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Nature often brings several domains together to formmultidomain andmultifunctional proteins with a vast number of possibilities.
In our previous study, we disclosed that the protein function prediction problem is naturally and inherently Multi-Instance
Multilabel (MIML) learning tasks. Automated protein function prediction is typically implemented under the assumption that
the functions of labeled proteins are complete; that is, there are no missing labels. In contrast, in practice just a subset of the
functions of a protein are known, and whether this protein has other functions is unknown. It is evident that protein function
prediction tasks suffer from weak-label problem; thus protein function prediction with incomplete annotation matches well with
the MIML with weak-label learning framework. In this paper, we have applied the state-of-the-art MIML with weak-label learning
algorithmMIMLwel for predicting protein functions in two typical real-world electricigens organismswhich have beenwidely used
in microbial fuel cells (MFCs) researches. Our experimental results validate the effectiveness of MIMLwel algorithm in predicting
protein functions with incomplete annotation.

1. Introduction

Automated annotation of protein functions is challenging in
the postgenomic era. With the rapid growth of the number
of sequenced genomes, the overwhelmingmajority of protein
products can only be annotated by computational approaches
[1]. Nature usually brings multiple domains together to
construct multidomain and multifunctional proteins with a
vast number of possibilities [2]. The large part of genomic
proteins, two-thirds in unicellular organisms and more than
80% in Metazoa, belongs to multidomain proteins [3]. In
a multidomain protein, each domain can fulfill its own
function independently, or in a coordinated manner with
its neighbors [4]. Zhou and Zhang [5] proposed the Multi-
Instance Multilabel learning (MIML) framework, where one
object is represented by a bag of instances and the object
is valid to have several labels simultaneously. Labels of
training examples are known; however, labels of instances are
unknown. We can regard each domain as an input instance

and represent each biological function with an output label.
In our previous study, it is disclosed that the protein function
prediction problem is naturally and inherently MIML learn-
ing tasks [6]. Previously, prediction of protein functions was
typically operated with the assumption that the functions of
labeled proteins are complete; that is, there are no missing
labels [7, 8]. Instead of things, in practice we just know a
part of the functions of a protein, and whether this protein
has other functions is unknown. Namely, these proteins have
an incomplete annotation of their functions [9]. This kind
of protein functions prediction problem with incomplete
annotation can be referred to as theMultilabelMulti-Instance
with weak-label learning task.

During the past several years, many Multilabel Multi-
Instance learning algorithms have been developed [5, 10–
12]. In our previous study, we proposed an ensemble MIML
learning framework EnMIMLNN and design three algo-
rithms for protein function prediction tasks by combining
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the advantage of three kinds of Hausdorff distance met-
rics [6]. On the other hand, in the past few years, there
are multiple algorithms which have been proposed for the
weak-label learning problem. Sun et al. studied the weak-
label learning problem in multilabel learning and proposed
a method called weak-label learning (WELL) [13]. WELL
deems the fact that classification boundary for each label
should go across the low density regions, and any given
label will not be correlative to the majority of instances [13].
Bucak et al. [14] studied the incomplete class assignment
task for annotating images and proposed an approach called
MLR-GR. MLR-GR optimizes the ranking errors and group
Lasso loss by a convex optimization approach. Qi et al. [15]
applied the Hierarchical Dirichlet Process to append missing
labels for a set of images. In addition, Wang et al. [16]
designed an approach for annotating weakly labeled facial
images.

