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  Introduction 
 Astronauts are exposed to a complex radiation fi eld consist-
ing of protons, heavy ions, and secondary particles, including 
neutrons with a broad range of linear energy transfer (LET) 
(Badhwar and Cucinotta 1998, Setlow 2003). Th e dose rate 
in space is much higher than that of natural radiation on the 
ground, and the accumulated dose during a long space mis-
sion may reach an unacceptable level of health risk. Th e risks 
associated with the biological eff ects of high LET particles in 
space are still uncertain and need to be quantifi ed to ensure 
the safety of future interplanetary missions (Yasuda 2009). 
One of the critical risks for long-term space missions is po-
tential damage to the central nervous system (CNS). Loss of 
critical cellular components in CNS may lead to performance 
decrements that could ultimately compromise mission goals 
and long-term quality of life of astronauts. 

 Various epidemiological and experimental studies show 
that the eff ects of radiation exposure to the CNS are more 
harmful in the developing embryo and fetus than in the 
adult organism (International Commission on Radiological 
Protection [ICRP] 1986, 1992). For humans, epidemiological 
studies of prenatally exposed survivors of the atomic bomb-
ings of Hiroshima and Nagasaki have shown that there may 
be greater sensitivity for the induction of mental retardation 
or a reduction in intelligence quotient when exposure occurs 
during the period 8 – 15 weeks after ovulation (Otake and 
Schull 1993, 1998, Schull and Otake 1999). Th e 8 – 15-week 
postovulation period in humans coincides with the period 
of corticogenesis, when neural cells proliferate rapidly, and 
these immature neurons migrate from the proliferative 
zones to their fi nal functional sites in the cerebral cortex 
(Williams 1989). Many experimental studies in rodents have 
shown that the most sensitive period for radiation-induced 
acute cell death is the beginning of the corticogenesis period, 
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namely, embryonic day 13 in the mouse corresponding to 
embryonic day 15 in the rat (ICRP 2003). 

 Here, we investigated the eff ects of high-LET iron-ions on 
the developing midbrain (optic tectum; OT) using medaka 
embryos at developmental stage 28 during a period of ex-
treme growth of the OT (Nguyen et al. 1999), as an intact 
vertebrate model that corresponds approximately to the 
corticogenesis period in mammals (Ishikawa et al. 2007). 
Th e medaka is an ideal model for studying the eff ects of ra-
diation on the CNS of vertebrates, because the transparency 
of their eggs and embryos makes it possible to detect mor-
phological abnormalities in the CNS easily using a conven-
tional stereomicroscope (Ishikawa 2000, Shima and Mitani 
2004). Moreover, the smaller size of their embryos compared 
with that of mammalian embryos provides the advantage 
of easy examination of whole-mount specimens (Furutani-
Seiki and Wittbrodt 2004). In addition, we could evaluate the 
molecular mechanism with regard to neurocytotoxic eff ects 
by utilizing the knockout mutants which have been gener-
ated by targeting induced local lesions using genome meth-
ods (Ishikawa et al. 2010a). Recent genome studies reveal 
that medaka and mammals share more than 70% of genes 
(Kasahara et al. 2007, Sasaki et al. 2007). Furthermore, gene 
expression and histological patterns during brain morpho-
genesis in medaka are essentially similar to those reported 
in mammals (Ishikawa et al. 2007, 2008, 2010b), suggesting 
that many mechanisms underlying brain development are 
common in all vertebrates (Nieuwenhuys 1998). 

 Our previous studies showed, by staining with acridine 
orange (AO), that the developing brain of medaka embryos 
at stage 28 exhibited transient radiation-induced apoptosis 
in the marginal proliferating regions in the OT (Yasuda et 
al. 2008, 2009), and we were able to quantitatively evaluate 
neurocytotoxic eff ects of radiation on the developing OT us-
ing an apoptotic index. Moreover, medaka have been used 
to estimate the relative biological eff ectiveness (RBE) of 
high-LET radiation based on germ cell mutations (Shimada 
et al. 2005) and high-energy neutrons measured using apop-
totic endpoints in the developing brain and muscle tissue 
(Kuhne et al. 2009). Based on these fi ndings, we examined 
the apoptosis in the developing OT of medaka embryos after 
exposure to high-LET iron-ions using an AO-staining assay. 
Results obtained in the present study were compared with 
our previous results from X-ray irradiated embryos (Yasuda 
et al. 2008, 2009), and the RBE of iron-ions with an LET of 
200 keV/ μ m for the induction of apoptosis in the developing 
OT was estimated as 3.7 – 4.2.   

