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Abstract

Functional MRI signals can be heavily influenced by systemic physiological processes in addition 

to local neural activity. For example, widespread hemodynamic fluctuations across the brain have 

been found to correlate with natural, low-frequency variations in the depth and rate of breathing 

over time. Acquiring peripheral measures of respiration during fMRI scanning not only allows for 

modeling such effects in fMRI analysis, but also provides valuable information for interrogating 

brain-body physiology. However, physiological recordings are frequently unavailable or have 

insufficient quality. Here, we propose a computational technique for reconstructing continuous 

low-frequency respiration volume (RV) fluctuations from fMRI data alone. We evaluate the 

performance of this approach across different fMRI preprocessing strategies. Further, we 

demonstrate that the predicted RV signals can account for similar patterns of temporal variation in 

resting-state fMRI data compared to measured RV fluctuations. These findings indicate that 

fluctuations in respiration volume can be extracted from fMRI alone, in the common scenario of 

missing or corrupted respiration recordings. The results have implications for enriching a large 

volume of existing fMRI datasets through retrospective addition of respiratory variations 

information.
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1. Introduction

Functional magnetic resonance imaging (fMRI) is widely used to study human brain 

activity. However, the blood oxygen level dependent (BOLD) fMRI signal not only reflects 
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localized changes in cerebral metabolism through neurovascular coupling, but can also be 

substantially modulated by physiological effects relating to cardiovascular and respiratory 

processes (Caballero-Gaudes and Reynolds, 2017; Murphy et al., 2013). Importantly, BOLD 

signals driven by cardiac and respiratory activity can overlap to a large extent with 

neuronally driven functional networks (Bright et al., 2020; Chen et al., 2020).

A major source of physiological variation in fMRI arises from natural, slowly varying 

(predominantly below 0.15 Hz) changes in the depth and rate of breathing over time (Birn et 

al., 2006; 2008b; Wise et al., 2004). Low-frequency variations in respiratory volume (RV) 

modulate deoxyhemoglobin concentrations, presumably through changing levels of arterial 

carbon dioxide (Wise et al., 2004) and through autonomic influences on vascular tone (Duyn 

et al., 2020). These effects are distinct from the faster, cyclic respiratory artifacts that are 

synchronized with the breathing cycle, such as changes in the static magnetic field that 

accompany movement of the chest and abdomen with each breath (Glover et al., 2000; 

Jezzard et al., 1993; Pfeuffer et al., 2002; Windischberger et al., 2002); current methods that 

seek to mitigate cyclic respiratory artifacts (such as RETROICOR; Glover et al., 2000) do 

not account for RV effects. Importantly, RV fluctuations are known to co-vary with global 

fMRI patterns that explain significant signal variation across gray matter (Glasser et al., 

2018; Power et al., 2017) and can act to artificially couple distant brain regions in mapping 

functional networks (Birn et al., 2006; Nikolaou et al., 2016), underscoring the importance 

of accounting for RV in fMRI data analysis. Moreover, as the spatial patterns of RV 

fluctuations can bear a strong resemblance to canonical functional networks (Bright et al., 

2020; Chen et al., 2020), knowledge of a subject’s respiratory variations throughout the scan 

can be crucial for separating vascular and neuronal sources of fMRI activation and 

connectivity patterns.

Currently, the primary techniques for identifying and modeling low-frequency respiratory 

effects in fMRI data require the use of external reference signals that are gathered 

simultaneously with fMRI. Respiration can be monitored in the MRI scanner with a belt that 

measures chest expansion and contraction, and features such as RV can be derived from the 

more slowly varying envelope of the resulting waveform. Once an RV time series is known, 

one may then investigate its relation to other effects of interest, or construct nuisance 

regressors (such as by convolution with “respiration response functions ” (Birn et al., 2008b; 

Chang et al., 2009; Falahpour et al., 2013; Golestani et al., 2015; Kassinopoulos and Mitsis, 

2019) that can be projected out of the data.

However, peripheral physiological measurements during fMRI are often unavailable or are 

not of sufficient quality. This may occur for any number of reasons, including the absence of 

monitoring equipment in the scanner suite, insufficient time to set up the peripheral 

recording devices on a subject, or issues with subject compliance (e.g., moving or detaching 

the equipment, as may occur in pediatric populations). Thus, it would be valuable to have 

tools for extracting key peripheral signals directly from fMRI data itself.

Several previous studies have proposed methods for reconstructing cyclic cardiac and 

respiratory phase information from fMRI itself, using techniques that leverage sub-second 

fMRI acquisition rates and/or slice-timing offsets (Agrawal et al., 2020; Ash et al., 2013; 
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Aslan et al., 2019; Beall and Lowe, 2007). With regard to low-frequency physiology, Tong 

and Frederick (2014) and Tong et al. (2017) revealed dynamic fMRI patterns linked with 

cerebral circulation, and which correlated with low-frequency hemoglobin oscillations at the 

fingertip (Tong et al., 2012), providing a data-driven approach for tracking BOLD 

hemodynamics of systemic origin. In addition, temporal independent component analysis 

(temporal ICA; Smith et al., 2012) was found to identify a subset of temporally independent 

modes that correlated with respiratory variations, further supporting the promise of 

extracting and un-mixing RV information in a data-driven manner (Glasser et al., 2018). 

However, long and/or highly sampled time series are reported to be important for robust 

temporal ICA of fMRI data, and recorded physiological data are presently required for post-

hoc identification of components that may relate to RV.

