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Purpose: To investigate the potential clinical benefit of utilizing intensity-modulated
proton therapy (IMPT) to reduce acute hematologic toxicity for locally advanced non-
small cell lung cancer (LA-NSCLC) patients and explore the feasibility of a model-based
patient selection approach via the normal tissue complication probability (NTCP).

Methods: Twenty patients with LA-NSCLC were retrospectively selected. Volumetric
modulated arc photon therapy (VMAT) and IMPT plans were generated with a prescription
dose of 60 Gy in 30 fractions. A wide range of cases with varied tumor size, location,
stations of metastatic lymph nodes were selected to represent the general cancer group.
Contouring and treatment planning followed RTOG-1308 protocol. Doses to thoracic
vertebral bodies (TVB) and other organ at risks were compared. Risk of grade ≥ 3 acute
hematologic toxicity (HT3+) were calculated based on the NTCP model, and patients with
a reduction on NTCP of HT3+ from VMAT to IMPT (△NTCP_HT3+) ≥ 10% were
considered to ‘significantly benefit from proton therapy.’

Results: Compared to VMAT, IMPT significantly reduced the dose to the TVB, the lung,
the heart, the esophagus and the spinal cord. Tumor distance to TVB was significantly
associated with△NTCP _HT3+ ≥ 10%. For the patients with tumor distance ≤ 0.7 cm to
TVB, the absolute reduction of dose (mean, V30 and V40) to TVB was significantly lower
than that in patients with tumor distance > 0.7 cm.

Conclusion: IMPT decreased the probability of HT3+ compared to VMAT by reducing
the dose to the TVB in LA-NSCLC patients. Patients with tumor distance to TVB less than
0.7 cm are likely to benefit most from proton over photon therapy.
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INTRODUCTION

Lung cancer is the most commonly diagnosed cancer and the
leading cause of cancer-related death, responsible for 18% of
cancer mortalities, in which non-small cell lung cancer (NSCLC)
accounts for most of all new diagnoses (1). Approximately three-
quarters of lung cancers are locally advanced or advanced at the
time of diagnosis, requiring multi-disciplinary management (2).
For locally advanced NSCLC (LA-NSCLC), concurrent
chemoradiotherapy (CCRT) is the first-line treatment
recommended by the guidelines (3, 4). However, it is reported
that over 40% of patients suffered from ≥ grade 3 acute
hematologic toxicity (HT3+) during CCRT with photon
therapy (3, 5). Severe hematologic toxicity (HT) can result in
disruption of chemotherapy or reduction on the prescription
dose, disabling patients from completing standard treatment
(6, 7). Besides, several hematologic events have been proven to
be associated with the development of other treatment-related
complications and poor clinical outcomes. For example, previous
studies have shown that neutropenia was strongly associated
with RT-induced dysphagia/esophagitis (8), and grade ≥ 3
anemia and increased neutrophil-to-lymphocyte ratio were
associated with compromised survival (9, 10).

Bone marrow cells are highly radiosensitive. Uncompensated
injury to hematopoiesis with the massive destruction of both
mature cells and precursors can occur when large fields of bone
marrow are irradiated, which later manifests as a rapid decline in
peripheral blood cells (11). In fact, nearly 30% of bone marrow is
located in the thorax region (12). Deek’s work has proven that
hematologic toxicity risk was associated with the volume of the
thoracic vertebral bodies (TVB) receiving low-dose radiation
(13). Based on their work, Barney et al. have established the
Lyman–Kutcher–Burman (LKB) model for acute HT in patients
receiving CCRT for lung cancer (7), further establishing the link
between radiation dose and the occurrence of HT3+.