Although the underlying nature of predicting protein
functions with incomplete annotation matches well with the
Multi-Instance Multilabel with weak-label learning frame-
work, till now there is no attempt that has been made
under this learning framework. Jiang had proposed a multi-
label semisupervised learning algorithm, PfunBG, to predict
protein functions, employing a birelational graph (BG) of
proteins and function annotations [17]. Yu et al. [7, 8] had
proposed a protein function prediction method with multi-
label weak-label learning (ProWL) and a variant of ProWL
(ProWLIF) in order to complete the partial annotation of
proteins. Both ProWL and ProWL-IF replenish the functions
of proteins under the assumption that proteins are partially
annotated [7, 8]. However, multilabel learning framework
is evidently degenerated versions of MIML learning frame-
work [5, 12]. Such degenerated strategies may lose useful
information in the instance spaces, and this further hurts
prediction performance [5, 12]. Recently, Yang et al. [18]
proposed the MIMLwel (MIML with weak-label) approach
which works by assuming that highly relevant labels share
some common instances, and the underlying class means
of bags for each label are with a large margin. MIMLwel
makes use of the label relationship, and experiments had
validated the effectiveness of MIMLwel in handling the
Multilabel Multi-Instance with weak-label learning problem
[18].

Microbial fuel cells (MFCs) are devices that can use
bacterial metabolism to produce an electrical current from
a wide range of organic substrates [19]. Due to the promise of
sustainable energy production from organic wastes, research
has intensified in the MFCs field in the last few years
[19]. In this paper, we have applied the MIMLwel algo-
rithm for annotating protein functions in two typical real-
world electricigens genomes (i.e., Geobacter sulfurreducens,
Shewanella loihica PV-4) which have been widely used in
the MFCs researches. Our experimental results validate the
effectiveness of MIMLwel algorithm in predicting functions
of proteins in the electricigens genomes with incomplete
annotation. In addition, it is worth mentioning that our
approach is a generalmethod for predicting protein functions
with incomplete annotation.

2. The Formulation of the Protein
Function Prediction Task with
Incomplete Annotation

Nature often assembles multiple domains together to form
multidomain and multifunctional proteins with high pos-
sibility, and each domain may implement its own function
independently or in a cooperated manner with its neighbors.
We can regard each domain as an input instance and take
each biological function as an output label. Labels of the
training examples are known; however, labels of instances
are unknown. In our previous work, we disclose that the
protein function prediction problem is naturally and inher-
ently Multi-Instance Multilabel (MIML) learning tasks [6].
Previous studies typically predict the functions of proteins
under the assumption that the functions of labeled proteins
are complete; that is, there are no missing labels. In contrast,
in most real cases we just know a subset of the functions
of a protein, and whether this protein has other functions
is unknown. Namely, these proteins have an incomplete
annotation for molecular functions [9]. This type of protein
function prediction problemwith incomplete annotation can
be inferred to as the Multilabel Multi-Instance with weak-
label learning task.

We study theMulti-InstanceMultilabel weak-label learn-
ing framework for protein function prediction with incom-
plete annotation for two tasks as illustrated in Table 1. In
the tables, each row indicates the function annotation for a
protein, and each column denotes a function label. Table 1(a)
presents the complete annotated proteins, with 1 and 0
showing function annotations (F1–F5) on the six proteins P1–
P6. In Table 1(b), 1 denotes the known relevant functions, “?”
represents the missing functions and will be set to 0 s, and all
the 0 s indicate the candidates for being predicted as relevant.
In Task 2 as shown by Table 1(c), the definitions of 1 and 0 are
the same as in Table 1(b). However, the aim of the weak-label
learning is to make use of the incomplete annotated proteins
(P1–P4) to predict the functions of proteins P5 and P6, which
are completely unlabeled.

Formally, we represent by {𝑋
𝑖
, 𝑌
𝑖
(𝑖 = 1, 2, . . . , 𝑚)} the

training dataset with 𝑚 examples. 𝑋
𝑖
is the 𝑖th protein

in the training dataset, and 𝑋
𝑖
is a bag with 𝑛

𝑖
instances

{𝑥
𝑖,1
, 𝑥
𝑖,2
, . . . , 𝑥

𝑖,𝑛𝑖
}. 𝑌
𝑖
denotes the Gene Ontology terms

which are assigned to 𝑋
𝑖
, and 𝑌

𝑖
= [𝑦
𝑖,1
, . . . , 𝑦

𝑖,𝐿
] ∈ {0, 1}

𝐿

is a label vector with 𝐿 labels, where 𝑦
𝑖,𝑙
= +1 if the 𝑙th label

is positive for 𝑋
𝑖
, and 0 otherwise. Note that the labels of

instances 𝑥
𝑖,𝑗
’s (𝑖 = 1, . . . , 𝑚; 𝑗 = 1, . . . , 𝑛

𝑖
) are untagged. In

the MIML weak-label setting, 𝑌 is unknown and instead we
are just given a partial label matrix 𝑌̂ ∈ {0, 1}