Here, we propose and investigate a computational framework for reconstructing low-

frequency respiration volume signals from fMRI data alone. We aimed to construct models 

that generalize across different subjects, and which can accommodate different fMRI 

acquisition parameters and scan durations, so as to have broad applicability to a wide range 

of fMRI datasets that lack physiological recordings. In this work, we consider two 

complementary models: (1) a multi-layer convolutional neural network, and (2) a single-unit 

dense layer linear network. Neural networks are capable of handling non-linearities due to 

the use of activation functions, and multi-layer architectures can be designed to combine and 

transform data from multiple input channels (brain regions). Moreover, they may 

automatically perform additional noise filtering. By contrast, a linear single-unit model 

cannot perform a complex transformation of the data, but on the other hand, is substantially 

more interpretable. Models are trained and tested using temporally downsampled resting-

state fMRI data from the Human Connectome Project (Van Essen et al., 2013). We examine 

the robustness of these models to different fMRI preprocessing schemes as well as variations 

in their training and testing, and quantify the ability of the reconstructed RV signals to 

account for patterns of resting-state fMRI signal variance. A brief report examining 

complementary approaches to RV estimation was published as a conference proceeding 

(Bayrak et al., 2020).

2. Methods

2.1. Data and preprocessing

Data consisted of 138 resting-state fMRI scans from the Human Connectome Project (HCP) 

1200 Subject Release. Resting-state fMRI data in the HCP were acquired using a 

simultaneous multi-slice EPI sequence with the following parameters: TR = 0.72 s, duration 

of 864 seconds (14.4 min), spatial resolution of 2 mm isotropic, TE = 33.1 ms, multiband 

factor = 8, flip angle 52° and 72 slices. During the resting-state scans, subjects were 

instructed to keep their eyes open and fixate on a cross-hair, and subjects underwent 4 

resting-state scans (two on one day, and two on a second day). Respiration was monitored 

during fMRI using a belt placed around the abdomen, sampled at 400 Hz. The subset of 138 

scans used in this study was selected prior to beginning this study, and had been chosen on 

the basis of respiration data quality. Quality was first assessed using automated criteria to 

reject scans whose respiration signals had more than 500 samples of clipping (values equal 
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to 0 or 4095), and then refined the list after manual inspection to remove those with 

additional artifacts. The full list of scans used here is provided in Supplementary Table S3. 

These 138 scans correspond to 57 subjects, with each one having either two or four scans (as 

the selection was carried out jointly for pairs of scans acquired on the same day, rather than 

considering each scan individually).

For our primary analyses, we used data that had been pre-processed with the FIX de-noising 

pipeline (Griffanti et al., 2014), which was available for download from the HCP. For 

selected comparisons, we also used the data that had undergone the HCP minimal 

preprocessing pipeline (Glasser et al., 2013), to which we additionally regressed out low-

order (linear and quadratic) trends. We also generated a version of the data for which we 

additionally regress out 6 rigid-body head motion parameters and their derivatives, along 

with the low-order trends, from the HCP minimally preprocessed data. This allowed us to 

assess the impact of head motion effects on the prediction of respiratory variations (Hocke 

and Frederick, 2020; Power et al., 2019).

From the respiration data accompanying each scan, a time series of respiration volume (RV) 

was extracted by calculating the temporal standard deviation of the raw respiration 

waveform in a window of 6 seconds centered at each TR (every 0.72 s) of the fMRI data 

(Chang et al., 2009). All fMRI data (from each of the two pipelines) were band-pass filtered 

in a range of 0.01–0.15 Hz and downsampled by a factor of 2, yielding a new effective 

temporal sampling of 1.44 s/volume (600 time points). The same filtering and 

downsampling procedure was applied to the RV signals.

Although low-pass filtering is typically applied before downsampling in order to avoid 

aliasing effects, this procedure does not mimic the process of having originally acquired the 

data at lower TR. To obtain a better sense of whether our approach generalizes to fMRI data 

that are acquired at lower temporal resolutions, we also investigated two additional 

approaches: (i) only downsampling by a factor of 2 (i.e., without first band-pass filtering); 

and (ii) downsampling by a factor of 2, followed by band-pass filtering.

2.2. ROI definition

To reduce the dimensionality of the fMRI data, time courses were extracted from voxels 

averaged within selected regions of interest (ROIs). For the main analysis, we used a 

published set of 90 functional ROIs that span 14 ICA-defined functional networks (Shirer et 

al., 2011). The decision to use ROI time courses, rather than the full voxelwise fMRI data, 

was also an effort to make the approach less sensitive to the precise spatial resolution of the 

acquired fMRI data, and therefore more widely applicable across datasets.

2.3. Normalization

One challenge of building a model to reconstruct RV from fMRI data is that fMRI signals 

and respiration belt data are both acquired with arbitrary units, and may carry scan- and 

subject-specific amplitude differences. In this work, we normalize each scan as follows: the 

mean and standard deviation is calculated based on the entire set of time points (and pooled 

across all ROI time series) within each scan. Then, the mean is subtracted from every point, 

and the result is then divided by the standard deviation. This normalization method preserves 
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the relative amplitudes between ROIs within the same scan, and also maintains the 

independence between scans. All fMRI scans in the presented results were subjected to this 

normalization scheme, unless otherwise noted. This normalization was performed beyond 

the global 4D intensity normalization that is included in the HCP Minimal Preprocessing 

pipeline (Glasser et al., 2013). RV signals were zero-meaned but not scaled.