 Materials and methods  

 Fish and embryos 
 Th e fi sh of an Hd-rR inbred strain, which is established from 
a southern population (Hyodo-Taguchi and Egami 1985, 
Hyodo-Taguchi 1996), that have been maintained at the Na-
tional Institute of Radiological Sciences (NIRS) were used. 
Th ey were kept at room temperature (26 – 29 ° C) under a 14 h 
light and 10 h dark cycle and fed on a powdered diet (Tetra-
min, Tetra Werke, Melle, Germany) once a day to spawn 
eggs every day. 

 Egg clusters were rubbed between two small pieces of 
paper towel to remove fi laments on chorions to isolate the 
eggs. Subsequently, the eggs were incubated in a petri dish 
containing 7 ml of distilled water containing 10  � 5 % (w/v) 
methylene blue at 26 – 29 ° C to develop. Th e developmental 
stages of the embryos were identical to those reported by 
Iwamatsu (2004).   

 Iron-ion irradiation 
 Iron-ion beams were generated and accelerated using a 
synchrotron, the Heavy Ion Medical Accelerator in Chiba 
(HIMAC) at NIRS, in Chiba, Japan. Embryos at stage 28 (30 
somite stage, 64 h after fertilization) were irradiated at the 
entrance of a horizontal iron-ion beams (about 10 cm before 
the Bragg peak) at room temperature in a specially designed 
plastic fl ask fi lled with distilled water for fi tting to a sample 
holder in the irradiation device (interior dimensions: 35 mm 
wide, 55 mm high, 2 mm thick). Th e iron particle energy 
beam was 500 MeV/nucleon, corresponding to an average 
LET of 200 keV/ μ m. Embryos were irradiated with iron-ion 
beams at doses of 0.2, 0.5, 1.0, and 1.5 Gy, which induced no 
malformation in the irradiated embryos up to hatching (see 
Results). Medaka embryos at stage 28 (30 somite stage, 64 
h after fertilization) correspond approximately to the early 
fetal stage embryo of humans (approximately 8 – 15 weeks 
postovulation) (Ishikawa et al. 2007).   

 Quantifi cation of apoptosis by AO assay 
 AO (acridinium chloride hemi-[zinc chloride], Sigma-
Aldrich, MO, USA), a DNA intercalating vital dye, selectively 
stains the nuclei of apoptotic cells and does not signifi cantly 
label necrotic cell nuclei (Abrams et al. 1993, Furutani-Seiki 
et al. 1996). To quantify the radiation-induced apoptosis in 
the developing OT at 24 h after irradiation, irradiated em-
bryos were stained with AO and AO-stained rosette-shaped 
clusters/OT were counted, as described for the evaluation of 
apoptosis in the X-ray irradiated OT in the methods section 
of our previous paper (Yasuda et al. 2008). 

 Th e AO-stained embryos were observed with a fl uo-
rescence microscope (MZFLIII, Leica, Wetzlar, Germany) 
equipped with an appropriate fi lter, and their fl uorescent 
images were taken using Fujichrome Sensia 100 daylight fi lm. 

 Diff erences in the numbers of rosette-shaped clusters/
OT at the diff erent iron-ion doses were analyzed using 
an analysis of variance with Bonferroni post hoc testing. 
A  P  value of less than 0.05 was considered to be statistically 
signifi cant and a value of less than 0.01 was considered to 
be highly signifi cant.   