𝑚×𝐿. Specifically,
for 𝑋
𝑖
, a label vector 𝑌̂ = [𝑦

𝑖,1
, . . . , 𝑦

𝑖,𝐿
] is given, where 𝑦

𝑖,𝑙
=

+1 if the 𝑙th label is assigned for𝑋
𝑖
, and 0 otherwise. Different

from the full label matrix, 𝑦
𝑖,𝑙
= 0 tells us nothing.The goal is

to predict all the positive labels for unseen bags [18].

3. Datasets and Methods

3.1. Data and Feature Extraction. Microbial fuel cells (MFCs)
are devices that can make use of bacterial metabolism to
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Table 1: Task overview for the “weak-label” problem in protein
function prediction tasks. “1” represents relevant function, “?”
denotes missing function and will be transformed to a “0”, and P5
and P6 in Table 1(c) are completely unannotated (sources from [8]).

(a) Original

F1 F2 F3 F4 F5
P1 0 1 0 1 0
P2 0 0 1 0 1
P3 1 1 0 0 1
P4 0 1 1 0 0
P5 1 0 0 1 0
P6 0 1 0 0 0

(b) Task 1

F1 F2 F3 F4 F5
P1 0 ? 0 1 0
P2 0 0 ? ? 1
P3 1 ? 0 ? 1
P4 ? 1 1 0 0
P5 1 0 ? ? 0
P6 0 1 ? 0 0

(c) Task 2

F1 F2 F3 F4 F5
P1 0 ? 0 1 0
P2 0 0 ? ? 1
P3 1 ? 0 ? 1
P4 ? 1 1 0 0
P5 ? ? ? ? ?
P6 ? ? ? ? ?

obtain an electrical current from a wide range of organic
substrates [19]. Due to the promise of sustainable energy
production fromorganicwastes, research has booming in this
field during the last few years [19]. Recently, the increased
interest inMFCs technologywas highlighted by the discovery
of Geobacter sulfurreducens, a bacterial strain capable of
high current production [19]. In addition, the genome-
wide sequences of multiple Shewanella strains have been
completed and annotated, opening the door to explore the
diversity of their extracellular electron transfer mechanisms
[20]. In this paper, two typical real-world electricigens organ-
isms which have been widely used in microbial fuel cells
(MFCs) researches (i.e.,Geobacter sulfurreducens, Shewanella
loihica PV-4) are considered for predicting their protein func-
tions. For each organism, complete proteome with manually
annotated function has been downloaded from the Universal
Protein Resource (UniProt) databank [21] (released by April,
2014) by querying the terms of {“organism name” AND
“reviewed: yes” AND “keyword: Complete proteome”}.

Redundancy among protein sequences of each organism
is removed by clustering operation using the blastclust exe-
cutable program in the BLAST package [22] from NCBI with
a threshold of 90% as sequence identity, and a nonredundant
dataset is obtained by keeping only the longest sequence in

Table 2: Characteristics of the data sets.

Organism Examples Classes
Instances per

bag
(mean ± std.)

