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Abstract: The appropriate utilization of entropy generation may provoke dipping losses in the
available energy of nanofluid flow. The effects of chemical entropy generation in axisymmetric
flow of Casson nanofluid between radiative stretching disks in the presence of thermal radiation,
chemical reaction, and heat absorption/generation features have been mathematically modeled and
simulated via interaction of slip boundary conditions. Shooting method has been employed to
numerically solve dimensionless form of the governing equations, including expressions referring to
entropy generation. The impacts of the physical parameters on fluid velocity components, temperature
and concentration profiles, and entropy generation number are presented. Simulation results
revealed that axial component of velocity decreases with variation of Casson fluid parameter.
A declining variation in Bejan number was noticed with increment of Casson fluid constant.
Moreover, a progressive variation in Bejan number resulted due to the impact of Prandtl number and
stretching ratio constant.

Keywords: entropy generation; stretching disk; thermal radiation; chemical reaction; shooting technique

1. Introduction

Engineering systems’ efficiency decreases in the presence of irreversibilities. Heat transfer and
fluid flow are irreversible processes and their irreversibility may be articulated in terms of entropy
generation. Since rotating disks associated with non-Newtonian fluid flow and heat transfer have many
important applications, such as in liquid-metal pumping, rotor-stator systems, oil recovery, hydraulic
presses, centrifugal machinery, various electronic disks, shrouded-disk rotation, rotating motors, boilers,
and plastic films and artificial fibers, they have received increasing attention over the last decade.

Gorder et al. [1] studied viscous fluid flow between stretching disks. Soid et al. [2] numerically
analyzed the heat transfer characteristics induced by shrinking and stretching disks under the influence
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of magnetic field. Yin et al. [3] focused on the flow of nanofluid in rotating disks which radially stretched
with uniform stretching rate. Another numerical investigation regarding nanofluid fluid configured by
rotating disks was conducted by Sheikholeslami et al. [4]. Hashmi et al. [5] developed a mathematical
model for Oldroyd-B confined by isothermal stretching disks, additionally featuring mixed convection
and chemical reaction consequences. The radiative thermal analysis of Oldroyd-B fluid induced by two
stretchable disks was securitized by Khan et al. [6]. Khan et al. [7] performed analytical computations
for Maxwell fluid flow between stretching disks in the presence of a chemical reaction.

Heating and/or cooling processes are encountered in almost every industrial system. Traditional
heat transfer fluids have low thermal conductivity that seize their performance and put constraints on
not only system compactness but also operational limits. The phenomenal thermal conductivity of
nanofluids inherited from high thermal conductivity of tiny sized metallic particles suspended in the
base fluid (such as water, oil, ethanol, and glycol), referred to as nanoparticles, drives their aggressive
spread in industrial applications. The fundamental work on nanofluid was reported experimentally
by Choi [8]. To analyze the slip mechanism of nanofluid, Buongiorno [9] introduced a mathematical
model involving thermophoresis and Brownian motion effects. Ghadikolaei et al. [10] examined the
Joule heating and nonlinear thermal radiation prospective in Casson nanofluid induced by stretched
geometry. Khan and Shehzad [11] determined the thermophoretic aspects of nanofluid in third grade
nano-material using a convergent technique. Alwatban et al. [12] interpreted the role of Wu’s slip
in Eyring Powell nanofluid with additional impact of activation energy. A flow model regarding
bioconvection of Oldroyd-B nanoliquid in existence of activation energy generated by stretched cylinder
was suggested by Tlili and co-workers [13]. Waqas et al. [14] reported some biofuels application
associated with the flow of nanoparticles in presence of gyrotactic microorganisms. They used a second
grade viscoelastic nanofluid model where the numerical solution had been calculated via built-in
bvp4c algorithm. A nanofluid study of third grade fluid flow with the impact of thermal radiation,
viscous dissipation, and slip consequences was explored by Abdelmalek et al. [15]. Eid et al. [16]
carried out electromagnetic features in blood flow carbon nanotubes in a porous circular cylinder.
The rheological features of Cassonnanofluid in presence of activation energy has been analyzed by
Shah et al. [17]. Eid [18] investigated the flow of Siskonanofluid induced by a convectively heated
surface. The thermal aspects of MnFe2O4nanoparticles immersed in non-Newtonian fluid were
suggested by Shaw et al. [19]. Sheremet et al. [20] utilized the significance of nanoparticles in cavity
where corner and top walls are assumed to be heated. In another useful contribution, Sheremet and
Pop [21] implemented the famous LTNE and Buongiorno’s models while examining the local heater
size and position effects configured a porous cavity. The entropy generation and thermal aspects of TiO2