Proton beam therapy offers a significant dosimetric advantage
over conventional photon radiotherapy in terms of organs at risk
(OARs) sparing utilizing its unique physical properties of the
Bragg peak (14, 15). Numerous clinical studies have
demonstrated the superiority in reducing normal tissue
toxicity, such as cardiopulmonary toxicity, esophagitis, and
dermatitis, in NSCLC (16–18). Although Sejpal’s work
demonstrated no difference in HT risk between 3D conformal
proton therapy (3DCPT) and other forms of photon therapy
(19). Newer proton therapy technique, such as pencil beam
therapy, offers a significant dosimetric advantage and clinical
outcome over 3DCPT (20–22). Thus, decreasing the risk of HT
via pencil beam scanning technique may be promising.

We hypothesize that intensity-modulated proton therapy
(IMPT) could effectively reduce the dose to TVB without
compromising the dose to the target, potentially reducing the
incidence of acute HT3+. Based on the patient geometry and
normal tissue complication probability (NTCP) model results,
this study identified a subgroup of LA-NSCLC patients who may
benefit most from acute HT reduction using IMPT. To our best
of knowledge, this is the first investigation evaluating the
incidence of HT in LA-NSCLC patients in comparison with
Frontiers in Oncology | www.frontiersin.org 2
photon and pencil beam therapy. Such work could guide future
model-based optimal treatment modality selection in LA-
NSCLC patients with CCRT.
METHOD

Patient, Target Volume, and
OAR Definition
A total of twenty patients with LA-NSCLC were retrospectively
selected in this study, providing a variety of patient geometry
such as different tumor sizes, locations, and distances to
vertebrae bodies (Table 1). All these cases underwent photon
radiotherapy at our institution, and the Institutional Review
Board approved using the patient data. All patients received
Four-dimensional (4D) CT simulation for planning and
contouring. Gross Tumor Volumes (GTVs) (the primary
tumor and positive lymph nodes) were contoured on all 4D-
CT phases and combined into Internal GTV (IGTV). Clinical
Tumor Volume (CTV) was generated with an 8mm expansion of
GTVs and edited according to anatomic boundaries. 5mm
symmetrical expansion of CTV formed Planning Tumor
Volume (PTV) for VMAT plans. OAR structures, including
left lung, right lung, bilateral lungs, heart, esophagus, and
sometimes trachea if the tumor was centrally located, were
delineated based on RTOG-1308 (23). TVB from T1 to T10
was delineated as the surrogate for thoracic bone marrow (7).

Treatment Planning
Both VMAT and robust-optimized IMPT (RO-IMPT) plans
were generated using Raystation version 7.0 (RaySearch
Laboratory AB, Stockholm). VMAT plans were created with
two or four arcs using a Varian linear accelerator (Trilogy,
Varian medical system, Inc., Palo Alto, California). 95%
volume of the PTV was requested to receive the prescription
dose. Two or three fields single-field optimization (SFO)
planning approach was used in RO-IMPT plans based on the
beam model from an IBA ProteusPLUS® system. To satisfy the
prescription dose to clinical target, a CTV-based robust
optimization was used with parameters ± 3mm for x, y, z
directions and a range uncertainty of 3.5% (24). The Monte
Carlo dose calculation was used with the value 1.1 for the generic
relative biological effectiveness (RBE) (25). Both prescription
dose of the photon and proton was 60 GyE in 30 fx for the target.
Besides, the constraints of OARs were based on RTOG-1308 for
both photon and proton plans.

Planning Robustness and Quality
Evaluation
To evaluate the robustness of the IMPT plan quality, 21 worst
scenarios were created for all RO-IMPT plan with 3 mm
isocenter shift in the direction of anterior-posterior (A-P),
superior-inferior (S-I), and right-left (R-L) with + 3.5%, 0, and
−3.5% proton beam range uncertainties according to the
nominal proton plan (24, 26). The criteria set of robustness are
as follows: for the CTV: D90 ≥ 95% for the worst scenarios and
D95 ≥ 95% for all scenarios. The conformal index (CI) of CTV
June 2022 | Volume 12 | Article 812031
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was also used to assess the plan quality of both proton and
photon plans. CI was defined as:

CI = TVI=TIV ,

Where TVI represents 95% of the target volume covered by the
prescription dose and TIV represents the total isodose volume.
The closer to 1, the better the conformity of the target. Besides,
the detailed evaluation for all OARs was based on the constraints
of RTOG 1308 (23).

