured random effects under the BYM2 
specification. Those of level 2 (census tract) and level 3 (county) stem 
from two uncorrelated random effects. For level 1 (block group) het-
erogeneity, the posterior mean of the mixing parameter (φ) was esti-
mated by 0.706 (Table 4 and Fig. 4, left panel), suggesting a significant 
marginal variance contribution of the spatial component. That is, the 
scaled spatially structured random component accounted for 84% 
(

̅̅̅̅̅̅̅̅̅̅̅̅̅
0.706

√
= 0.84) of the overall variability of residual relative risks across 

census block groups. This justifies our adoption of the BYM2 model 
instead of a nonspatial model. 

Furthermore, a comparison of random effects among models 1, 2, 
and 3 revealed that the estimated posterior mean of lower- 
administrative-level precision parameters (τs, τk) increases with the 
introduction of upper-administrative-level heterogeneity. We observed 
a similar increase in the estimated posterior mean of τk (precision of 

Fig. 2. Frequency distribution of injuries and fatal crashes according to urbanization.  

11 Before employing the formal regression models, we performed correlation 
analysis. Variables showing correlations greater than 0.4 were excluded from 
the subsequent statistical analysis. These included total roadway network 
density; number of jobs; median household income; proportion of population 
aged 30–39, 40–49, 50–64, and 65 and above; proportion of nonwhite popu-
lation; unemployment rate; and vacancy rate of each census block group. 
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census tracts) from 11.126 to 11.806 when the model complexity 
increased (i.e., by county-level random effects). One should note that 
precision is the inverse of variance; hence, higher precision indicates 
smaller variability. This supports our adoption of the multilevel struc-
ture in understanding DD-related crash injury risks. 

Two precision parameters (τk, τl) addressed the multilevel unob-
served heterogeneity from level 2 (census tract) and level 3 (county). 
The magnitude of the posterior mean of each precision parameter 
showed that certain amounts of random fluctuation were derived from 
the multilevel structure (levels 2 and 3) even after accounting for both 
fixed and random effects at level 1 (block group). The right panel of 
Fig. 4 presents the distribution of marginal standard deviation param-
eters12 where we can compare each level’s relative contribution to 
overall variability. With the same scale, we confirmed that level 1 
dominated the other two. In light of this, we presented the intraclass 
correlation coefficient, a measure of relative contribution to the overall 
residual variability, for level 1. This was estimated at 80.4% (0.804) on 
average (posterior mean), suggesting a substantial amount of unob-
served heterogeneity originating from level 1 (block group). 

5.3. Places with higher relative risks of injury and fatal DD crashes 

The left panel of Fig. 5 shows the posterior mean of the spatially 
structured random effects associated with DD in Central Ohio. The left 
panel suggests that after controlling for the effects of the fixed cova-
riates, we identified the hidden risks of injury and fatal distraction- 

affected crashes that may have been concealed in the raw observa-
tions. The spatially structured random effects imply that census block 
groups in the central city (Columbus) and more developed areas are 
likely to have increased relative risks, while those outside the central 
areas are exposed to fewer risks, revealing their dependency on neigh-
boring locations. This indicates that DD crashes that cause injury or 
fatalities do not occur randomly but rather happen at specific locations. 

One important advantage of our Bayesian framework was that we 
could examine the posterior probability of relative risk, that is, the 
probability of observing a certain number of crashes per VMT. To 
illustrate, suppose we consider two crashes per VMT as exceptionally 
high (i.e., twice the risk of injury and fatality, Pr(θi > 2|data)13). The 
right-hand panel of Fig. 5 shows this high crash frequency level in our 
study area. Unlike Fig. 3, which presents injury and fatal DD crash dis-
tribution of raw counts and crash rates of census block groups, we 
adopted a model-based analytic approach to identify hot spots (places 
for further policy consideration) of DD crash injury risks. The darker the 
color, the higher the probability; these are areas where mitigation 
strategies may be most effective. We believe that identifying areas with 
excessive relative risks of distraction-affected injury and fatal crashes 
can support transportation safety and health practitioners’ efforts to 
design new safety measures and enhance existing ones. 

Fig. 3. Spatial distribution of injury crashes due to distracted driving.  

12 The inverse of a precision parameter is a variance. The standard deviation is 
obtained when we apply the square root to the variance. We scaled each 
parameter to 1 so that their relative influences can be comparable. 