2.4. Time windowing

The input to the models (which will be further described in Section 2.5) was generated in a 

sliding time-window fashion. Specifically, the fMRI ROI signals are divided into short (64-

point) overlapping time-windows (see Fig. 1), where successive time windows are shifted by 

one point.

For each time window, the model outputs a single time-point estimate of the RV signal at the 

point closest to the center of that window, as shown in Fig. 1. Note that as a consequence of 

this windowing scheme, each scan’s reconstructed RV signal will contain only 537 

timepoints (as opposed to the original 600). It is certainly possible to apply padding at the 

edges to maintain the original length, but here we refrain from doing so. However, we also 

examine additional window sizes, including smaller ones that preserve more end-points of 

the signal (Supplementary Material, Section 8.5). The formalism of this time-windowing 

procedure is detailed in Appendix A. Similar windowing strategies have been used in prior 

work, such as for making predictions in electrocardiogram data (Šarlija et al., 2017).

One motivation for the decision to operate in a window-wise fashion, rather than across the 

entire scans, is that it yields simpler models with fewer parameters, and is therefore less 

prone to overfitting. In addition, it allows for making predictions on fMRI scans of varying 

durations. This procedure also increases the number of samples for neural network training 

and can be regarded as a data augmentation method. However, given that time windows from 

the same scan are not fully independent of one another, special consideration is required for 

model training. For example, since a given subject contributes at most 4 scans to the entire 

pool of data, a shuffling procedure (described in Section 2.6) was used to increase the 

likelihood that each training batch contains time-windows drawn mainly from different 

subjects and scans, therefore reducing potential inter-dependence between windows within a 

batch.

2.5. Models

Two complementary network architectures were investigated for the purpose of predicting 

the RV signal from a given set of fMRI ROI time series: (1) a 1D Convolutional Neural 

Network (CNN), and (2) a single-unit Dense Network. Both of these models were 

implemented using Keras (Chollet, 2015), with Tensorflow (Abadi et al., 2015) as a 

backend.

2.5.1. Model 1: Convolutional Neural Network (CNN)—The input to the CNN 

consists of time-windows of dimensions 64 time points × 90 ROIs. The ROIs are provided to 

the network as channels. This network architecture consists of 5 separable convolutional 

layers (separable CONV1d) with ReLU activation, where the output of each separable 
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CONV1d layer is padded ‘same’ and followed by a max-pooling operation. The separable 

convolutional layer essentially carries out two steps: it first performs the convolution on each 

channel separately, and then performs a depth-wise convolution across channels (Chollet, 

2015). We selected the separable convolutional layer because it has fewer parameters, and 

because it provides a separate set of weights for each channel (which can be assessed as 

indicators of their respective importance).

The first convolutional layer consists of 20 filters, and the number of filters is doubled at 

each subsequent layer, resulting in 320 total filters at the last convolutional layer. The 

features emerging from the last convolutional block are pooled and flattened to a single 

column, and the last (dense) layer outputs the prediction of RV at a single point in the center 

of the window. Each convolutional layer consists of kernels with size 3 and stride of 1. Each 

max-pooling layer comprises kernels with size 2 and stride of 2. The network architecture is 

shown in Fig. 2, and further details are provided in Supplementary Table 8.1. Note that the 

window size (64 time-points) was chosen to be a power of 2, which allows the application of 

successive max-pooling operations without any sample left unpaired at each layer.

2.5.2. Model 2: Single-unit network—The single-unit network consists only of a 

single dense layer with a single unit, with no activation function. The input ROIs are 

flattened using a flattening layer, resulting in a total of 64 time-points × 90 ROIs weights 

and one intercept. Like the CNN, this model also outputs a single-point for each window. Its 

structure is shown in Fig. 3, and further details are provided in Supplementary Table 8.1. 

Since this model contains no activation function, it is linear.

2.6. Model training

For a given split of the data into training and testing sets, scans in the training set were used 

for model fitting, and scans in the withheld test set were reserved for evaluating the model 

predictions. Within the training set, all scans were partitioned into time-windows of length 

64, as described in Section 2.4. All windows (pooled across scans in the training set) were 

shuffled, and a batch size of 512 sample windows was employed. Models were trained for 5 

epochs using the ADAM optimizer with default parameters. For both models, mean-squared 

error was used as the loss function.

2.7. Evaluation and analysis

2.7.1. Metric of reconstruction quality—To evaluate the quality of the 

reconstructions, the similarity between the measured and predicted RV signals is quantified 

using Pearson correlation (r). Throughout this work, we also refer to this as the 

reconstruction score.

2.7.2. Leave-one-subject-out cross validation—For the main performance 

evaluation, we used a variant of leave-one-out cross validation. Here, rather than leaving out 

a single scan for testing, we left out all scans belonging to a single subject. In other words, 

all scans were used for training except those corresponding to one subject (i.e., either two or 

four scans), with the latter comprising the test set on which performance is evaluated. This 
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was done to avoid data leakage, which could otherwise occur if an fMRI time window 

carries information about other time windows from the same subject.

2.7.3. Stability of RV reconstruction to train/test split—As a complementary 

assessment of a model’s robustness to variations in the training and test sets, one can 

perform a randomized validation scheme in which scans are randomly shuffled multiple 

times into training and test sets, with the model refitted and evaluated for each iteration of 

shuffling. Here, we conducted a randomized validation by performing a random 60%–40% 

split of the data into training and test sets at each iteration, for 100 iterations. Summary 

statistics were collected on the variability of reconstruction scores for each individual scan, 

considering only those instances when that scan was part of the test set.