Labels per
example

(mean ± std.)
Geobacter
sulfurreducens 379 320 3.20 ± 1.21 3.14 ± 3.33

Shewanella
loihica PV-4 373 344 3.14 ± 1.19 3.55 ± 5.00

each cluster for each organism [23].Then, eachnonredundant
dataset is uploaded as a txt file into the Batch CD-Search
servers [24] of NCBI for getting the conserved domains
of each protein. For each domain, a frequency vector with
216 dimensions is employed for its representation where
each element indicates the frequency of a triad type [25].
Protein function can be annotated in several ways, and the
most well-known and widely used one is given by Gene
Ontology Consortium [26] which offers ontology in three
aspects: molecular function, biological process, and cellular
location. In this study, we concentrate on the molecular
function aspect.We achieve theGOmolecular function terms
with manual annotation for a protein from the downloaded
UniProt format text file. Then, the same scheme as [27] is
assigned for produce label vectors for a protein based on a
hierarchal directed acyclic graph (DAG) of GO molecular
function, and the latest version (December 2006) of GO
function ontology is adopted as the bases of the functional
terms and their relations in this work.

Under the MIML learning framework, each protein is
described as a bag of instances where each instance represents
a domain and is tagged with a set of GO molecular function
terms (multiple labels). Detailed descriptions of the datasets,
that is, complete proteome on the two above organisms,
are shown in Table 2. For example, there are 373 proteins
(examples) with a sum of 344 gene ontology terms (label
classes) onmolecular function in the Shewanella loihica PV-4
dataset (Table 2).The average number of instances (domains)
per bag (protein) is 3.14 ± 1.19, and the average number
of labels (GO terms) per example (protein) is 3.55 ± 5.00

(Table 2).

3.2. The MIMLwel Approach. In this paper, the MIMLwel
(MIML with weak-label) approach is adopted for the weak-
label setting [18]. MIMLwel assumes that highly relevant
labels usually share common instances, and the underlying
class means of bags for each label are separated with a large
margin [18].

Formally, the training dataset with 𝑚 examples can be
represented by {𝑋

𝑖
, 𝑌
𝑖
(𝑖 = 1, 2, . . . , 𝑚)}. 𝑋

𝑖
corresponds to

the 𝑖th example in the training dataset, and𝑋
𝑖
is a bag with 𝑛

𝑖

instances {𝑥
𝑖,1
, 𝑥
𝑖,2
, . . . , 𝑥

𝑖,𝑛𝑖
}. 𝑌
𝑖
denotes the labels which are

assigned to 𝑋
𝑖
, and 𝑌

𝑖
= [𝑦
𝑖,1
, . . . , 𝑦

𝑖,𝐿
] ∈ {0, 1}

𝐿 is a label
vector with 𝐿 labels, where 𝑦

𝑖,𝑙
= +1 if the lth label is positive

for 𝑋
𝑖
, and 0 otherwise. Notice that the labels of instances

𝑥
𝑖,𝑗
’s (𝑖 = 1, . . . , 𝑚; 𝑗 = 1, . . . , 𝑛

𝑖
) are unknown. In the

MIMLweak-label setting, however, only a subset of labels are
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Table 3: Performance of the MIMLwel methods with different weak-label ratios on two datasets.

Datasets W.L.R. HL↓ maF1↑ miF1↑

Geobacter sulfurreducens

20% 0.010 ± 0.002 0.003 ± 0.004 0.032 ± 0.035
40% 0.010 ± 0.002 0.009 ± 0.005 0.116 ± 0.038
60% 0.010 ± 0.002 0.016 ± 0.006 0.201 ± 0.034
80% 0.011 ± 0.001 0.019 ± 0.007 0.245 ± 0.050