Evaluation of NTCP
The incidence of HT3+ was calculated from the LKB-NTCP
model shown in the following equations (27):

NTCP =
1ffiffiffiffiffiffi
2p

p
Z t

−∞
e−

x2

2     dx (1)

Where,

t =
EUD − TD50

mTD50
(2)

TD50 represents the threshold dose with a 50% probability of
complication in the corresponding organ; The parameters m and
n are described as the slope of the dose-response curve and the
volume dependence of the NTCP, respectively. The formula of
equivalent uniform dose (EUD) is as follows:

EUD = oiviD
1
n
i

� �n
(3)

It means that the volume vi in the correlated organ has
received a uniform dose Di . Matlab version R2019b
(MathWorks Inc., Natick, Massachusetts, USA) was utilized to
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calculate NTCP values. In this study, the parameters (n, m, and
TD50) were derived from Barney, which were set as 1, 1.79, and
21.4 Gy, individually (7).

Reduction on NTCP of HT3+
(△NTCP_HT3+)
△NTCP_HT3+ was calculated for each patient. Consistent with
previous studies, a NTCP reduction of over 10% was considered
as a ‘significant reduction’ (28, 29). In this study, patients with
△NTCP_HT3+ ≥ 10% were considered as ‘benefit most from
PT in terms of HT3+ mitigation’.

Statistical Analysis
Statistics analyses were performed using SPSS version 24.0
software (IBM, Armonk, New York). Univariate analysis was
done to determine the factors related to △NTCP_HT3+. The
odds ratio was calculated to estimate and compare the chance of
the event of △NTCP_HT3+ > 10% in the patient subgroups
based on the tumor distance to the TVB. Paired t-test and two
related sample non-parameter tests (Wilcoxon signed-ranked test)
were conducted to compare the dosimetric parameters between
IMPT and VMAT plans for the CTV and OARs. Independent-
sample t-test and nonparametric tests (Mann-Whitney test) were
conducted to compare the absolute dose reductions on OARs. P <
0.05 was considered statistically significant.
RESULTS

Disease Characteristics
Details of disease characteristics of the twenty LA-NSCLC
patients, including staging, distribution of primary tumor and
TABLE 1 | Disease characteristics of the twenty proxy cases.

Patient (No.) GTV (cc) Staging (AJCC 8th) Primary tumor location IASLC Lymph node stations Distance to TVB (cm)

1 181.3 IIIB (T4N2M0) RUL 4R,10R 1.61
2 495.5 IIIC (T4N3M0) RUL 1R 0.00
3 130.0 IIIC (T3N3M0) LUL 4L,4R,5,6,7 0.73
4 89.8 IIIB (T4N2M0) RUL 4R,7 1.98
5 36.6 IIIB (T2N3M0) RUL 1R,2R,4R,10R 0.26
6 72.8 IIIC (T3N3M0) LUL 1L 1.03
7 234.2 IIIB (T4N2M0) RUL & RML 4R 1.10
8 236.0 IIIC (T4N3M0) RUL 2R, 4L, 4R 0.00
9 225.3 IIIA (T4N0M0) LUL & LLL / 2.10
10 255.1 IIIC (T4N3M0) RUL 1R,1L,2L,4R,4L,7,10R 0.21
11 390.4 IIIC (T4N3M0) RUL 1R 0.00
12 22.8 IIIA (T1N2M0) RLL 4R,5 1.40
13 95.4 IIIA (T2N2M0) RUL 4R,7,10R 0.64
14 58.2 IIB (T2N1M0) LUL & LLL 10L 1.30
15 26.4 IIIB (T2N3M0) LUL 2R,4L,4R 1.39
16 38.6 IIIB (T2N3M0) RLL 4L 0.00
17 157.7 IIIA (T3N1M0) LLL 10L 1.06
18 23.9 IIIC (T3N3M0) LUL 4R,10 0.53
19 186.4 IIIA (T3N1M0) RUL 10R 0.78
20 176.3 IIIC (T2N3M0) LLL 4L,4R,7,10L 0.00
June 2022 | Volu
GTV, gross tumor volume (includes primary and nodal spread); TVB, thoracic vertebral bodies; HT3+, grade ≥ 3 hematologic toxicity.
Location definitions: RUL, right upper lobe; LUL, left upper lobe; RML, right middle lobe; RLL, right lower lobe; LLL, left lower lobe.
AJCC, American Joint Committee on Cancer.
IASLC, The International Association for the Study of Lung Cancer.
me 12 | Article 812031
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lymph node stations, and the closest distance of GTV to thoracic
vertebral bodies, were summarized in Table 1. The majority of
patients were stage III (19/20) and had nodal involvement (19/
20). Among the 20 patients, one had T4N0 disease (patient #9),
and one had nodal positive stage IIB disease (patient #14).
Tumor volume ranged from 22.8 - 495.5cc with a median of
143.9 cc. The closest distance of tumor to TVB ranged from 0-
2.1cm with a median of 0.8 cm.