2.7.4. fMRI variance explained by reconstructed RV signal—To assess the degree 

to which our reconstructed RV signals could account for fMRI signal fluctuations across the 

brain, we examined the percentage of temporal variance explained in each fMRI voxel signal 

by the reconstructed RV signal. Here, the predicted RV time course was first convolved with 

a previously determined transfer function (respiration response function) that captures the 

forward mapping between RV and fMRI fluctuations, along with its time and dispersion 

derivatives (Birn et al., 2008b; Chen et al., 2020; Henson et al., 2002) to allow for small 

deviations in latency and shape from the canonical model. The percent variance explained 

was defined as the fraction by which a voxel’s original temporal variance would be reduced 

after projecting out (via ordinary least squares) a linear combination of the aforementioned 

RV regressors, and multiplying by 100. For each scan, the RV prediction used in this 

analysis was obtained by training the model on scans belonging to all other subjects (i.e., the 

leave-one-subject-out scheme described above). Since FIX-correction had already been 

applied, along with band-pass filtering, no other nuisance covariates were included in the 

design matrix when calculating percentage variance explained; however, we verified that 

similar patterns were obtained when including head motion (6 rigid-body motion parameters 

and their derivatives) along with linear and quadratic trends.

2.7.5. Influence of fMRI preprocessing on RV reconstruction—While FIX 

denoising has been shown to effectively remove certain artifacts, it is possible that this 

procedure may also remove fMRI signal variation that correlates with RV, which could 

reduce the ability to predict RV from fMRI. Therefore, we compared the results of FIX-

processed fMRI data with data from the same scans that had undergone a lighter processing 

stream (referred to here as the “minimally preprocessed stream ”), consisting of the HCP 

Minimal Preprocessing pipeline along with polynomial detrending, both with and without 

regressing out head motion parameters (see Section 2.1).

3. Results

3.1. Reconstructed RV signals

Fig. 4 provides four examples of RV signals reconstructed by the CNN and single-unit 

models, from scans that were not seen by the neural network during training (leave-one-

subject-out cross validation). Examples illustrating different degrees of success are 
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presented. The reconstructed signals are superimposed upon the measured RV signal. One 

can see that the two models manage to predict many of the prominent features of the original 

signal.

3.2. Model performance

The distribution of reconstruction scores (correlation between predicted and measured RV), 

from the leave-one-subject-out framework, is provided in Fig. 5 for both models, with and 

without applying normalization. Overall, the CNN and the single-unit model exhibited 

similar results for the normalized case, although the median is slightly higher for the latter. 

The difference between the models is much more noticeable if the data is not normalized, 

where the single-unit performance decays while that of the CNN remains very similar. In all 

cases, we found that the convergence is relatively fast, with 5–15 epochs using a batch size 

of 512. Varying the batch size, number of epochs, or using kernels of larger size 

(specifically, 15 and 31) did not produce a substantial change in the results.

To further investigate the relative performance of the CNN and the simpler, single-unit 

model, we also directly compared the performance of these two models on each individual 

scan. A scatterplot comparing the performance of these models on each scan is shown in 

Fig. 6. The unity line indicates a reference point at which equal scores are obtained both 

models, such that points above the line were better reconstructed by the CNN. Overall, we 

observe similar performance across the two models on a scan-by-scan basis, with the 

majority of scans showing slightly better performance by the single-unit model.

We then examined how the performance is impacted when the fMRI data are downsampled 

from the original 0.72-s TR by a factor of 2, without first band-pass filtering, to more closely 

approximate the scenario of having initially acquired the data with a TR of 1.44s. 

Downsampling alone led to a considerable reduction in performance; however, 

downsampling followed by band-pass filtering attained very similar performance as the 

original scheme of filtering prior to downsampling (Fig. S7). While these alternate 

processing streams still do not perfectly mimic the process of acquiring data with lower 

native TR, results indicate the potential feasibility of the proposed approach on datasets 

acquired at lower temporal resolutions.

3.3. Robustness of RV reconstruction

As a complementary assessment of model performance, we also performed a randomized 

validation scheme (see Section 2.7.3) of the CNN model, in which the data were randomly 

shuffled into 60%−40% traintest splits over 100 iterations. For each scan, the median and 

inter-quartile range (IQR) were calculated across that scan’s ensemble of reconstruction 

scores (from iterations in which it appears in the test set), and histograms of these summary 

statistics across all scans are plotted in Fig. 7. In general, it appears there is very little 

variability across the random cross validation iterations, as the IQR tends to be very small, 

with fewer cases of scans with high variability. In summary, the reconstruction score tends to 

be similar regardless of which set of scans is used for training.
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3.4. Variance explained in fMRI data by reconstructed RV

Maps of the percentage of temporal variance explained at each voxel are shown in Fig. 8 

(left), for both the measured and predicted RV signals, in three example scans (A-C) as well 

as averaged across all scans. On average, the predicted RV signals were found to explain 

fMRI variance in nearly the same spatial distribution as the measured RV. Notably, the 

variance explained by the predicted RV signal was slightly higher than that of the measured 

waveform. There were some cases (e.g., row B) where the measured RV explained more 

variance compared to the predicted RV, whereas for others (e.g., row C), the opposite held.