nanoparticles for flow of micropolar in a porous medium were examined numerically by Zaib et al. [22].
Sheikholeslami et al. [23] studied the significance of nanoparticles for convective flow in porous
chambers additionally impacted with thermal radiation and magnetic force. Another investigation
based on utilization of nano-materials in a baffled U-shaped enclosure was numerically simulated
by Ma et al. [24]. The impact of Lorentz force in porous annulus in presence of CuO-H2O nanofluid
was investigated by Sheikholeslamiet al. [25]. Bondarenko et al. [26] reported thermal features of
Al2O3/H2O nano-material in a cavity with a feature of heat-generating element. Selimefendigil et al. [27]
analyzed the pulsating flow of ferrofluid with appliance of mixed convection features. Some further
investigation deals with applications of nano-materials, which can be seen in references [28–31].

The thermodynamic optimization of various thermal engineering processes has improvement of
the sustainability and efficiency of emerging technologies in recent decades. Various thermal extrusion
systems and heat transportation mechanisms are designed based on the laws of thermodynamics.
According to the first law of thermodynamics, energy can be transformed within different systems or
mediums instead of being lost. However, this law fails to justify the irreversibilities (entropy generation).
On the other hand, the second thermodynamics law itemizes the collection and available energy
consumption and reduces the energy loss, and subsequently improves the fundamental thermal
efficiency of the heat transportation system. Abolbashari et al. [32] examined the entropy generation
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aspects in unsteady nanofluid flow coffered by a moving surface. Kumar et al. [33] evaluated the
effects of entropy generation for the flow of viscoelastic nano-material under the influence of transient
convective dissipation. Another numerical investigation for determination of entropy generation
for nanofluid has been explored by Rana et al. [34]. Aghakhani et al. [35] worked on the thermal
aspects for natural convective flow alumina/water nanoparticles in presence of entropy generation
features. Seyyedi et al. [36] examined the magnetic field and entropy generation impact to examine the
heat transfer analysis in L-shaped enclosures. Salimi et al. [37] incorporated the features of entropy
generation and heat sink for 3D jet flow under the assumptions of local thermal non-equilibrium
constraints. The flow of chemically reactive non-Newtonian liquid due to stretched surface in
presence of entropy generation phenomenon was recently considered by Khan et al. [38]. Mustafa [39]
investigated slip effects in nanofluid flow induced by a rotating disk. Arikoglu et al. [40] investigated
the entropy generation features in slip flow of viscous fluid due to rotating disk.

Recently, special interest has developed towards the flow of nanoparticles because of their diverse
industrial and commercial applications, like energy generation, improvement of the thermal extrusion
phenomenon, development of manufacturing processes, etc. In addition to this, the consumption
of available energy and reduced energy loss is another novel aspect useful in various engineering
applications and other industries to improve the thermal efficiency of systems. The utilization of entropy
generation enables the minimization of available energy loss of performance systems. Keeping such
motivations in mind, the present investigation presents the effects of entropy generation in flow of
Casson nanofluid induced by stretching disks.

After carefully examining the above cited work, we note that entropy generation features in
thermally developed flow of Casson nanofluid induced by two porous stretching disks have not
been reported yet. Therefore, the current analysis aims to fill this gap. Additionally, the interesting
features of magnetic field, heat absorption/generation and chemical reaction are also incorporated.
The present research is an extension of that of Arikoglu et al. [40]. It integrated the Casson nanofluid
model. Also, the novel features of thermal radiation, heat source/sink, and chemical reaction are
incorporated. The analysis has been performed over porous stretching disks in contrast to simple
stretching disks, which addresses modern engineering applications in the fields of material engineering,
biomedical separation devices, petroleum engineering, distillation towers, jet engines, and atmospheric
flows. The governing equations for current flow situations are constituted and tackled by employing
the famous numerical shooting technique. Different flow parameters are graphically impacted with
relevant physical significant.