Shewanella loihica PV-4

20% 0.013 ± 0.002 0.009 ± 0.008 0.145 ± 0.111
40% 0.010 ± 0.002 0.005 ± 0.003 0.092 ± 0.039
60% 0.011 ± 0.003 0.010 ± 0.006 0.167 ± 0.072
80% 0.011 ± 0.003 0.011 ± 0.005 0.186 ± 0.043

tagged. Specifically, for𝑋
𝑖
, a label vector 𝑌̂ = [𝑦

𝑖,1
, . . . , 𝑦

𝑖,𝐿
] ∈

{0, 1}
𝑚×𝐿 is given, where 𝑦

𝑖,𝑙
= +1 if the 𝑙th label is assigned

for 𝑋
𝑖
, and 0 otherwise. The goal is to predict all the positive

labels for unseen bags [18].
For simplicity, 𝐿 linear models were employed, and each

one is for a label; that is, 𝑓
𝑙
(𝑋) = 𝑤

𝑇

𝑙
Φ
𝐶
(𝑋) where each 𝑤

𝑙

denotes a d-dimensional linear predictor [𝑤
𝑙,1
, 𝑤
𝑙,2
, . . . , 𝑤

𝑙,𝑑
]
𝑇

and 𝑤𝑇
𝑙
is the transpose of 𝑤

𝑙
. To make use of label relation-

ship, a label relationmatrix𝑅 ∈ [0, 1]
𝐿×𝐿 is considered, where

𝑅
𝑙,̃𝑙
= 1 if the two labels are related, and 0 otherwise. LetWl,̃l

indicate [wl,wl̃] for the pair of related labels (𝑙, 𝑙̃). MIMLwel
assumes that highly related labels usually share common
instances, indicating that many rows of wl,̃l values should be
equal to zero; this can be characterized by a convexly relaxed
term ‖w(l, l̃)‖

(2,1), which is a convex relaxation of ‖w(l, l̃)‖(2,0).
Thus, the goal of MIMLwel is to obtain𝑊 = [𝑤

1
, . . . , 𝑤

𝐿
] and

an output matrix 𝑌̂ to meet that

min
W,Y

− 𝜂

𝐿

∑
𝑙=1

𝑉({𝑦
𝑖,𝑙
, 𝑋
𝑖
}
𝑚

𝑖=1
,wl) + ∑

1<l, l̃≤L
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󵄩󵄩󵄩󵄩󵄩
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󵄨󵄨󵄨󵄨󵄨
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𝑦
𝑖,𝑙
= 𝑦
𝑖,𝑙

if 𝑦
𝑖,𝑙
= 1, ∀𝑙 = 1, . . . , 𝐿,

(1)

where 𝑉 is a loss function for each label, | ⋅ |
1
represents the

𝑙
1
-norm, 𝜖 controls the sparsity of |𝑌

𝑙
− 𝑌̂
𝑙
|
1
, and 𝜂 trades off

the empirical risk and model complexity.

3.3. Experimental Configuration. In this paper, we adopt
three popular multilabel learning evaluation criteria, that is,
Hamming loss (HL), macro-F1 (maF1), and micro-F1 (miF1)
[28–30]. Hamming loss assesses how many times on average
a bag label pair is wrongly predicted. The smaller the value
of hamming loss, the better the performance. Macro-F1
computes F1 measure on each class label at first and then
averages over all class labels. Macro-F1 is more influenced
by the performance of the classes owning fewer examples.
The larger the value ofmacro-F1, the better the performance.
Micro-F1 globally calculates the F1measure on the predictors
over all bags and all class labels.Micro-F1 is more affected by
the performance of the classes involving more examples. The
larger the value of micro-F1, the better the performance. The

definition of these criteria can be found in [30]. We repeat
10-fold cross validation for each dataset ten times and the
mean ± std. performances are presented for the proposed and
compared methods.

4. Results and Discussion

4.1. Performance of theMIMLwelMethod. In our experiments
we consider four weak-label ratios (W.L.R.) [18], defined as
|Ŷ
⋅,𝑙
|
1
/|Y
⋅,l|1, from 20% to 80% with 20% as the interval.

Table 3 illustrates the performances of MIMLwel based on
each kind of W.L.R. on the Geobacter sulfurreducens and
Shewanella loihica PV-4 datasets. For each evaluation cri-
terion, ↑(↓) indicates the larger (smaller), the better the
performance; the best results on each evaluation criterion are
highlighted in boldface. As indicated in Table 3, the results
show that, with the rising of W.L.R., the model performance
of MIMLwel has been greatly improved.