 Histological examination 
 Medaka embryos at 24 h after irradiation and at the time of 
hatching (stage 39, 6 – 7 days after irradiation) were anes-
thetized and fi xed in 4% (w/v) paraformaldehyde in 0.1 M 
phosphate buff er overnight at 0 – 4 ° C. Th e fi xed embryos 
were dehydrated with ethanol, embedded in plastic resin 
(Technovit 8100, Heraeus Kulzer, Wehrheim, Germany), and 
sectioned frontally into a complete series of serial sections 
(8  μ m), as described in our previous paper (Yasuda et al. 
2009). Th e sections were Nissl stained with cresyl violet.    
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 Results  

 Quantifi cation of apoptosis in the irradiated 
embryos and RBE calculation 
 To compare the neurocytotoxicity of low- and high-LET 
radia tion, medaka embryos at stage 28 were irradiated with 
iron-ions at doses of 0.2, 0.5, 1.0, and 1.5 Gy, and then ex-
amined for apoptosis using AO-staining assays at 20 – 24 h 
after irradiation, as described for OT apoptosis after X-ray 
irradiation in our previous work (Yasuda et al. 2008, 2009). 
Using this method, our previous studies demonstrated two 
morphologically distinct AO-stained structures (Yasuda 
et al. 2006, 2008, 2009), namely, AO-positive small single 
nuclei and rosette-shaped clusters, especially in the mar-
ginal area where tectal proliferative zones are present 
(Nguyen et al. 1999). Our present study showed similar fi nd-
ings of AO-positive rosette-shaped clusters, found mainly 
in the marginal part of the irradiated OT (arrows in Figure 
1), and the numbers of AO-stained rosette-shaped clusters/
OT increased with increasing dose of iron-ions (Figure 2). 
Exposure to high-LET iron-ion radiation resulted in a dra-
matically higher induction of apoptosis than that after X-ray 
irradiation (Figure 2). For example, exposure to only 0.5 Gy 
of iron-ions induced a similar level of apoptosis (11.7  �  8.1, 
 n   �  7) to that resulting from exposure to 3.5 Gy of X-rays 
(12  �  9.8,  n   �  12). Th e numbers of rosette-shaped clusters/
OT in embryos exposed to iron-ions at 0.5 Gy (11.7  �  8.1, 

 n   �  7), 1.0 Gy (49  �  9.2,  n   �  7), and 1.5 Gy (64  �  6.3,  n   �  6) 
were highly signifi cant compared with control embryos 0 Gy 
(0  �  0,  n   �  12). On the other hand, the number of rosette-
shaped clusters/OT in iron-ion irradiated embryos at 0.2 
Gy (0  �  0,  n   �  11) was not signifi cantly diff erent from that 
in control embryos. It is suggested that the threshold dose 
for the developmental neurocytotoxic eff ects of high-energy 
iron-ions is 0.2 – 0.5 Gy. Th us, irradiation with only 0.5 Gy of 
high-LET iron-ions produced a highly signifi cant increase 
in apoptosis compared with control embryos, whereas our 
previous study of X-ray exposure showed that a dose of 
2.0 Gy X-ray radiation was required to achieve this level of 
signifi cance. 

 Th e ratio of iron-ion dose to X-ray dose that produces the 
same radiation-induced eff ects in the developing OT, i.e., 
RBE, was evaluated. No linear, linear – quadratic, or quadratic 
dose-response curves could be fi tted to data from analy-
ses of at least six embryos per dose of iron-ions or X-rays. 
We therefore searched for a best-fi t function that was 
applicable to both iron-ion and X-ray irradiated embryos. 
Th e empirically derived regression curve for iron-ions was 
determined as y  �  (x  �  0.95) 5   �  0.774 and that for X-rays 
was determined as y  �  (x  �  0.9) 3   �  0.729 (Figure 2). Th e RBE 
value of iron-ions relative to X-rays at 15 rosette-shaped 
apoptotic clusters (y  �  15) was estimated to be 4.2 and that at 
45 rosette-shaped apoptotic clusters (y  �  45) was estimated 
to be 3.7.   