2. Mathematical Analysis

In order to model the equations for flow analysis, we consider a steady two-dimensional
axisymmetric flow of an incompressible, electrically conducting Casson nanofluid between two
stretchable disks. The magnetic field effects with magnetic field strength B0 are applied vertically to the
surface shown in Figure 1. Here (u, v, w) and (r, θ, z) are assumed to be velocity components and
cylindrical coordinates. The flow is described in cylindrical coordinates (r, θ, z) where z is chosen as
the perpendicular axis. The lower disk is static at the plane z = 0. The governing equations for current
flow problem are [1,5–7];
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For Equations(1) − (5), the slip boundary conditions are developed as: 
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For Equations (1)–(5), the slip boundary conditions are developed as:

u = ar + b1
∂u
∂z , w = 0, P =

aµBr2

4d2 , at z = 0,
u = cr− b2

∂u
∂z , w = 0, p = 0, at z = d,

T = T0, at z = 0, T = T1, at z = d,

C = C1, at z = 0, C = C2, at z = d. (6)

where µ isthe dynamic viscosity, ρ denotes density, β is the parameter of Casson fluid, p is the pressure,
σ is the electrical conductivity, B0 is the magnetic field strength, k is the permeability of porous medium,
T is the temperature, C is the concentration, α is the thermal diffusivity, cp reflects the specific heat at
constant pressure, Q0 is the heat generation parameter, DT is the thermophoretic diffusion coefficient,
DB is the Brownian diffusion coefficient, τ is the ratio of heat capacity, k0 is the reaction constant,
Tm is the mean temperature, while Nb is the Brownian motion coefficient. In view of Rossel and
approximation, the radiative heat flux (qr) is written as:

qr = −
4
3
σ∗

k∗
∂T4

∂z
, (7)

where k∗ is the coefficient of Rossel and mean absorption, σ∗ is the constant of Stefan–Boltzmann.
By expanding T4 about free stream temperature T0 as follows:

T4 = T0
3 + 4T0

3(T − T0) + 6
(
T − T0

2
)
+ . . . , (8)

For further analysis, the temperature gradient within the flow is assumed to be small and
subsequently the higher order terms can be ignored i.e.,

T4 = 4T0
3(T − T0), (9)

By using Equation (9) in Equation (7), we have

qr = −
16
3
σ∗

k∗
T3 ∂T
∂z

. (10)
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Now let us introduce similarity transforms as follows [5–7]:
u = arH′(η), w = adH(η), η = z

d ,

P = aµ
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βr2

4d2

)
,θ(η) =
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,∅(η) =
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. (11)

By using similarity transforms in Equations (1) to (5), the following transformed governing
equations are obtained (

1 + β

β
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(
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4
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where the dimensionless parameters are defined as
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In the above expression, γ is stretching ratio, λ is heat source parameter, Rd is thermal radiation
parameter, Re is Reynolds number, Pr is Prandtl number, Le is the Lewis number, M is parameter
of magnetic, Nb is parameter of Brownian motion, DB is Brownian diffusion parameter, Nt is
thermophoretic parameter, λ1 and λ2 are slip lengths, S is porosity parameter, and DT is thermophoresis
diffusion coefficient.

3. Entropy Generation Equation

The expressions for local entropy generation volumetric rate for Casson nanofluid are given by
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where µ and K are the viscosity and thermal conductivity, T0 is the reference temperature, and Φ is the
viscous dissipation. In Equation (17), the term Φ can be written as:

Φ = 2

(∂u
∂r

)2

+
u2

r2 +

(
∂w
∂z

)2+ 1
r2

(
∂w
∂θ

)2

+

(
∂u
∂z

)2

+
1
r2

(
∂w
∂θ

)2

. (18)

Using Equation (18) in Equation (17) yields
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The characteristics entropy generation is defined as