13 The exceedance probability of the relative risks for each census block group 
was based on the posterior distribution of the risks. When calculating the 
probability, we considered the fixed effects from covariates and multilevel 
unobserved heterogeneity. 
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6. Concluding remarks 

By examining the spatial alignments of administrative units in the 
Columbus Metropolitan Statistical Area, we explored the role of unob-
served heterogeneity in DD-induced injury risks in addition to the in-
fluence of fixed effects by a series of covariates. Adopting a census block 
group as a unit of analysis, we were able to incorporate the spatial 
alignment of administrative units, which allowed us to identify the 
multilevel latent influences on the relative risks of DD-related injury and 
fatal crashes. Our analysis confirmed spatially structured latent effects 
shared by neighboring block groups as well as random influences from 
upper-level hierarchical units (census tracts and counties). The selected 
model further showed the unobserved heterogeneity whose variability 
or fluctuation can be largely contributed by block-group and tract-level 
random effects. We also found that the relative contribution of spatially 
structured random effects (intraclass correlation) in the block-group 
level accounted for 80.4% of the total residual variability (after con-
trolling for fixed effects by covariates), justifying our use of a multilevel 
analytical framework. 

We observed that a higher population density is associated with 
lower injury and fatal crashes caused by DD. The negative effect of 
population density on the risks may be explained by the stronger safety 
standards/regulations imposed by policymakers or safety officials to 
prevent DD-related crashes in a densely populated area. Meanwhile, we 
also found that the proportion of commercial land use, land-use di-
versity, and intersection density were positively associated with crash 
occurrence, contributing to an elevated risk of injury and fatality. 
Notably, the positive influence of land-use diversity on DD-induced in-
juries differs from the findings of Fatmi and Habib (2019). Fatmi and 
Habib (2019) investigated the severity of DD-related crashes on in-
dividuals and the effects of surrounding environments such as land-use 
mix and sidewalk length whereas our study examined relative risks (i.e., 
frequency of injuries) using aggregated data (i.e., census block group as 
a unit of analysis). The structure of the study design and driving culture 
between two regions (i.e., Nova Scotia in Canada and CMA in Ohio, 
USA) might have influenced the outcomes. Our study further suggests 
that a census block group classified as urban is likely to be credibly 
associated with relative risks compared with those categorized as rural. 

These findings suggest several practical implications. As previously 
noted, our research focus area was grounded in the 2016–2040 MTP by 
the MORPC (Mid-Ohio Regional Planning Commission (MORPC), 2020). 
After the MTP, the MORPC developed the Central Ohio Transportation 
Safety Plan (Mid-Ohio Regional Planning Commission (MORPC), 2021) 
for the region, where DD is a primary driving safety concern. The safety 
plan, however, does not consider the multifaceted feature of DD in 
Central Ohio, which provided us the motivation to conduct this 
research. We argue that this paper can help support and improve 
transportation safety in Central Ohio. 

For instance, although the evidence is not strong, younger age co-
horts (e.g., 15–19, 20–24) are prone to DD, which might cause injury or 
fatal crashes. Thus, reinforcing or enhancing safety measures for these 
groups should be considered (e.g., mandatory driver’s education 
designed to reduce DD behavior or the promotion of cellphone or texting 
bans for novice drivers). As previously noted, block groups with higher 
intersection density may result in more DD-induced injuries or fatal 
crashes. We also identified hot spots with twice the relative risks 
compared to the overall average across census block groups. These as-
pects may together suggest regions of policy intervention (e.g., higher 
intersection density as well as excessive relative risks) and the creation 
of safety management plans to prioritize scarce resource allocation. 

Several limitations were not fully addressed in this study. Although 
our research confirmed the existence of multilevel unobserved hetero-
geneity from the spatial arrangement of administrative units and spatial 
correlation among adjacent census block groups, we did not consider 
covariates specific to the higher level of hierarchies that might be 
confounded with lower-level variables. We also assumed that the 

Table 2 
Summary of study variables (N = 1024 census block groups).  