Planning Quality Evaluation
All VMAT and RO-IMPT plans reached the prescription dose of
the target. RO-IMPT provided a better CI (median: 0.57)
compared to VMAT (median: 0.47) (p < 0.001). The
dosimetric volume histogram of target and OARs of VMAT
were represented in Figure 1A (patient #20). RO-IMPT plan
provided a robust target coverage (D95 > 95%) in all 21 worst-
case scenarios for each patient. Figure 1B showed an example of
dose volume histogram (DVH) perturbation of the 21 worst
scenarios of the same patient (#20).

NTCP of Grade ≥ 3 Acute Hematologic
Toxicity (NTCP_HT3+)
NTCP_HT3+was calculated for twenty cases and listed inTable A1.
The study found that NTCP_HT3+ with IMPT was significantly
lower compared to VMAT (36.69 ± 6.07 vs. 47.86 ± 8.88, p < 0.001).
Seven patients presented with△NTCP_HT3+ < 10%, and the other
thirteen patients presented with △NTCP_HT3+ ≥ 10% (Figure 2
and Table A1). Univariate analysis showed that the closest distance
of the tumor to TVB was significantly different between the
subgroup with △NTCP_HT3+ < 10% and the subgroup with
△NTCP_HT3+ ≥ 10% (1.28 ± 0.48 vs. 0.55 ± 0.65, p=0.024),
while other characteristics were not (Table 2).

A Chi-square test was performed to determine the association
between △NTCP _HT3+≥ 10% and different distance values
between 0.1 cm to 2.0 cm with an interval of 0.1cm (Table A2).
Results show that distance < 0.3 cm (OR 2.167, CI 1.204-3.898),
distance < 0.4 cm (OR 2.167, CI 1.204-3.898), distance < 0.5 cm
(OR 2.167, CI 1.204-3.898), distance < 0.6 cm (OR 2.600, CI
1.307-5.171), and distance < 0.7 cm (OR 3.250, CI 1.438-7.345)
were significantly associated with △NTCP _HT3+≥ 10%.
Among them, the condition ‘distance < 0.7 cm’ showed the
best sensitivity and specificity to predict a result of △NTCP
_HT3+≥ 10%. In this cohort, the sensitivity and specificity of the
c ond i t i on ‘d i s t an c e < 0 . 7 cm ’ wer e 69 . 2% and
100.0%, respectively.