The MIMLwel approach [18] involves two different
parameters, that is, the scaling factor 𝜇 and the fraction
parameter 𝛼. Figure 1 shows how the MIMLwel algorithm is
implemented on the two datasets with 80% weak-label ratios
(W.L.R.) under different parameter configurations, where the
performance is measured in terms of HL, maF1, and miF1.
Here, 𝜇 varies from 0.2 to 1.0 with an interval of 0.2 when 𝛼

is fixed to 0.1, and 𝛼 increases from0.02 to 0.1 with an interval
of 0.02 with the fixed 𝜇 equal to 1.0. It is indicated that
the performance of the MIMLwel algorithms achieves the
perk in most cases by setting the scaling factor 𝜇 to 1.0 and
the fraction parameter 𝛼 to 0.1. In this paper, the MIMLwel
algorithm is implemented by setting the scaling factor 𝜇 to
1.0 and the fraction parameter 𝛼 to 0.1.

4.2. Performance Comparison. In this paper, we compare
the MIMLwel algorithm with four state-of-the-art MIML
algorithms, that is, MIMLkNN [31], MIMLNN [12], MIML-
RBF [32], and MIMLSVM [5], under different configuration
of weak-label ratios (W.L.R.) on the Geobacter sulfurre-
ducens dataset (Table 4) and Shewanella loihica PV-4 dataset
(Table 5). The codes of compared MIML algorithms are
shared by their authors, and these algorithms are imple-
mented using the best parameters reported in the papers.
Specifically, for MIMLkNN, the number of nearest neighbors
and the number of citers are set to 10 and 20, respectively
[31]; for MIMLNN, the number of clusters is set to 40% of
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Figure 1: The performance of MIMLwel on all two datasets with 80% weak-label ratios (W.L.R.) under different values of scaling factor 𝜇
when the fraction parameter 𝛼 is fixed to 0.1 and different values of the fraction parameter 𝛼 when the scaling factor 𝜇 is fixed to 1.0. The
performance of MIMLwel reaches the perk in most cases by setting the scaling factor 𝜇 to 1.0 and the fraction parameter 𝛼 to 0.1.
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Table 4: Comparison results (mean ± std.) of MIMLwel models with four state-of-the-art MIML methods with different weak-label ratios
on the Geobacter sulfurreducens dataset.

W.L.R. Methods HL↓ maF1↑ miF1↑

20%

MIMLwel 0.010 ± 0.002 0.003 ± 0.004 0.032 ± 0.035
MIMLNN 0.010 ± 0.002 0.000 ± 0.000 0.000 ± 0.000 e
MIMLRBF 0.010 ± 0.002 0.002 ± 0.003 0.002 ± 0.003 e
MIMLSVM 0.012 ± 0.002 0.005 ± 0.003 0.005 ± 0.003 e

EnMIMLNN {metric} 0.010 ± 0.002 0.002 ± 0.002 0.001 ± 0.002 e

40%

MIMLwel 0.010 ± 0.002 0.009 ± 0.005 0.116 ± 0.038
MIMLNN 0.010 ± 0.002 0.000 ± 0.000 0.000 ± 0.000 e
MIMLRBF 0.010 ± 0.002 0.004 ± 0.004 0.003 ± 0.003 e
MIMLSVM 0.012 ± 0.001 0.006 ± 0.003 0.006 ± 0.003 e

EnMIMLNN {metric} 0.010 ± 0.002 0.003 ± 0.004 0.003 ± 0.003 e

60%

MIMLwel 0.010 ± 0.002 0.016 ± 0.006 0.201 ± 0.034
MIMLNN 0.010 ± 0.001 0.001 ± 0.001 0.001 ± 0.001 e
MIMLRBF 0.009 ± 0.001 0.009 ± 0.007 0.008 ± 0.007 e
MIMLSVM 0.011 ± 0.001 0.008 ± 0.003 0.008 ± 0.003 e