  Figure 1.     Fluorescence microscopy images of whole-mount AO-stained embryonic brains. Th e optic tectum (OT) of a nonirradiated normal embryo 
at stage 30 (A), and those of iron-ion irradiated embryos at 24 h after exposure at a dose of 0.5 Gy (B), 1 Gy (C), and 1.5 Gy (D). Dorsal views, rostral 
to top. Arrows indicate AO-stained rosette-shaped clusters of apoptosis. OT  �  optic tectum; EY  �  eye. Scale bar  �  50  μ m.  
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 Discussion 

 Astronauts exploring space beyond a low Earth orbit are ex-
posed to cosmic ray fl ux including high-LET radiation, which 
has a greater biological eff ect on tissues than low-LET radia-
tion. Th e United States National Research Council ’ s Space 
Studies Board has concluded that further experimentation is 
essential to determine if CNS damage is a signifi cant risk in 
terms of estimating health risks for crew members (Setlow 
1999, 2003). We have examined the acute biological eff ects, 
especially those concerning apoptosis, after exposure of the 
developing OT to high-LET iron-ions, using intact vertebrate 
medaka embryos. 

 In our previous studies, we developed a simple and quick 
AO-staining assay to detect and quantify apoptotic cells in 
the irradiated OT (Yasuda et al. 2008, 2009). Th e response of 
radiation-induced apoptosis that was observed after expo-
sure to iron-ions using the AO-staining method was similar 
to that observed after exposure to X-rays in our previous 
study with respect to its characteristic morphology and po-
sition (Yasuda et al. 2008, 2009). Th us, AO-stained rosette-
shaped clusters were observed particularly in the marginal 
OT area (see Results). An in vivo study in rodents showed 
that the extent and area of acute cell death in the ventricu-
lar area of fetal rat brain observed after exposure to 1.5 Gy 
carbon-ions were similar to those after exposure to 2.0 – 2.5 
Gy X-ray irradiation (Inoue et al. 2000). Furthermore, an in 
vitro study of neuronal cells showed that changes in mor-
phological characteristics such as apoptosis and cell viability 
after exposure to carbon-ions were not signifi cantly diff erent 
from those after exposure to X-rays (Al-Jahdari et al. 2009). 
Th ese in vivo and in vitro fi ndings showed that the kinds of 
neurocytotoxic eff ects on developing neurons resulting from 
exposure to high-LET radiation do not diff er from those 
resulting from exposure to low-LET X-ray irradiation. Neu-
ronal apoptosis in the irradiated developing OT increased in 
a dose-dependent manner after exposure to both iron-ions 
and X-ray radiation, as seen in our previous study (Figure 
2). However, the quantitative diff erence between them was 
signifi cant. Th e threshold dose for developmental neurocy-
totoxic eff ects after exposure to iron-ions was determined as 
being 0.2 – 0.5 Gy, which is a lower dose than that for X-ray-
induced damage, as was shown in our previous study of 
irradiated embryos determined at 1 – 2 Gy (Yasuda et al. 2008). 
Th is fi nding indicates that prenatal exposure to the iron-ion 
radiation induced higher developmental neurocyototoxic 
eff ects on the developing CNS than did X-ray irradiation. 

 Almost all the available data indicate that RBE values in 
vitro and in vivo for cell killing, mutations, and cancer induc-
tion in animals increase with LET to a value in the neighbor-
hood of 2 – 4 at LET values around 100 – 200 keV/ μ m (National 
Council on Radiation Protection and Measurements [NCRP] 
1989, Setlow 1999). However, high-LET radiation has a large 
uncertainty depending on the applied charged-particle spe-
cies, the type of tissue used and its maturation, and the end-
point used. One investigation of the eff ects of high-atomic 
number nuclei on tumor induction in the Harderian gland in 
mice indicated an RBE of 20 – 40 at high values of LET (Alpen 
et al. 1993). 