Variable Description Min Max Mean Variance 

Response Variables (Crash Counts) 
Total1) Total crashes 0 116 12.2 213.73 
Injury1) Evident +

severe + fatal 
crashes 

0 20 2.03 7.49  

Traffic-Related Variables 
VMT2) Vehicle miles 

traveled in 
thousands 

0 212.75 22.64 390.54 

Road network3) Total road 
network density 

1.45 38.14 15.51 49.04 

Intersection3) Auto-oriented 
intersection 
density 

0 24.4 1.1 8.06  

Areal 
Descriptors      

A. Measured in Numbers 
Population 

density 
Population 
density 
(persons/square 
miles) 

0 68798 5185 24505591 

Jobs Number of jobs 0 39463 804 5508830 
Income Median 

household 
income ($/year) 

0 250001 65531 1372256939 

Activity4) Gross activity 
density 

0.028 241.35 6.35 116.45 

Landmix5) Land-use 
diversity 

0 0.985 0.429 0.1046 

B. Measured in Percentages 
A1519 Population aged 

15–19 years 
0 79.80 6.05 38.77 

A2024 Population aged 
20–24 years 

0 92.05 7.79 121.45 

A2529 Population aged 
25–29 years 

0 47.14 8.94 58.1 

A3039 Population aged 
30–39 years 

0 39.85 14.3 39.37 

A4049 Population aged 
40–49 years 

0 53.33 12.91 36.19 

A5064 Population aged 
50–64 years 

0 50.87 18.83 55.92 

Nonwhite Ethnicity other 
than white 

0 100 21.34 643.28 

High school High school 
degree or less 

0 100 10.47 124.06 

College College degree 0 91.3 52.05 362.9 
Vehicle Households with 

1 or 2 vehicles 
available 

0 100 73.7 186.06 

Unemployment Unemployment 
rate 

0 52.01 7.01 56.7 

Vacancy Vacancy rate 0 88 10.21 135.21 
Commercial Commercial 

land use 
0 84 10.41 283.13 

Residential Residential land 
use 

0 100 71.72 776.54 

Industrial Industrial land 
use 

0 44 1.21 23.75 

Note: 1) The measurement is based on census block group (level 1), which is the 
unit of analysis for this study (N = 1024). There are 338 census tracts (level 2) 
and 5 counties (level 3) in our study region.2) As an offset (exposure), we 
employed vehicle miles traveled (VMT). 3) Adopted from the Smart Location 
Database (U.S. Environmental Protection Agency (EPA), 2020) 4) (Gross) Ac-
tivity density consists of the sum of employment and housing units in each 
census block group. 5) An entropy measure for the five-tier employment cate-
gories was applied to calculate land-use diversity (U.S. Department of Trans-
portation, 2021). 
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relation between the outcomes of DD crashes and some predictors was 
linear, ignoring the possibility of quadratic or nonparametric terms. In 
addition, our study did not consider other types of crashes besides those 
induced by DD and focused only on DD-related injuries and fatal crashes, 
excluding possible injuries and PDO crashes, which may reveal different 
outcomes. As suggested by Rahman Shaon et al. (2019), different injury 
severity levels are likely to be correlated, which would require a 
multivariate model to account for cross-severity correlations. Our study 
did not explore these aspects. Furthermore, various types of crashes 
other than DD may share similar features of spatial influences on DD, 
which can help us develop a comprehensive transportation safety plan. 
This research used a five-year aggregate crash data to focus on the 
spatial pattern of the relative risks; consequently, we ignored the tem-
poral dimension of crash occurrences and its latent influences. 

Nevertheless, by providing different insights, we believe that our efforts 
can help improve the understanding of DD-induced crashes. 

Ethics statement 

Not applicable. 

Funding 

Youngbin Lym was supported by Basic Science Research Program 
through the National Research Foundation of Korea funded by the 
Ministry of Education (NRF-2021R1A6A3A01087232) and a research 
grant from Kookmin university. Seunghoon Kim was funded by a 
research grant from the Korea Research Institute for Human Settlements 

Table 3 
Comparison of goodness-of-fit measures of various models.   