EnMIMLNN {metric} 0.010 ± 0.001 0.009 ± 0.004 0.008 ± 0.004 e

80%

MIMLwel 0.011 ± 0.001 0.019 ± 0.007 0.245 ± 0.050
MIMLNN 0.010 ± 0.001 0.002 ± 0.001 e 0.002 ± 0.001 e
MIMLRBF 0.009 ± 0.000 0.009 ± 0.004 e 0.008 ± 0.004 e
MIMLSVM 0.011 ± 0.001 0.008 ± 0.002 e 0.008 ± 0.002 e

EnMIMLNN {metric} 0.009 ± 0.001 0.013 ± 0.004 0.012 ± 0.004 e

the training bags, and the regularization parameter used to
compute matrix inverse is set to 1 [12]; for MIMLRBF, the
scaling factor and the fraction parameter are set to 0.6 and
0.1, respectively [32]; for MIMLSVM, the number of clusters
is set to 20% of the training bags and the Gaussian kernel
width is set to 0.2 [5]. Tables 4 and 5 summarize the exper-
imental results of each compared algorithm on the Geobacter
sulfurreducens dataset and Shewanella loihica PV-4 dataset,
respectively. For each evaluation criterion, “↓” indicates “the
smaller the better,” while “↑” indicates “the bigger the better.”
Furthermore, the best results on each evaluation criterion
are highlighted in boldface. It is indicated that the MIMLwel
algorithm performs quite well in terms of most criteria in
two datasets (Tables 5 and 6). Specifically, paired t-tests at
95% significance level indicate that the MIMLwel algorithm
achieves significantly better performance than compared
methods in most cases, as shown by the overwhelming e’s
in Tables 4 and 5.

4.3. Case Study. Table 6 presents two example results.
The first protein with the UniProt ID “Q74BW7” from
the Geobacter sulfurreducens organism has seven ground-
truth labels: {GO:0008270, GO:0046872, GO:0000287,
GO:0051539, GO:0030145, GO:0005506, GO:0004160}. After
training examples with 80% weak-label ratios by different
MIMLmethods, the trainedmodel is then used to predict the
GO molecular function labels of this protein. The correctly
predicted GO molecular function labels by each method are
highlighted in boldface. It is shown in Table 6 that MIMLwel
successfully predicts most of the ground-truth labels (6/7);
however, it predicts one more label, that is, GO:0005524,

which is not in the ground-truth list. Nevertheless, the
label GO:0005524 that denotes “ATP binding” may be not
a conflict with the true molecular function in UniProt.
MIMLRBF and EnMIMLNN{metric} predict two ground-
truth labels but still miss a lot (5/7). MIMLNN reports no
prediction result, and MIMLSVM only reports a wrong GO
molecular function label. Similar situation also happen in
the second example with the UniProt ID “A3QFX5” from the
Shewanella loihica PV-4 organism as indicated in Table 6.

5. Conclusion

In our previous study, we disclosed that the protein func-
tion prediction problem is naturally and inherently Multi-
Instance Multilabel (MIML) learning tasks. Automated pro-
tein function prediction was typically implemented under
the assumption that the functions of labeled proteins are
complete; that is, there are no missing labels. In contrast,
in practice just a subset of the functions of a protein are
known, and whether this protein has additional functions is
unknown. It is evident that the protein function prediction
tasks suffer from weak-label problems, and we disclose that
prediction of protein functions with incomplete annotation
matches well with the MIML with weak-label learning
framework in this paper. In this paper, we have applied the
state-of-the-art MIML with weak-label learning algorithm
MIMLwel for predicting protein function in two typical real-
world electricigens organisms which have been widely used
in microbial fuel cells (MFCs) researches. Our experimental
results show that MIMLwel is superior to most state-of-the-
art MIML algorithms, which validates the effectiveness of
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Table 5: Comparison results (mean ± std.) of MIMLwel models with four state-of-the-art MIML methods with different weak-label ratios
on the Shewanella loihica PV-4 dataset.