 Histological observation of the developing CNS after 
exposure to iron-ions 
 To examine the histological features of AO-stained rosette-
shaped clusters, we prepared histological sections of the 
iron-ion irradiated embryos at 24 h after exposure. Th e 
frontal plastic sections of mesencephalon (Figure 3C), eyes 
(Figure 3E), and OT (Figure 4C, E) showed many clusters 
of dead cells that appeared as circular holes in the periven-
tricular area of the mesencephalon (arrows in Figure 3C), in 
the retinal neurons of the eyes (arrows in Figure 3E), and in 
the marginal regions of the OT (arrows in Figure 3C, 4C, E), 
where the AO-stained rosette-shaped clusters were visual-
ized (arrows in Figure 1). Th is suggests that these circular 
holes on the sections are the result of aggregated apoptotic 
cells, which were demonstrated by electron microscope ob-
servations in our previous study (Yasuda et al. 2008). 

 In our preliminary experiments, most of the irradiated em-
bryos after exposure to iron-ions at a dose of 2.0 Gy hatched 
normally; however, at a dose of 5.0 Gy, all the irradiated em-
bryos showed embryonic death and severe malformations 
up to hatching (data not shown). In the present study, after 
exposure to iron-ions with a dose of 1.5 Gy, almost all the 
irradiated embryos survived and apparently grew normally 
( n   �  32 out of 35). 

 At the hatching period (8 – 9 days after fertilization, stages 
38 – 39), frontal plastic sections of the eyes irradiated with 
1.5 Gy iron-ions showed no abnormalities such as disorga-
nized laminar arrangement or disordered cell layers in the 
retinal neurons (Figure 5B, D), where numerous circular 
holes had been found on sections of irradiated eyes at 24 h 
after irradiation (arrows in Figure 3C, E). Moreover, histo-
logical examination showed that the OT (Figure 6B), the 
telencephalon (Figure 5B), and the torus longitudinalis 
(brain subdivision in the midbrain) (Figure 6D) fully deve-
loped with no abnormalities.    
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 Th e RBE value of iron-ions with an LET of 200 keV/ μ m 
in the present study for the induction of apoptosis in the 
developing OT was estimated to be 3.7 – 4.2, which was 
within the range of values reported previously (NCRP 1989, 
Setlow 1999). An in vitro study of human neuronal progeni-
tor cells (Netra 2) indicated that the RBE value of iron-ions 
with an LET of 148 keV/ μ m for the induction of apoptosis 
was 3.4 (Guida et al. 2005). Both in vivo and in vitro fi nd-
ings showed that exposure to iron-ion radiation induces 
higher neurocytotoxic eff ects on the developing brain than 
low-LET X-rays. 

 Even though a large number of apoptotic cells were in-
duced in the iron-ion irradiated OT at 24 h after irradiation, 
histological examination during the hatching period (stage 
39, 6 – 7 days after irradiation) showed no abnormalities in 
the CNS (Figures 5  &  6). Our present study demonstrated 
that the iron-ion irradiated embryos could overcome the 
radiation-induced damage completely during their devel-
opment, which is in agreement with our previous fi ndings 
in X-ray irradiated embryos (Yasuda et al. 2009). An in vivo 
experiment with adult rodents showed that neural precursor 
cells, immature neurons, in the hippocampal dentate gyrus 
undergo apoptosis shortly after iron-ion irradiation with 1 – 3 
Gy in a dose-dependent manner (Rola et al. 2004, 2005). Fur-
thermore, no recovery from neuronal damage was observed 

