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Abstract
Introduction

The emergence and rapid spread of the coronavirus disease 2019 (COVID-19) pandemic have revealed the
limitations in current healthcare systems to handle patient records securely and transparently, and novel
protocols are required to address these shortcomings. An attractive option is the use of Ethereum smart
contracts to secure the storage of medical records and concomitant data logs. Ethereum is an open-source
platform that can be used to construct smart contracts, which are collections of code that allow transactions
under certain parameters and are self-executable.

Methods

The present study developed a proof-of-concept smart contract that stores COVID-19 patient data such as
the patient identifier (ID), variant, chest CT grade, and significant comorbidities. A sample, fictitious patient
data for the purpose of testing was configured to a private network. A smart contract was created in the
Ethereum state and tested by measuring the time to insert and query patient data.

Results

Testing with a private, Proof of Authority (PoA) network required only 191 milliseconds and 890 MB of
memory per insertion to insert 50 records while inserting 350 records required 674 milliseconds and similar
memory per insertion, as memory per insertion was nearly constant with the increasing number of records
inserted. Retrieving required 912 MB for a query involving all three fields and no wildcards in a 350-record
database. Only 883 MB was needed to procure a similar observation from a 50-record database.

Conclusion

This study exemplifies the use of smart contracts for efficient retrieval/insertion of COVID-19 patient data
and provides a case use of secure and efficient data logging for sensitive COVID-19 data.
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Introduction

The ongoing coronavirus disease 2019 (COVID-19) pandemic has revealed the limitations in current
healthcare systems to handle patient records. Specifically, the reliance on several entities to communicate
sensitive patient information has raised questions related to security [1-3] and transparency [4-7], which has
become even more pronounced during the pandemic [8-9]. Medical records of patients contain private
information, such as past medical history, significant comorbidities, and lung CT scan grading. Access to
such data not only allows for efficient medical treatment but also for health officials to track the progress of
COVID-19. However, these abilities depend on the security of such records. Furthermore, as data of such
nature are often held in databases using multi-level permission security, access and upload of time-sensitive
information are affected. Blockchain technology is gaining traction in healthcare applications and has the
potential to mitigate these issues.

Ethereum is a unique type of blockchain as it allows blockchain technology to adapt to software
applications. For example, one could construct programs that run if and only certain requirements and
conditions are satisfied. These programs are referred to as smart contracts, which are self-executable pieces
of code that remain within the Ethereum state and allow certain transactions when called for [10]. Ethereum
platform allows such code to be run by providing certain programmable logic requirements. The platform
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also allows for data storage not limited to cryptocurrency. These characteristics allow for the platform and
its smart contracts to be molded to other use cases that require robust integrity and amenability, such as
holding patient data. For example, Ethereum blockchain has been shown to handle pharmacogenomics data
comprising gene-variant-drug combinations, as well as neuroimaging data [11-12]. No studies, however,
have so far investigated the implementation of Ethereum blockchain using COVID-19 patient data. The
present study describes a case use of a smart contract to incorporate COVID-19 patient data into the
Ethereum platform to enhance patient privacy, records security, and data immutability.

Materials And Methods

We present here a quick, efficient, and memory-saving smart contract to store and query COVID-19-related
patient data in Ethereum. A brief overview of Ethereum is provided here. The Ethereum yellow paper
contains additional technical explanations [13].

Explanation of smart contracts and the Ethereum system

The major data structure that Ethereum uses is modified Merkle Patricia tries. Instead of needing to store all
the data in the blockchain, these tries allow the blocks to only store the root node hash of each trie, all the
while preserving immutability (Figure /A). The major trie types in Ethereum include account storage trie,
world state trie, transaction receipt trie, and transaction trie [13]. The world state is analogous to the global
state that is frequently updated by executing transactions and maps account states and addresses (accounts).
Information associated with certain accounts and smart contract data is in the account storage trie.
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FIGURE 1: (A) Overview of Ethereum blockchain and (B) proof-of-
concept smart contract architecture

Smart contracts can be described as self-executable, Turing-complete: programs that perform within the
Ethereum Virtual Machine (EVM) and maintain their own unique storage [13]. Operations within these
contracts are allowed three space types for storing data. These types include memory, stack, and long-term
storage. The contract’s storage continues to exist after the computation has finished, as opposed to stack
and memory [10]. Ethereum’s native cryptocurrency, Ether, is used to pay costs; colloquially termed ‘gas’,
these costs are associated with calling, storing, and retrieving smart contracts [10]. Smart contracts are
programmed using an object-oriented programming language designed specifically for EVM, called Solidity
[14].