Fig. 8 (right) indicates the scan-by-scan correspondence of fMRI variance explained 

between the estimated and reconstructed RV signals, for all 138 scans. This was quantified 

for two selected networks (auditory and visual) from the Findlab 90-ROI atlas, where each 

point was obtained by averaging the variance explained across all voxels within the indicated 

network. In both networks, strong correlations were found in the amount of variance 

explained by the predicted and measured RV signals. These networks were selected as they 

tend to exhibit substantial correlations with RV, consistent with previous literature (Birn et 

al., 2006; Wise et al., 2004).

3.5. Visualization of linear RV reconstruction filter

The learned weights of the single-unit model can be inspected to gain potential physiological 

insight into the reconstruction of RV from fMRI data. These weights essentially constitute 

the impulse response of a filter, which - when applied to the fMRI signal (and adding a 

constant) - returns the reconstructed RV. This filter can be represented by a 64 × 90 matrix 

(window size by number of ROIs). Fig. 9 indicates the weights of the single-unit model, 

where the color represents the magnitude of the median value of each weight across all 

iterations of leave-one-subject-out cross validation. Overall, the bipolar temporal response 

exhibited by many regions closely mirrors previously reported patterns of cross-correlation 

between RV and fMRI (Birn et al., 2006, 2008b), and the filter appears to draw upon inter-

regional differences in temporal lag.

We then visualized these filter weights anatomically, where the value at each ROI 

corresponds to its maximum (over time) positive- and negative-signed filter weight in the 

matrix of Fig. 9. The regions with the strongest positive weights were found in the 

cerebellum and cingulate cortex, while those with strongest negative weights included 

sensorimotor and visual cortex.

3.6. Impact of fMRI preprocessing on RV reconstruction

The results presented thus far draw upon data that had been processed with the HCP FIX 

pipeline. We also examined the relative performance attained using the HCP minimally 

preprocessed data, both with and without regressing out head motion parameters (see 

Methods). Fig. 10 indicates that the minimally processed data exhibited higher performance 

on most scans, and especially when head motion has not been regressed out.
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3.7. Time-dependence of RV reconstruction

The proposed time-windowing scheme assumes that the mapping from fMRI to RV is time-

invariant. To probe this assumption, we also assessed reconstruction accuracy across 

different time-windows throughout the scan. For this time-windowed assessment, we chose 

to use sliding windows of length 64 timepoints, with successive windows shifted by one 

point. (Note that the time windows used for this analysis do not necessarily have to match 

the ones used for training the model, although here we chose to use the same size and 

stride.) For this analysis, only the portion of the RV signal restored by the model is 

considered. For each scan, we obtained a series of correlation coefficients between the 

estimated and reconstructed RV signals, each corresponding to a time window. The mean 

value, calculated across all scans, for each window is plotted in Fig. 11. The 95% confidence 

intervals are illustrated with the shaded region, all obtained by using a 1000 sample 

bootstrap. Interestingly, sections toward the end of the scans were more accurately predicted 

than those near the beginning. The fluctuation magnitude of RV itself was also found to 

increase over time (Fig. S6), which may contribute to this trend.

4. Discussion

These findings demonstrate the possibility of reconstructing low-frequency temporal 

fluctuations in respiration volume using fMRI data alone. The approach proposed here may 

provide the ability to reconstruct RV time series in fMRI scans of varying duration, and the 

resulting RV signal may enable investigating and/or reducing RV effects in fMRI data when 

external respiration recordings are absent.

Respiratory volume and related measures (such as RVT, end-tidal CO 2, and respiratory 

flow) have been found to account for large amounts of temporal variance in fMRI signals 

(Birn et al., 2006; Chang et al., 2009; Kassinopoulos and Mitsis, 2019; Power et al., 2017; 

Wise et al., 2004), a finding that is consistent with the percent variance maps shown here. 

The effects of RV have also been challenging to separate from neurally driven BOLD 

variation, and may exhibit considerable covariation with neural signals (Yuan et al., 2013) 

and spatial overlap with functional networks (Bright et al., 2020; Chen et al., 2020). RV 

effects have not been readily isolated from fMRI using spatial ICA (Birn et al., 2008a), 

though temporal ICA was recently demonstrated to produce components that were 

correlated with RVT (Glasser et al., 2018). In addition, since it is a T2* effect, RV-related 

signal components exhibit a BOLD-like echo-time dependence of signal amplitude, and 

therefore cannot be separated readily using multi-echo approaches that isolate BOLD and 

non-BOLD components (Kundu et al., 2012). Therefore, there has been a reliance on 

recorded respiratory signals in order to isolate RV effects with most certainty. However, as a 

number of fMRI datasets lack physiological recordings, or have recordings that are 

corrupted (Glasser et al., 2019), the data driven approach presented here may offer a 

promising means for extracting key low-frequency respiratory features from fMRI data 

itself.

Apart from its potential use in removing physiological variation in fMRI data, the 

availability of a reconstructed RV waveform may also provide valuable information about 

brain physiology and BOLD signal interpretation. For instance, while cerebrovascular 
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reactivity is typically mapped using hypercapnic challenges, such as breath-holding 

(Murphy et al., 2011), it has also been demonstrated that shorter deep breaths (Bright et al., 

2009) and resting-state fluctuations in end-tidal CO2 (Golestani et al., 2016) may also 

provide indicators of local cerebrovascular status. When physiological recordings are 

unavailable, a reconstructed RV signal may provide a reference for which to interrogate 

vascular dynamics across the brain. In addition, the extracted RV signal may provide 

information about whether a subject’s respiration patterns are systematically altered between 

different populations or task conditions, aiding in the interpretation of fMRI data.