W.L.R. Methods HL↓ maF1↑ miF1↑

20%

MIMLwel 0.013 ± 0.002 0.009 ± 0.008 0.145 ± 0.111
MIMLNN 0.010 ± 0.002 0.000 ± 0.000 0.000 ± 0.000 e
MIMLRBF 0.011 ± 0.003 0.001 ± 0.001 0.001 ± 0.001 e
MIMLSVM 0.012 ± 0.002 0.005 ± 0.002 0.004 ± 0.002 e

EnMIMLNN {metric} 0.010 ± 0.003 0.001 ± 0.001 0.001 ± 0.001 e

40%

MIMLwel 0.010 ± 0.002 0.005 ± 0.003 0.092 ± 0.039
MIMLNN 0.010 ± 0.002 0.000 ± 0.000 0.000 ± 0.000 e
MIMLRBF 0.010 ± 0.002 0.001 ± 0.002 0.001 ± 0.002 e
MIMLSVM 0.012 ± 0.002 0.004 ± 0.002 0.004 ± 0.002 e

EnMIMLNN {metric} 0.010 ± 0.002 0.001 ± 0.003 0.001 ± 0.003 e

60%

MIMLwel 0.011 ± 0.003 0.010 ± 0.006 0.167 ± 0.072
MIMLNN 0.010 ± 0.003 0.001 ± 0.001 0.001 ± 0.001 e
MIMLRBF 0.010 ± 0.004 0.004 ± 0.004 0.003 ± 0.003 e
MIMLSVM 0.012 ± 0.003 0.005 ± 0.001 0.005 ± 0.002 e

EnMIMLNN {metric} 0.010 ± 0.003 0.005 ± 0.003 0.004 ± 0.003 e

80%

MIMLwel 0.011 ± 0.003 0.011 ± 0.005 0.186 ± 0.043
MIMLNN 0.010 ± 0.003 0.002 ± 0.001 0.001 ± 0.001 e
MIMLRBF 0.009 ± 0.003 0.008 ± 0.005 0.007 ± 0.005 e
MIMLSVM 0.012 ± 0.003 0.005 ± 0.002 0.005 ± 0.001 e

EnMIMLNN {metric} 0.010 ± 0.003 0.006 ± 0.004 0.005 ± 0.003 e

Table 6: Comparison results on two examples.

Organism/UniProt
ID

Molecular function
in UniProt Methods GO molecular function list

Geobacter
sulfurreducens/
Q74BW7

(1) 4 iron, 4 sulfur
cluster binding
(2) Dihydroxy-acid
dehydratase
activity
(3) Metal ion
binding

Ground truth
GO:0008270 GO:0046872 GO:0000287
GO:0051539 GO:0030145 GO:0005506
GO:0004160

MIMLwel GO:0005524 GO:0008270 GO:0046872
GO:0000287 GO:0030145 GO:0005506

MIMLNN Null
MIMLRBF GO:0000287 GO:0005506
MIMLSVM GO:0050567

EnMIMLNN {metric} GO:0000287 GO:0005506

Shewanella loihica
PV-4/A3QFX5

(1) ATP binding
(2) Nucleoside-
triphosphatase
activity
(3) Zinc ion
binding

Ground truth

GO:0003924 GO:0005524 GO:0004386
GO:0008270 GO:0016887 GO:0046961
GO:0005215 GO:0017111 GO:0004004
GO:0008094 GO:0008565

MIMLwel
GO:0005524 GO:0004386 GO:0016887
GO:0046961 GO:0004004 GO:0008094
GO:0043565

MIMLNN Null

MIMLRBF GO:0005524 GO:0004386 GO:0016887
GO:0046961 GO:0004004 GO:0008094

MIMLSVM GO:0008270
EnMIMLNN {metric} GO:0005524 GO:0016887 GO:0004004
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