Nonspatial10 Spatial ZIP spatial2) 

Model 11) Model 21) Model 31) Model 1 Model 2 Model 3 Model 1 Model 2 Model 3 

DIC 4039.1 3353.2 3353 3320.9 3313.8 3314.9 5214.9 5209.4 5206.3 
WAIC 4089.8 3343.5 3342.1 3297 3290.9 3295.5 5870 5860 5848.3 
LPML − 2287.7 − 1963.9 − 1964.5 − 2020.5 − 1948 − 1929.4 − 5682.1 − 5689.3 − 5643.2 

Note: 1) Model 1 only considers level 1 (1024 census block groups) random influences, while models 2 and 3 account for level 1 and 2 (census tracts) and levels 1, 2, 
and 3 (counties) multilevel heterogeneity, respectively. Hence, model 3 incorporates random effects from both 338 census tracts and 5 counties. 2) We employ a zero- 
inflated Poisson (ZIP) model to deal with potential zero-inflation issues. 

Table 4 
Comparison of the spatial models (posterior means and 95% credible intervals).   

Dependent variable: injury and fatal crash counts (Yi) 

Model 1 Model 2 Model 3 

Mean (S.D.) 95% C.I  Mean (S.D.) 95% C.I Mean (S.D.) 95% C.I 

Fixed effects 
Intercept − 8.074 (0.366) (− 8.792, − 7.356)  − 7.986 (0.376) (− 8.721, − 7.247) − 8.032 (0.377) (− 8.771, − 7.289) 
Sociodemographic 
Log (Population density)1) − 0.35 (0.062) (− 0.472, − 0.229)  − 0.371 (0.063) (− 0.494, − 0.248) − 0.37 (0.062) (− 0.493, − 0.248) 
Ages 15–19 0.013 (0.007) (− 0.002, 0.026)  0.012 (0.007) (− 0.002, 0.026) 0.012 (0.007) (− 0.002, 0.026) 
Ages 20–24 0.002 (0.005) (− 0.008, 0.012)  0.003 (0.005) (− 0.007, 0.013) 0.003 (0.005) (− 0.007, 0.013) 
Ages 25–29 − 0.001 (0.006) (− 0.012, 0.011)  − 0.002 (0.006) (− 0.014, 0.009) − 0.002 (0.006) (− 0.014, 0.009) 
High school degree 0.018 (0.004) (0.01, 0.027)  0.018 (0.004) (0.009, 0.026) 0.018 (0.004) (0.009, 0.026) 
College degree 0.009 (0.003) (0.004, 0.014)  0.009 (0.003) (0.004, 0.014) 0.009 (0.003) (0.004, 0.014) 
Vehicle ownership 0.001 (0.003) (− 0.005, 0.007)  0.001 (0.003) (− 0.005, 0.006) 0.001 (0.003) (− 0.005, 0.006) 
Gross activity density − 0.001 (0.003) (− 0.008, 0.002)  − 0.001 (0.003) (− 0.007, 0.005) − 0.001 (0.003) (− 0.007, 0.005) 
Land use 
Commercial land use 0.013 (0.003) (0.008, 0.018)  0.014 (0.003) (0.009, 0.019) 0.014 (0.003) (0.009, 0.019) 
Residential land use − 0.003 (0.002) (− 0.008, 0.002)  − 0.002 (0.002) (− 0.007, 0.003) − 0.002 (0.002) (− 0.007, 0.003) 
Industrial land use 0 (0.007) (− 0.013, 0.013)  0.001 (0.007) (− 0.013, 0.014) 0.001 (0.007) (− 0.013, 0.014) 
Land− use diversity 0.315 (0.129) (0.061, 0.569)  0.35 (0.129) (0.097, 0.604) 0.345 (0.128) (0.094, 0.598) 
Roadway network        
Intersection density 0.066 (0.011) (0.044, 0.088)  0.062 (0.012) (0.039, 0.085) 0.062 (0.011) (0.04, 0.085) 
Level of urbanization2)        

Urban 0.49 (0.195) (0.107, 0.872)  0.56 (0.208) (0.152, 0.968) 0.567 (0.21) (0.154, 0.98) 
Suburban 0.301 (0.164) (− 0.022, 0.623)  0.333 (0.175) (− 0.011, 0.678) 0.332 (0.177) (− 0.015, 0.679) 
Random effects (Hyperparameters) 
φ (Mixing parameter) 0.666 (0.091) (0.477, 0.831)  0.707 (0.099) (0.492, 0.872) 0.706 (0.105) (0.495, 0.894) 
τs (Precision of level 1) 3) 1.600 (0.181) (1.273, 1.982)  1.951 (0.307) (1.449, 2.649) 2.021 (0.335) (1.384, 2.688) 
τk (Precision of level 2) 3)    11.126 (4.715) (4.932, 23.021) 11.806 (5.918) (4.951, 27.26) 
τl (Precision of level 3) 3)      1760 (30792) (6.168, 10781) 
Intraclass correlation 
σ2

s /(σ2
s +σ2

k)
4)    0.834 (0.065) (0.684, 0.936)   