The “forward ” mapping from RV to fMRI is typically modeled by convolution of RV with a 

linear, finite impulse response function (respiration response function; RRF (Birn et al., 

2008b)). While one approach to the “reverse ” problem of deriving RV from fMRI could 

involve inverting the respiration response function, here we also considered the fact that 

different brain regions have different RRF shapes, motivating us to consider approaches that 

can simultaneously leverage information across different regions toward the estimation of 

the RV time series. For this purpose, two candidate models were explored: a multi-layer 

convolutional neural network, and a linear single-unit network. These models may be 

regarded as complementary, in the sense that the CNN is able to capture more complex 

nonlinear relationships, but may be less readily interpretable, than the single-unit network. 

The windowed, single-unit model is essentially a finite-impulse-response deconvolution of 

the 1D RV signal from 2D input (fMRI ROIs).

We observed that the RV reconstruction performance was comparable between the CNN and 

single-unit models. This was observed to be the case even upon varying hyperparameters 

(such as the number of filters per layer), and when training for different numbers of epochs, 

though further optimization with hyperparameter tuning will be investigated in future work. 

By assessing RV reconstruction quality when training and testing over many randomized 

partitions of the data, we found that the predictions were also robust to the precise sections 

of the data that were selected for training or testing. The single-unit model was more 

sensitive to the normalization scheme, exhibiting better performance with normalized 

compared to un-normalized fMRI and RV data; the CNN, by contrast, was much less 

sensitive, which is one potential benefit of this more complex model.

The similar performance of CNN and a single-unit, linear model suggests that despite the 

added complexity of the CNN, time-windowed linear filtering of fMRI data provides 

comparable information about RV. Moreover, an advantage of the single-unit model is its 

potential interpretability, as insepction of its weights can reveal the features that are being 

drawn upon most heavily to reconstruct the RV signal. Fig. 9 reveals a bipolar temporal 

response across a number of ROIs, matching previous reports of the temporal relationship 

between fMRI and RV (Birn et al., 2006; 2008b), and with differences in temporal lag across 

areas (Chen et al., 2020; Tong and Frederick, 2014). Furthermore, the brain regions with the 

highest magnitude of filter weights were located in areas previously reported to correlate 

with respiratory variation, including sensorimotor network and cerebellum (Birn et al., 2006; 

Glasser et al., 2018; Golestani et al., 2015). However, a direct interpretation of the weights is 

challenging, owing to the ambiguity of the raw fMRI signal amplitude. The weights are 

therefore dependent on any normalization scheme used. Additional complexity in the 
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interpretation of filter weights arises from its use of information from different times and 

brain regions simultaneously. Further analyses of the linear weights will be addressed in 

future work.

In addition to similarity in the summary statistics of their performance, we also observed a 

close correspondence between the performance of the CNN and the single-unit model on a 

scan-to-scan basis (Fig. 6). In other words, when one of the models succeeds in predicting 

RV, the other is also likely to succeed, and their predictions were remarkably similar (Fig. 4). 

For both models, there were some scans where neither model could generate a good RV 

prediction, and Figs. 5 and 6 also indicate a considerable degree of variability across scans 

in terms of the reconstruction performance. One potential factor behind this scan-to-scan 

variability is the amount of respiratory variation a subject exhibits on a given scan, and - 

relatedly - the amount of variance explained by RV in the fMRI data (Supplementary 

Material, Section 8.3). Increases in both of these factors indeed showed a trend toward 

increasing performance (Figs. S5 and S4), though with some outliers. Similarly, the high-

frequency content of the RV signal had a weak inverse correlation with performance (Fig. 

S3). It is also possible that the variation in reconstruction performance, as well as RV 

fluctuation magnitude, is driven to some extent by differences in the exact positioning of the 

belt on each subject.

It is possible that a different atlas parcellation scheme could lead to improved performance, 

as the 90-ROI atlas does not completely cover cortical and subcortical brain regions. To 

examine this possibility, we repeated the analysis using a greater-coverage, 268-region atlas 

(Shen et al., 2013). We found, however, that this parcellation scheme performed similarly to 

that of the 90-ROI atlas (Supplementary Section 8.5), for both the CNN and single-unit 

models. As the above atlases have ROIs exclusively in gray matter, we also experimented 

with including average time series from white matter and CSF in the models as two 

additional ROIs, which resulted in very little change in performance (median correlation for 

CNN model changed from 0.504 to 0.497). It is possible that parcellating white matter 

and/or CSF more finely could lead to better performance, which could form an interesting 

avenue of future work. The initial fMRI preprocessing stream had a somewhat larger 

influence on the performance (Fig. 10), with slightly higher median performance with the 

Minimally Preprocessed data (especially when retaining head motion effects), compared to 

FIX-processed data. The fact that FIX-processed data could generate RV predictions 

comparable to that of a more lightly processed stream indicates that low-frequency RV 

effects are still present after FIX ICA-based denoising.

While a window size of 64 was used in the present analysis, the use of a larger 

reconstruction time-window could potentially enable a broader range of RV frequencies to 

be captured by the model (Supplementary Material, Section 8.2), though at the cost of 

increased complexity. Therefore we tested a window of size 128 (Supplementary Material, 

Section 8.5), although no major changes in the overall reconstruction scores were observed. 