Network nodes must agree as to which transactions are allowed to be added to the blockchain through
consensus mechanisms. One such mechanism, Proof of Work (PoW) consensus, requires “mining” of blocks
by nodes to solve a mathematical puzzle utilizing computational energy. Only when the puzzle is solved and
validated by other nodes on the network is the block aggregated to the chain, and a reward is given to the
node that succeeded in mining the block. A faster alternative to PoW is the Proof of Authority (PoA)
consensus. This mechanism consists of certain trusted nodes, known as ‘authorities’, which are the only
nodes allowed to add new blocks after validating transactions. Since this type of mechanism is faster than
PoW, it is commonly utilized in configuring private blockchain networks [15].

Network configuration

Querying and storing sample patient data were experimented via smart contracts in Truffle suite v5.1.62, an
Ethereum development framework equipped with a JavaScript testing environment. The development
network was private and separate from the public Ethereum network, which allowed for testing without the
need for constantly deploying. The contracts were run using the PoA consensus with six nodes on the
network. As node configurations do not change performance in private PoA networks, different
configurations were not assessed [16]. Default gas limits were utilized throughout smart contract testing. The
smart contract code is available at https://github.com/Batchu-Sai/covid19.
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Database architecture and insertion

Using arrays to store data requires iteration for observation retrieval. To circumvent this, mappings were
implemented, which are conducive to efficient key-value lookups. Four storage mappings were implemented
with Solidity’s mapping type. Every observation was placed in its individual struct, which is a special type to
group numerous variables of heterogeneous types. Fictitious patient data was used for one mapping. The
other three mappings - the variant, comorbidities, and patient identifier (ID) - acted as keys to an array of
counter IDs. This counter ID variable assigns a custom index for each observation insertion and is globally
updated. This architecture allows using any of the three keys to retrieve the inserted patient observation
using the specific counter IDs (Figure /B) and likewise allows for non-iterative lookup for more efficient
database querying.

A function was written to insert a record for a single patient for a specific variant-patient ID-comorbidity
combination (Figure 2). Fictitious patient data was constructed, which included the COVID-19 variant, chest
CT severity grade, patient ID, patient age, and significant comorbidities. If required, the function first
converts the patient data to the desired storage type. Then the function checks if the combination already
exists. If not, the variant-patient ID-comorbidity combination is aggregated to an array. The variant, patient
ID, and comorbidities are utilized to key into their mappings. The counter ID is appended to the value array.
The counter ID variable is updated after the observation struct is inserted into the database with the key-
value pair (comprised of the counter ID - patient data struct).

Algorithm 1 Pseudocode for inserting observation

1: function INSERTOBSERVATION( STRING variant, UINT CTgrade, UINT pa-
tientID, UINT patientAge, STRING comorbidity, bytes32 ipfsHash)

2: variant « variant.uintToBytes32

3: patientID « patientID.uint ToBytes32

4; CTgrade + CTgrade.uintToBytes32

5: if observation exists in database then

6: uniqueObservations[i].push(variant, patientID, comorbidity)
T: variantMapping[variant].push(counterID)

8: patientIDMapping[patient1D].push(counterID)

9: comorbidityMapping[comorbidity].push(counterID)
10: database[counterID].push(counterID)

11: counterID++

12: end if

13: end function

FIGURE 2: Pseudocode for inserting observation

The variant, CT scan grade, patient ID, and age were stored as bytes32 variables. The comorbidities field was
treated as a string since comorbidities may be long descriptions and patients uncommonly present with
several comorbidities.

Querying database

A function used to query the observations was written to take up to three fields (variant, patient ID, and
comorbidities) along with wildcards to query by (Figure 53). Initially, the function examines which fields have
been queried. These fields are subsequently utilized as keys to retrieve the corresponding values from the
counter ID mapping. If wildcards were used to query, then all the counter IDs are returned. For each record,
the minimum length counter ID array is looped through to examine if it equals the counter ID from the outer
loop. The matching ID is taken to collect the value of the struct from the corresponding database

mapping. The framework was adapted from Giirsoy et al. [11].
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Algorithm 2 Pseudocode for querying observation
1: function QUERYOBSERVATION( STRING variant, STRING patientlD,
STRING comorbidity)

2 initialization;

3: counterIDList = [ ]

4: results = [ |

5 variants = [ ]

6: patientIDs = [ |

r comorbidities = [ |

8: if database empty then

o; return | |
10: else
11: length < number of fields queried (0, 1, 2, or 3)
12: counterIDList.push(IDs matching query)

13: if length == 0 then

14: counterIdList_push(all counterIDs in database)
15: else

16: variants.push(variant Mapping|variant])