σ2
s /(σ2

s +σ2
k +σ2

l )
4)      0.804 (0.088) (0.610, 0.941) 

Goodness of fit 
DIC 3320.85  3313.78  3314.94   
WAIC 3296.95  3290.92  3295.46   
Marginal log likelihood − 1287.22  − 1285.40  − 1285.44   

Note: 1) To stabilize the variance and skewness of the population density distribution, we applied logarithmic transformation.2) Reference category: rural. 3) Precision 
is the inverse of variance (i.e., τ− 1 = σ2); level 1 (block group), level 2 (census tract), level 3 (county). 4) Intraclass correlation: a relative contribution of spatially 
correlated random effects (level 1) on overall variability. 5) Exposure variable: vehicle miles traveled (VMT) used as an offset of the differences in traffic volume.  
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Fig. 4. Posterior distribution of hyperparameters.  

Fig. 5. Places with further policy intervention. 
Note: Spatial effects (residual) by BYM2 (left); exceedance probability of twice the (overall) relative risks (right). 
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Appendix  

Table A1 
Comparison of outcomes of the optimal model (injury vs. total crashes)   

Injury and fatal crashes Total crashes 

Mean (S.D.) 5) 95% C.I.5) Mean (S.D.) 95% C.I. 

Fixed effects 
Intercept − 8.032 (0.377) (− 8.771, − 7.289) − 6.07 (0.292) (− 6.643, − 5.496) 
Sociodemographic 
Log (Population density)1) − 0.37 (0.062) (− 0.493, − 0.248) − 0.366 (0.045) (− 0.454, − 0.277) 
Ages 15–19 0.012 (0.007) (− 0.002, 0.026) 0.013 (0.005) (0.003, 0.022) 
Ages 20–24 0.003 (0.005) (− 0.007, 0.013) 0.003 (0.003) (− 0.004, 0.01) 
Ages 25–29 − 0.002 (0.006) (− 0.014, 0.009) − 0.005 (0.004) (− 0.013, 0.003) 
High school degree 0.018 (0.004) (0.009, 0.026) 0.012 (0.003) (0.006, 0.018) 
College degree 0.009 (0.003) (0.004, 0.014) 0.005 (0.002) (0.001, 0.009) 
Vehicle ownership 0.001 (0.003) (− 0.005, 0.006) 0.001 (0.002) (− 0.003, 0.005) 
Gross activity density − 0.001 (0.003) (− 0.007, 0.005) − 0.004 (0.002) (− 0.009, 0) 
Land use 
Commercial land use 0.014 (0.003) (0.009, 0.019) 0.012 (0.002) (0.008, 0.016) 
Residential land use − 0.002 (0.002) (− 0.007, 0.003) − 0.003 (0.002) (− 0.006, 0.001) 
Industrial land use 0.001 (0.007) (− 0.013, 0.014) − 0.001 (0.005) (− 0.011, 0.008) 
Land-use diversity 0.345 (0.128) (0.094, 0.598) 0.523 (0.086) (0.353, 0.693) 
Roadway network     
Intersection density 0.062 (0.011) (0.04, 0.085) 0.068 (0.009) (0.051, 0.085) 
Level of urbanization2) 

Urban 0.567 (0.21) (0.154, 0.98) 0.727 (0.161) (0.413, 1.044) 
Suburban 0.332 (0.177) (− 0.015, 0.679) 0.506 (0.139) (0.235, 0.779) 
Random effects (Hyperparameters) 
φ (Mixing parameter) 0.706 (0.105) (0.495, 0.894) 0.725 (0.075) (0.558, 0.850) 
τs (Precision of level 1) 3) 2.021 (0.335) (1.384, 2.688) 1.868 (0.173) (1.549, 2.230) 
τj (Precision of level 2) 3) 11.806 (5.918) (4.951, 27.26) 21.888 (10.285) (9.75, 48.66) 
τk (Precision of level 3) 3) 1760 (30792) (6.168, 10781) 1016.294 (7977.417) (9.452, 6837.27) 
Intraclass correlation 
σ2

s /(σ2
s +σ2

j +σ2
k)