Another consideration relating to window size is that larger windows result in more 

timepoints discarded at the beginning and end of the scan due to edge-effects. This factor 

may limit the minimum duration of scans that can be reasonably reconstructed with the 

proposed approach. However, as seen in Figs. S8 and S9, window sizes of 32 and 16 
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produced only small decrements in performance, which has promising implications for the 

use of the proposed approach with short scans.

Intriguingly, we observed that the amount of temporal variance explained in fMRI data by 

the reconstructed RV signals often exceeded those of measured RV signals. One possible 

reason is that, since the estimated RV signal is derived from the fMRI data itself, it may 

potentially include fluctuations related to neural activity, especially those that tend to 

correlate with fluctuations in RVT. Further, regions whose input is weighted most heavily in 

the RV extraction could be over-estimated in terms of variance explained by the predicted 

RV. Another potential reason is that the reconstruction model, which is trained to achieve 

generalizability across a large number of scans, has a ‘de-noising’ effect - thus producing 

more accurate changes in respiratory volume than that of the respiration belt measurement, 

especially as respiration belt measurements are known to provide only an approximation of 

tidal volume changes. In other scans, however, the reconstruction did not explain fMRI 

temporal variance as strongly as the measured RV waveform. We speculate that this could, 

in part, arise from individual differences in the RV-fMRI relationship that are not captured 

by a model trained on other subjects. A caveat of this percent-variance analysis is that we 

use a fixed, RRF-derived basis set to quantify the percent variance explained in each voxel; 

however, this basis set may not well-capture the mapping between RV and fMRI in all brain 

regions.

In assessing the time-dependence of RV reconstruction performance, we observed that the 

beginning of the scan, in general, exhibited a lower score than those portions occurring later 

on. The increasing trend is very long, greater than the window size of 64 timepoints. Further 

investigation revealed that this trend was accompanied by a corresponding increase in the 

fluctuation magnitude of RV (Fig. S6), which may contribute to the increase in fluctuation 

accuracy. While the reason for the changes in both breathing patterns and reconstruction 

accuracy are not known for certain, we hypothesize that this effect may be explained in part 

by subjects’ levels of alertness, which could lead to altered physiology and increased 

covariation between neural and systemic physiological signals (Chang et al., 2018; Özbay et 

al., 2019). Consequently, it is possible that RV may be more readily inferred from fMRI 

when subjects are more relaxed or drowsy.

Finally, the methods presented in this study may enable research into regional variability of 

hemodynamic delays and physiological response functions (Chang et al., 2008; Chen et al., 

2020; Handwerker et al., 2004; de Munck et al., 2008) when direct respiratory recordings 

are not available. Differences in respiratory responses across cohorts might also be assessed, 

such as by examining the relative weights of different brain regions in the linear RV 

reconstruction filter. Inter-individual variability in brain or body physiology, however, also 

has bearing on the translation of trained models across participants or groups, the degree to 

which remains to be investigated. Incorporating relevant physical measures (e.g., body-mass 

index, height) or imaging modalities (e.g., brain structural features) into the model may help 

to improve the generalization across participants. The assumption of time-invariance may 

also need to be further considered. In addition, since our work was conducted using only 

eyes-open resting-state data, understanding the translation to different experimental 

conditions will be important for ensuring the broad utility of the approach.
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5. Conclusions

This study demonstrates the possibility of reconstructing respiratory volume signals from 

fMRI data alone. We introduce machine learning approaches that are based on a temporal 

windowing framework, which allows for prediction of continuous RV signals from fMRI 

scans of varying durations. We find that similar performance was obtained for a multi-layer, 

convolutional neural network and a single-unit linear network, where the latter corresponds 

to a two-dimensional, linear finite impulse-response filter. The methods presented here offer 

the potential to provide important physiological information to existing or future fMRI 

datasets that have missing or corrupted physiological recordings.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

This work was supported by NIH grant K22ES028048 to C.C. Data were provided by the Human Connectome 
Project, WU-Minn Consortium (Principal Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657) 
funded by the 16 NIH Institutes and Centers that support the NIH Blueprint for Neuroscience Research; and by the 
McDonnell Center for Systems Neuroscience at Washington University.

Appendix A.

A1. Formalism

Let yt be the RV signal at timepoint t, and zi,t as the fMRI signal of the ith ROI at t. A 

multivariate time series containing the signals from various ROIs at time t is then zt = (z1,t 

… zROI,t).

The main goal is to estimate the RV signal, using the fMRI multivariate time series as 

explanatory variables. Since the signal is pre-recorded, causality is not an issue, so the 

prediction at time t can draw upon the fMRI signal in both past and future timepoints. For 

simplicity, we constrain the explanatory variables, zt, to a time window of size LW = 64 

timepoints, and make the prediction of RV at the center of the window. For an odd window 

size, the center would be the exact midpoint, but since we are using an even window size 

(for other considerations relating to the neural network architecture), we make the 

predictions for the 32nd point.