Dosimetric Comparison Between IMPT
vs. VMAT
For the whole cohort, IMPT significantly reduced the dose to TVB
and other OARs (e.g., lungs, esophagus, heart, spinal cord)
compared to VMAT (Table A3). The reduction of maximal dose,
mean dose, and the volume of OARs receiving dose ≥ x Gy (Vx) was
calculated for each patient. Patients were divided into two groups
according to their closest tumor distance to TVB (‘≤ 0.7cm’ group
with distance ≤ 0.7cm and ‘> 0.7cm’ group with distance > 0.7cm).
A summary of the dosimetric metrics of the absolute reduction from
Frontiers in Oncology | www.frontiersin.org 4
the subgroups was presented in Table 3. Data of the absolute
reduction of ‘≤ 0.7cm’ subgroup and ‘> 0.7cm’ subgroup were
displayed in Figure 3 and Figure A2, respectively. The absolute
dose reduction of V30, V40, and mean dose of TVB were
significantly higher in ‘≤ 0.7cm’ subgroup compared to ‘> 0.7cm’
subgroup (p < 0.05), so as to the absolute reduction of lung V20.
This difference was not observed in other OARs such as the heart,
esophagus, and spinal cord.
DISCUSSION

The high incidence of HT during CCRT in lung cancer treatment
has long been a challenge, as studies have shown severe HT is the
prognostic factor for poor patient outcomes (8–10). Through a
comprehensive dosimetric comparison of IMPT and VMAT, this
study investigated the potential clinical hematologic benefits of
utilizing IMPT in the treatment of LA-NSCLC. The result shows
that the average probability of HT3+ in the VMAT group is 48%,
which is consistent with past clinical reports from photon
therapy (3, 5, 7). The results showed that an average of 11% of
the probability of HT3+ was reduced via IMPT from VMAT
(Table A1). Notably, the percentage of △NTCP_HT3+ over
10% was significantly higher in the subgroup with the property of
closest tumor distance < 0.7 cm to vertebral bodies (OR 2.75,
95% CI 1.26 - 6.02). Additionally, the dose to TVB was reduced
across all DVH parameters (TVB V5-40 and Dmean). TVB V30
and Dmean showed a more significant absolute reduction in the
subgroup with close tumor distance to TVB. A dosimetric study
has revealed that proton therapy can reduce 30% volume in the
bone marrow receiving a dose of 10 Gy (30). The higher risk of
hematologic toxicity during CCRT has been linked to the larger
volume of bone marrow receiving a low-to-medium dose range,
and several studies have demonstrated the association between
HT3+ and DVH parameters (TVB V20, TVB V30, and Dmean)
(7, 13, 31). These findings support our hypothesis that IMPT
could reduce the probability of HT3+ via reducing the dose to
TVB, and this effect may be enhanced in those who have tumors
close to TVB.

Preliminary results from studies with a small sample size have
shown a low HT3+ risk of CCRT with proton therapy (32, 33).
Recent closed single-arm clinical trials NCT00881712,
NCT00495170, NCT01076231 reached similar conclusions
(34–36). However, the comparative study led by Sejpal
reported no difference in hematologic toxicities between
proton therapy and photon therapy (19). This report has
several limitations in the present context. On the one hand, a
substantial difference in pretreatment status and treatment
delivery existed in this non-randomized study. More cases of
recurrent disease and older patients were included in the proton
group, and the median prescription dose was 11 GyE higher in
the proton group than the photon group. Basically, proton
therapy achieved a comparable HT result with possibly worse
patient bone marrow reserve and higher prescription dose. On
the other hand, this study compares the 3DCPT with other forms
of photon therapy. An advanced technology, pencil beam proton
June 2022 | Volume 12 | Article 812031
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therapy, can deliver better dose conformity to the target
compared to the passive-scattering technique. Multiple studies
have confirmed that the advancement of technology is associated
with decreased toxicity and comparable or even better survival
(21, 37, 38). As for pencil beam therapy, studies have confirmed
the dosimetric advantage of IMPT over PSPT (18, 20, 39). A
newly published clinical trial also revealed the decreased risk of
cardiopulmonary toxicity and a tendency of improved survival
with IMPT than PSPT (18). Thus, with the advanced proton
technology, IMPT, a benefit in HT is expected in lung cancer
patients, at least in the selected patient group.
Frontiers in Oncology | www.frontiersin.org 5
Although PT shows dosimetric superiority over photon
therapy in the management of LA-NSCLC, it is unrealistic to
simply replace photon with proton for all patients due to the high
cost and limited availability (14). The result from the study
indicated that the potential clinical benefits of HT3+ reduction
depended on the patient geometry, e.g., correlation with the
distance between the TVB and targets. This model-based
approach from the study could provide practical and clinical
guidance in selecting proton beam therapy for LA-NSCLC
patients to reduce the probability of HT3+. Although our
study did not provide clinical data to validate the model-based
A