7! patientIDs.push(patientIDMapping[patientID])
18: comorbidities. push{comorbidityMapping[comorbidity])
19: counterldList.push(intersection of counterIDs in variants,
20; patientIDs, and comorbiditys)

21: end if

22; for i < length(uniqueObservations in storage) do

23: for j < length(counterIDList) do

24 if counterldList[j] is ID of ith uniqueObservation then
25: results.push(database[j])

26: end if

7 -+
28 end for
29; i++
30 return results
31: end for
32: end if

33: end function

FIGURE 3: Pseudocode for querying observation

Results

JavaScript console with external scripts tested the smart contract. To confirm accuracy, 50 stochastic
queries were manually checked with the fields used to query and were confirmed to retrieve accurate results
in every case. Time and memory for inserting and querying were also measured, with varying numbers of
records stored in the database (Figure 4). The time to insert 50 records was 191 milliseconds while inserting
350 records required 674 milliseconds. Inserting 50 records required 890 MB of memory per insertion. To
insert 350 records required nearly the equivalent memory per insertion (Figure 4A). Retrieving required
nearly 912 MB for a query involving all three fields and no wildcards in a 350-record database. Only 883 MB
was needed to procure a similar observation from a 50-record database (Figure 4B). Retrieving from a 50-
record database with similar query characteristics required 16 seconds while a larger 350-record database
showed a 112-second retrieval time.
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FIGURE 4: (A) Insertion time and memory usage. (B) Retrieval time and
memory usage

Discussion

In this study, we presented a proof-of-concept and use case smart contract programmed in Solidity using the
Ethereum blockchain. This smart contract demonstrated the ability to store and retrieve COVID-19 patient
data. The method’s speed and memory per insertion were measured with varying database record sizes,
demonstrating that the technique is both rapid and readily feasible. This demonstrated a practical method
while also allowing for efficient memory and time usage when storing and retrieving observations. The
results show that blockchain technology can be used to solve problems not specific to cryptocurrency. The
results also exemplify the practicality and efficiency of smart contracts involving health-related data.

Secure maintenance of COVID-19 patient medical data is critical, as data corruption can lead to fatal
medical errors and misleading public health statistics. Moreover, data should only be accessible to
authorized persons such as healthcare workers and researchers. Solutions utilizing blockchain technology,
such as smart contracts, could prevent centralized point-of-failure scenarios, create an immutable database,
and allow decentralization, ultimately mitigating the probability of data corruption. Indeed, blockchain
technology is being conceptualized in other fields as well [11-12,17-20].

During the COVID-19 pandemic, patients have presented with a wide array of symptoms. As part of
diagnosing the condition, distinct criteria needed to be defined and met. Lung and infectious disease experts
have noted that an especially unique factor of COVID-19 patients is the sound of their breathing, speaking,
and dry coughing [21-24]. To diagnose patients’ conditions and create tools that can diagnose them in
physician-lacking settings, scientists have created machine-learning algorithms. These tools require large
datasets as input, and their final product algorithms can rapidly and automatically function in clinics. In this
case, algorithms were created to diagnose COVID-19 based on these sounds. Similarly, associations have
been found between other symptoms and COVID-19. The creation of such tools is highly dependent on large
datasets and their secure handling. In pandemics and other situations with large datasets containing private
patient information, the Ethereum blockchain can be used to speed up secure data storage and retrieval,
facilitating the faster and safer development of clinical tools.

As with any novel development, the Ethereum platform consists of limitations associated with smart
contracts. For instance, programming and deploying smart contracts require knowledge of the Solidity
language, which comprises numerous idiosyncrasies. Legal ramifications also need to be considered when
dealing with smart contracts, since they reduce dependence on intermediaries, including lawyers. Therefore,
it is imperative that all parties working with smart contracts understand the legal nomenclature of smart
contract law. There is also the possibility of delayed transactions in instances where blockchain congestion
results in delayed transactions and increase transaction costs. Such limitations exemplify the demand for a
stabler platform. Future studies should focus on how such smart contract methods can also be applied to
other problems in the medical research community. Additionally, future studies should also focus on other
smart contract architectures best suited for other types of medical data. However, the potential of using
smart contracts for COVID-19 information remains.

Conclusions

Blockchain technology can be used to store and retrieve COVID-19-related information securely,
immutably, and rapidly. The Ethereum blockchain presents several advantages and has not yet been applied
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to healthcare information storage, especially during pandemics. In this study, we presented a method for
securely and rapidly storing and retrieving COVID-19-related health information using smart contracts with
the Ethereum blockchain. It enables the protection of patient information while facilitating more efficient
research and communication.
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