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Your genes decide what you are listening to
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Ion channels, in particular low-voltage activated
potassium channels (KLVA) guard neuronal excitability
and shape individual neurons’ frequency-firing pat-
terns. The article by Lu et al.,1 published in the current
issue demonstrates how differential expression of
KLVA channels generates unique filtering properties
that tune neurons to their stimulus-specific inputs.

In the auditory system, phase-locking to a specific
phase of the stimulus waveform is an effective way to
encode the temporal pattern of a periodic stimulus like
a soundwave. However, generating ideally one spike for
each stimulus cycle poses 2 difficulties for this computa-
tion: First, low stimulus frequencies have longer stimu-
lus cycles which would accommodate more than one
spike per cycle and thus leading to a reduced temporal
representation of the stimulus. Second, for higher stim-
ulus frequencies a single stimulus cycle approaches the
neuron’s refractory period – jeopardizing its ability to
generate even one spike for each cycle. Obviously, the
brain overcomes this difficulty, but the question of
which particular intrinsic and/or synaptic properties
destine auditory neurons to phase-lock to either low- or
higher stimulus frequencies has been addressed in 2
recent studies. Lu1 and Oline2 both took advantage of
the chick cochlear nucleus (nucleus magnocellularis;
NM) where gradients of synaptic convergence and dif-
ferential expression of KLVA are superimposed onto the
tonotopic map of the nucleus. Neurons tuned to low-
frequency input overcome the “problem” of generating
more than one spike per cycle by integrating over

multiple coinciding subthreshold inputs.2 This is only
possible because KLVA expression is low in these low-
frequency neurons, as the slow slope of low-frequency
stimuli would activate KLVA and prevent temporal sum-
mation.2 Indeed, NM neurons processing mid-to-high
stimulus frequencies show a much higher expression of
KLVA resulting in faster membrane time constants and
limitation of temporal summation. Injecting sinusoidal
currents of different frequencies into mid-to-high fre-
quency neurons nicely demonstrated their filtering
properties which result in rejection of low-frequency
inputs and foster single spike responses to higher stimu-
lus frequencies.1,2

The high expression of KLVA in mid-to-high fre-
quency neurons significantly hyperpolarizes their rest-
ing membrane potential. Besides removing inactivation
from voltage-activated sodium channels, this hyperpo-
larization caused by KLVA also engages hyperpolariza-
tion-activated cyclic nucleotide modulated (HCN)
channels, which together further reduce the input resis-
tance of the neurons membrane and speed up their
membrane time constant. The expression of KLVA and
HCN is co-regulated in neurons of the mammalian
cochlear nucleus.3 Here this would suggest a higher
expression of HCN channels in mid-to-high frequency
neurons compared with low-frequency NM neurons.
Together KLVA and HCN provide an ideal composition
to encode fast, high-frequency inputs.

Given such differences in input convergence, ion
channel expression, output filtering properties or even
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the presence or absence of dendrites between NM
neurons processing low-frequencies compared with
those processing mid-to-high frequencies it is actually
interesting that these neurons have not yet been cate-
gorized into 2 distinct populations. At least in the
future, scientists should be aware of the properties
specific to each frequency-specific population, when
reporting data on NM neurons. This principle very
likely extends to other neurons that have previously
been thought of as more or less homogeneous popula-
tions, but where there is increasing evidence for neu-
ronal subpopulations based on gradients that are
superimposed on the tonotopic axis. A prominent
example in the mammalian auditory pathway would
be the medial nucleus of the trapezoid body where
there are gradients for voltage-gated potassium chan-
nels,4,5,6 HCN channels,6 encoding of input timing7

and even neuronal soma size.8 In summary, the
expression of specific sets of genes encoding for mem-
brane proteins and their regulation are impressive pre-
dictors of what inputs neurons are tuned to.
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