3 months after exposure and damage worsened with time up 
to 9 months later (Rola et al. 2008). Th is report from rodent 
studies indicated that high-LET radiation has a signifi cant 
and long-lasting eff ect on the neurogenesis. Th is is obvi-
ously in contrast to our present results, which demonstrate 
a recovery from neuronal damage during development up to 
hatching. Th is contradiction is believed to arise for the fol-
lowing two reasons. First, as the radiosensitivity of medaka is 
much lower than that of mammals (Abrahamson et al. 1973, 
Ishikawa and Hyodo-Taguchi 1997), the detrimental eff ects 
of 1.5 Gy iron-ions on medaka embryos would be smaller 
than the eff ects of 1 – 3 Gy iron-ions on mice. Second, because 
our present study demonstrated that radiation eff ects on the 
CNS of embryo but not on adult fi sh, the capacity for elimi-
nating damaged neuronal cells and regenerating them with 
neuronal progenitor cells might be superior (Kriegstein and 
Alvarez-Buylla 2009) than that seen in 2.5-month-old adult 
mice (Rola et al. 2008). For eliminating the neuronal dam-
aged cells, it is essential that the dying neurons are quickly 
phagocytosed by microglia which are resident immune cells 
of the CNS (Kettenmann 2007, Peri and Nusslein-Volhard 
2008). It has been reported in zebrafi sh embryo that mi-
croglia in the embryonic brain at steady and healthy state 
showed a surprisingly swift wandering behavior (Herbomel 
et al. 2001). Th is unexpected behavior of restlessly wandering 
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Figure 3. Histology of the iron-ion irradiated embryos at 24 h after irradiation (C, E) and that of nonirradiated embryos (B, D). Dorsal to top. Th e 
level is indicated in panel A, which shows the dorsal view of the embryo at stage 30. Arrows indicate clusters of dead cells exhibiting circular holes 
in the periventricular area of mesencephalon (arrow in C) and in the retinal neuron of the eyes (arrows in E). MES � mesencephalon; OT � optic 
tectum. Scale bar � 20 μm.
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A B
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Figure 5. Histology of iron-ion irradiated embryos at the time of hatching (6–7 days after irradiation) (B, D) and that of nonirradiated embryos 
(A, C). Dorsal to top. Frontal plastic sections at the level of the mid telencephalon (Nissl staining). No abnormal development was detected in the 
irradiated telencephalon (B) or eyes (B, D). EY � eye; TE � telencephalon. Scale bar � 20 μm.
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Figure 4. Histology of the iron-ion irradiated embryos at 24 h after irradiation (C, E) and that of nonirradiated embryos (B, D). Dorsal to top. Th e 
level is indicated in panel A, which shows the dorsal view of the embryo at stage 30. Arrows indicate clusters of dead cells that appeared as circular 
holes in the marginal area of optic tectum (arrows in C, E). V � ventricle; OT � optic tectum. Scale bar � 20 μm.
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vertebrate, that are relevant to the aerospace radiation 
environment. Our present results clearly indicate that the 
AO-staining method is a useful tool for quantifying apoptosis 
in the developing CNS after exposure to high- and low-LET 
radiation. Th us, medaka embryos are a useful model for 
investi gating embryonic neuronal damage associated with 
high- and low-LET radiation.   
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 Although histological examinations at the hatching period 
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ties in the CNS in our present study, it is possible that subtle 
structural changes in the CNS that cannot be detected by his-
tological examination were manifested as behavioral altera-
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and are a sensitive indicator of teratogenic activity (Pecaut 
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adverse behavioral and neuronal eff ects are similar to those 
seen in aged animals, which might be related to an increase 
in the release of reactive oxygen species (Shukitt-Hale et al. 
2000). Moreover, these cognitive declines are associated with 
specifi c areas of brain signaling defi cits, such as synaptic 
vesicle proteins, which are important in cognition (Denisova 
et al. 2002). If these decrements in behaviors also occur in 
humans, they may impair the ability of astronauts to perform 
critical tasks. Further investigation to elucidate the eff ects of 
embryonic iron-ion irradiation on behaviors found later in 
adult medaka is warranted in future studies. 

 To our knowledge, this present study is the fi rst report 
regarding the eff ects of high-energy iron-ions on the 
embryonic brain in vivo using medaka, or any other intact 

A B

C D

Figure 6. Histology of iron-ion irradiated embryos at the time of hatching (6–7 days after irradiation) (B, D) and that of nonirradiated embryos 
(A, C). Dorsal to top. Frontal plastic sections at the level of the mid mesencephalon (Nissl staining). No abnormal development was detected in the 
irradiated optic tectum (B, D). OT � optic tectum. Scale bar � 20 μm.
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