B

FIGURE 1 | (A) A representative dose volume histogram (DVH) of patient #20. The solid line is RO-IMPT, and the dashed line is VMAT. (B) DVHs perturbation of the
21 worst scenarios of RO-IMPT. TVB, thoracic vertebral bodies.
June 2022 | Volume 12 | Article 812031

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Cao et al. Proton Therapy in Lung Cancer
approach, it can serve as a good starting point for future studies.
To our knowledge, there are no clinical studies that include HT3+
as endpoints in proton therapy for NSCLC at present. We hope
that such clinical studies will emerge in the future to verify our
findings. After validation, for those with a high risk of
NTCP_HT3+, regardless of treatment modalities, medications
such as white blood cell growth factors can be used
prophylactically to guarantee the completion of the whole
treatment, decrease hospitalization, and reduce hospitalization
economic burden (40–42).

Based on the study results, the following research direction
might be worth pursuing for LA-NSCLC patient populations.
First, Spot-scanning Proton Arc therapy (SPArc), an advanced
IMPT delivery technique, could provide potential clinical
benefits in dose conformity, mitigation of interplay effect
utilizing the additional degrees of optimization freedom (43,
Frontiers in Oncology | www.frontiersin.org June 2022 | Volume 12 | Article 8120316
44). Utilization of SPArc may further increase the role of proton
therapy in HT reduction. Second, the radiation to the heart, the
great vessels, and lymphoid organs such as bone marrow also
play a role in immunosuppression (9, 45, 46). With the PACIFIC
study announcing the coming of the era of immune-oncology in
the treatment of LA-NSCLC, lymphocyte preservation during
CCRT has been drawing significant interest (47–49). Developing
a model to predict the possibility of lymphopenia will also be a
good contribution in this field.

The limitation of our study is that Barney’s model is based on
photon therapy. Whether or not it is effective for proton has no
verdict. Nevertheless, it is still a plausible way to assess HT and
quantify the difference between treatment modalities (50). This
study follows the current clinical planning practice that prioritize
the OARs sparing in lung, heart and spinal cord. The TVB
sparing was not put in the plan optimization. At present, it’s
FIGURE 2 | Possibility of grade ≥ 3 hematologic toxicities (HT3+) in twenty patients. △NTCP_HT3+ ≥ 10% were considered as ‘benefit most from IMPT in terms of
HT3+ mitigation’.
TABLE 2 | Univariate analysis of variables associated with △NTCP_HT3+.

Parameters △NTCP t/c2 test

<10% (N = 7) ≥10% (N = 13) P value

Distance to TVB (cm)* 1.28 ± 0.48 0.55 ± 0.65 0.024**
Volume (cc)
GTV 125.77 ± 75.20 173.25 ± 147.30 0.439
GTVp* 112.26 ± 78.36 141.38 ± 152.71 0.877
GTVnd* 13.51 ± 21.73 31.87 ± 61.61 0.588