In general terms, we seek to model the transformation g, such that

yt = g zt − 32, …, zt − 2, zt − 1, zt, zt + 1, zt + 2…, zt + 31 . (1)

As each RV timepoint is to be predicted from all of the fMRI points within the time window, 

the model inputs will be 2D arrays of shape 64 × ROI (where ROI corresponds to the 

number of fMRI ROIs), and the output a single scalar value. We write the input in matrix 

form as
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Zt =
z1, t − 32 ⋯ zROI, t − 32

⋮ ⋱ ⋮
z1, t + 31 ⋯ zROI, t + 31

(2)

The reconstructed RV signal at time t for scan s is given by

yt, s = g Zt, s (3)

We assume the transformation (and hence the model) is invariant in time, and also remains 

the same for all scans and subjects. Therefore, given a model g, we can express the 

reconstructed RV waveform in scan s as

⋮
yt − 1, s

yt, s
yt + 1, s

⋮

=

⋮
g Zt − 1, s

g Zt, s
g Zt + 1, s

⋮

, (4)

One can generalize Eq. (4) for the case of multiple scans by concatenating them, giving:

⋮
yt − 1, s

yt, s
yt + 1, s

⋮
yt − 1, s + 1

yt, s + 1
yt + 1, s + 1

⋮

=

⋮
g Zt − 1, s

g Zt, s
g Zt + 1, s

⋮
g Zt − 1, s + 1

g Zt, s + 1
g Zt + 1, s + 1

⋮

. (5)
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Fig. 1. Representation of time-windowed input data and model predictions.
For each scan, we divide the 600 time-point fMRI data (from 90 ROIs) into overlapping 

windows of length 64, each shifted by 1 point, resulting in 537 time-windows. For each time 

window, the model outputs a single point estimate of the RV signal at the center of the 

window. The final, estimated RV signal comprises the time series of 537 point estimates.
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Fig. 2. Convolutional Neural Network architecture
This architecture consists of a sequence of separable convolution and max-pooling layers. 

The first convolution layer consists of 20 filters, and the number of filters is doubled at each 

subsequent layer, resulting in 320 filters at the last convolution layer. The input to the 

network is a time window of length 64 time-points, with 90 ROIs as channels, and the output 

(predicted RV) is a single point at the center of the window.
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Fig. 3. Single-unit network architecture.
For an input window of 64 time points, the signals from all ROIs are flattened into a 1D 

array, to which a single-unit dense layer is applied. This yields a single output, 

corresponding to the predicted RV at the center of the window.
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Fig. 4. Fidelity of reconstructed RV signals to measured RV signals.
Examples of RV signals reconstructed with the single-unit network and the CNN, together 

with the measured RV signals. The Pearson correlation (r) between the reconstructed and 

measured RV is provided for each example. A leave-one-subject-out cross validation was 

employed, and the scans shown here each correspond to iterations in which the respective 

scan was held-out from model training. Examples illustrating different levels of performance 

are presented.
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Fig. 5. Model performance.
Model predictions are evaluated using Pearson correlation between the predicted and 

measured RV signals, and are shown for both CNN and single-unit models as well as with 

and without normalization. All the results correspond to the leave-one-subject-out cross 

validation scheme.
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Fig. 6. Comparison of RV reconstruction scores obtained using the CNN with those resulting 
from the single-unit model.
Each dot represents results for a single scan, from the leave-one-subject-out framework. The 

unity line indicates equal reconstruction score for both models.
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Fig. 7. Stability of performance across randomized train/test splits.
For each scan, a collection of correlation coefficients (reconstruction scores) was obtained 

after repeated iterations of randomized cross validation, and the resulting median and IQR is 

calculated. The distributions of medians (left) and IQR (right) of the reconstruction scores 

for all scans are shown here, for the case of the single-unit model (above) and CNN model 

(below). Note the difference in scaling of the x-axis of each plot, as the IQR across iterations 

was found to be much smaller.
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Fig. 8. fMRI variance explained by RV reconstruction.
(Left) Spatial maps indicating the percentage of temporal variance explained by the 

measured and predicted RV signals, at each fMRI voxel. Maps are shown for the average of 

all 138 scans (top row), and for three individual scans (rows A–C). The 3 individual scans 

were selected as examples of differing RV reconstruction performance, ranging from high 

(scan A: r ~ 0.8), to medium (scan B: r ~ 0.6) and low (C: r ~ 0.1) levels of correlation 

between predicted and measured RV. (Right) Percent temporal variance explained, averaged 

within two major networks, across all 138 scans. Scans are ordered according to the 

difference in variance explained between the predicted and measured RV signals. For most 

scans, there is a high scan-to-scan correspondence between the variance explained by 

predicted and measured RV signals.
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Fig. 9. Reconstruction filter obtained from the single-unit model.
(A) Each value in the (64 timepoint × 90 ROIs) matrix represents the median value of each 

weight across all iterations of leave-one-subject-out cross validation. Vertical axis 

corresponds to timepoints across the 64-point temporal window, and horizontal axis 

corresponds to ROIs. (B) For anatomic visualization of these linear filter weights, the 

maximum positive and negative weights of each ROI, across the 64 timepoints, are displayed 

on the anatomic location of the corresponding ROI.
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Fig. 10. Comparison of preprocessing streams.
(A) RV reconstruction scores (Pearson correlation) for the FIX-processed fMRI data, along 

with those of the minimally preprocessed data, where the latter was examined both with and 

without regressing out head motion parameters. (B) For each scan, the RV reconstruction 

score (Pearson correlation) corresponding to the minimally preprocessed data, both without 

(left panels) and with (right panels) regressing out head-motion parameters, are plotted 

against that of the FIX-processed stream.
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Fig. 11. Time-dependence of RV reconstruction.
The reconstruction score of the CNN model is evaluated across sliding windows. The 

average for every time window is shown together with the 95% confidence intervals. The x-

axis indicates the times at which the sliding windows start.
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