4) 0.804 (0.088) (0.610, 0.941) 0.887 (0.053) (0.759, 0.959) 
Goodness of fit 
DIC 3314.94 5639.85 
WAIC 3295.46 5510.03 
Marginal log likelihood − 1285.44 − 2760.97 

Note: 1) To stabilize the variance and skewness of the population density distribution, we applied logarithmic transformation. In addition, when transforming the 
population density variable, we added 1 (a constant) to circumvent the issue of logarithmic transformation of zero values. 2) Reference category: rural. 3) The inverse 
of variance is precision (i.e., τ− 1 = σ2). Level 2 (census tract); level 3 (county). 4) Intraclass correlation: a relative contribution of spatially structured random effects on 
overall variability. 5) Exposure variable: vehicle miles traveled (VMT); S.D.: standard deviation, C.I.: credible interval.  

Table A2 
Comparison of goodness-of-fit measures of various models   

Nonspatial Spatial (BYM2 + PC prior) 

M1 M2 M3 M1 M2 M2-1 M2-2 M3 M3-1 M3-2 M3-3 M3-4 

DIC 4039.1 3353.2 3353 3320.9 3313.8 3313.8 3314.1 3314.9 3314.3 3313.2 3313.7 3313.6 
WAIC 4089.8 3343.5 3342.1 3297 3290.9 3297.1 3295.4 3295.5 3299 3293.4 3294.7 3295.2 
LPML − 2287.7 − 1963.9 − 1964.5 − 2020.5 − 1948 − 1877.9 − 1907.7 − 1929.4 − 1870.8 − 1915.2 − 1911.3 − 1898.2 

Note: 1) M1 (model 1) only considers level 1 (census block groups) random influences, while M2 and M3 account for levels 1 and 2 (census tracts) and levels 1, 2, and 3 
(counties) cross-group heterogeneity, respectively. Hence, M3 incorporates random effects from both 338 census tracts and 5 counties. 2) In the case of spatial models, 
M1: BYM2 (level 1); M2: BYM2 (level 1) + IID (level 2); M2-1: BYM2 (level 1) + ICAR (level 2); M2-2: BYM2 (level 1) + BYM2 (level 2); M3: BYM2 (level 1) + IID (level 
2) + IID (level 3); M3-1: BYM2 (level 1) + ICAR (level 2) + IID (level 3); M3-2: BYM2 (level 1) + BYM2 (level 2) + IID (level 3); M3-3: BYM2 (level 1) + BYM2 (level 2) 
+ ICAR (level 3); M3-4: BYM2 (level 1) + BYM2 (level 2) + BYM2 (level 3). 

Table A2presents the results of the performance measures of several spatial models investigated in this study. M1 (model 1) considers the block- 
group-level latent influences characterized by the BYM2 specification, while M2 (model 2) and M3 (model 3) incorporate latent effects from census 
tracts and tracts + counties, respectively. The tested spatial models include. 
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⁃ M1: BYM2 (block group only)  
⁃ M2: BYM2 (block group) + IID (tract)  
⁃ M2-1: BYM2 (block group) + ICAR (tract)  
⁃ M2-2: BYM2 (block group) + BYM2 (tract)  
⁃ M3: BYM2 (block group) + IID (tract) + IID (county)  
⁃ M3-1: BYM2 (block group) + ICAR (tract) + IID (county)  
⁃ M3-2: BYM2 (block group) + BYM2 (tract) + IID (county)  
⁃ M3-3: BYM2 (block group) + BYM2 (tract) + ICAR (county)  
⁃ M3-4: BYM2 (block group) + BYM2 (tract) + BYM2 (county) 

Model complexity increases as we incorporate latent influences from upper-level administrative units. We observed that changes in DIC and WAIC 
values from M1 to M2 of the spatial models appeared significant. After that, however, we observed extremely small (negligible) differences in DIC and 
WAIC values among sophisticated spatial models (M2, M2-1, … M3,.. M3-4). This indicates that addressing spatially structured random effects at the 
tract level or county level does not improve the performance of the models. Hence, we selected simpler models (M2 and M3) as our optimal choices 
since they perform as efficiently as the more sophisticated ones. 
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