Disease location
TVB level_top 2.57 ± 1.99 2.69 ± 2.39 0.911
TVB level_bottom* 6.29 ± 1.80 7.69 ± 1.32 0.081
Average of TVB level 4.43 ± 1.84 5.19 ± 1.70 0.364
GTV, gross tumor volume (includes primary and nodal spread); GTVp, gross tumor volume of primary site; GTVnd, gross tumor volume of metastatic lymph nodes; TVB, thoracic vertebral
bodies; TVB level_top, the highest thoracic vertebra level that the disease across; TVB level_bottom, the lowest thoracic vertebra level that the disease across; Number of V, numbers of
vertebrae of the tumor across; average of TVB level, the average of TVB level_top and TVB level_bottom.
*Non-normal distribution parameters were analyzed with nonparametric tests (Mann-Whitney test); Otherwise, normal distribution parameters were analyzed with independent-sample t test.
**p < 0.05; otherwise, p ≥ 0.05.
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TABLE 3 | Comparison of absolute reduction on dosimetric parameters of organs at risk.

Absolute reduction P value

7cm Distance > 0.7cm

09 32.32 ± 11.01 0.073
25 30.06 ± 11.38 0.095
11 26.99 ± 13.47 0.370
84 24.18 ± 13.40 0.766
02 16.40 ± 14.89 0.006**
4 8.18 ± 9.35 0.002**
8 9.75 ± 4.38 0.020**

78 21.43 ± 5.88 0.735
2 7.16 ± 3.65 0.024**

38 6.92 ± 7.32 0.656
4 5.43 ± 12.93 0.710
6 5.49 ± 4.31 0.503

0 7.65 ± 5.22 0.688

59 19.88 ± 8.78 0.656

ey test); Otherwise, normal distribution parameters were analyzed with independent-sample t test.
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Parameters

Distance ≤ 0

TVB
V5 (%) 22.47 ± 12
V10 (%)* 22.85 ± 11
V15 (%)* 24.84 ± 12
V20 (%)* 26.77 ± 11
V30 (%)* 28.01 ± 10
V40 (%)* 24.31 ± 9.2
Dmean (GyE)* 12.77 ± 4.3

Lung
V5 (%) 22.91 ± 12
V20 (%) 11.77 ± 4.7

Heart
V30 (%)* 9.51 ± 11
V50 (%)* 2.21 ± 3.5
Dmean (GyE)* 7.54 ± 5.8

Esophagus
Dmean (GyE) 8.61 ± 5.2

Spinal cord
Dmax (GyE)* 17.89 ± 10

TVB, thoracic vertebral bodies; Dmean, mean dose; Dmax, maximal dose.
*Non-normal distribution parameters were analyzed with nonparametric tests (Mann-Whit
**p < 0.05; otherwise, p ≥ 0.05.
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challenging to find a specific constraint for TVB because the
extra sparing in bone marrow could dump the dose somewhere
else, resulting in a higher dose in other OARs that could cause
severe complication such as radiation pneumonitis and
radiation-induced myocardial damage. And the balance
between the protection of bone marrow and other OARs will
definitely be a great research direction in the future.

Besides, other clinical factors, such as age, sex, and physical
status, may also affect the bone marrow reserve and
hematopoiesis, which were not included in the current model.
Finally, recent researches have found that with different positions
of the pathway of the proton beam, RBE may not be a consistent
1.1. For instance, the value of RBE has risen to 1.35 at the distal
edge, which is possible to influence the clinical benefit of IMPT
Frontiers in Oncology | www.frontiersin.org 8
(51). To address this challenge, the linear energy transfer
optimization algorithm or variable RBE model could be
implemented clinically (52).
CONCLUSIONS

The present study suggested that IMPT could effectively reduce
HT3+ compared to VMAT by decreasing the dose to the TVB in
LA-NSCLC patients with CCRT. The most potential clinical
benefit was found in patients with tumor distance ≤ 0.7 cm to
TVB. This study could be the cornerstone of model-based patient
selection for further clinical trials in LA-NSCLC patients
with CCRT.
FIGURE 3 | Dosimetric results of the subgroup patients with tumor distance ≤ 0.7cm to thoracic vertebral bodies.
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