SG0 =
k(T1 − T0)

d2T0
, (20)

After inserting Equation (11) into Equation (17), the following equation for entropy generation
number will be obtained

NG = αθ′2 + Br
{(

1 + β

β

)( 3
δ2 H′2 + H′′ 2

)
−

1
4

Re(M + S)H′2
}
+ λ3

ε

α2∅
′2 + λ4εθ∅′, (21)

where
Br = PrEc, Ec = a2r2

Cp(T1−T0)
, ε = C2−C1

C1
, λ3 =

µc1
k ,λ4 =

µT0
k , δ = r

d .
In the above expression, Br is the Brinkman number and Ec is the Eckert number. The Bejan

number Be is another alternative irreversibility distribution parameter. This is the ratio between
entropy generations due to heat transfer to the total entropy generations. In a dimensionless form,
Bejan number is given as follows:

Be =
Entropy generation due to heat trans f er

Total entropy generation
, (22)

Be =
αθ′2

αθ′2 + Br
{( 1+β

β

)(
3
δ2 H′2 + H′′ 2

)
−

1
4 Re(M + S)H′2

} . (23)

4. Results and Discussion

The system of Equations (12)–(14), along with boundary conditions, Equation (16), has been
solved numerically by employing the shooting method. The results are validated by comparing present
numerical values with those generated by Mustafa [39], and presented in Table 1. A convincible
accuracy of results has been found between both studies. In this section, physical explanation of flow
parameters, like the stretching ratio γ, Reynold number, Reynold number Re, Prandtl number Pr,
magnetic parameter M, thermophoretic parameter Nt, thermal radiation parameter Rd, Lewis number
Le, and Brownian motion parameter Nb, is presented graphically. Each parameter is varied while
other parameters are kept constant, i.e., M = 1, β = 0.1, γ = 0.3, S = 0.5, Nt = 0.5, λ = 0.5,
Le = 1.5, Nb = 0.7, K1 = 0.3, and Pr = 0.5.

Table 1. Validation of results with Mustafa [39] when β→∞.

Parameter f”(0)

M Mustafa [39] Present results

0.0 0.259534 0.259538

0.5 0.191176 0.191181

Figures 2–7 show the influence of porosity parameter, magnetic parameter, and Casson fluid
constant on axial velocity component H(η) and radial velocity component H′(η). In Figures 2 and 3,
velocity profiles increase for rising values of porosity parameter S. The physical justification of such
an increasing trend may be attributed to the involvement of the permeability of the porous medium.
Figure 4 shows that the axial velocity component is a growing function of magnetic parameter M. It is
seen that the thickness of thermal boundary layer surges with the implementation of magnetic field.
Figure 5 shows that radial velocity component is decreasing function of magnetic parameter due to
stretching disks. Physically, a change in magnetic number is associated with the Lorentz force, which is
of resistive nature and subsequently decreases the nanoparticles’ velocity. Figures 6 and 7 show that
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increment of Casson fluid parameter β leads to a progressive velocity distribution. The physical aspect
of such trend is due to involvement of yield stress which is associated with Casson fluid parameter
β. The graphical explanations presented in Figures 8 and 9 reveal that the axial and radial velocity
component increases by varying stretching ratio γ.
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Figures 10–13 show the influence of Prandtl number Pr, thermophoretic parameter Nt, and heat
source/sink parameter λ on temperature profiles θ(η). Figure 10 shows a declining temperature
distribution θ for apparent values of Prandtl number Pr. Such a decline in temperature profile due
to peak values of Prandtl number is due toa weaker thermal diffusivity. Therefore, proper values
of Prandtl number play a frequent role in controlling the heating and cooling processes. Figure 11
depicts the consequence of thermophoretic parameter Nt on θ. The thermophoresis phenomenon has
a significant contribution in many industries. The thermophoresis is a migration process of heated
fluid particles towards the cold region, due to which the temperature increases. From Figure 12,
an increasing temperature profile is resulted for heat source parameter (λ > 0). However, for heat
sink case (λ < 0), opposite observations are obtained. Physically, an improved temperature due to
heat source is associated with addition of heat to the system. However, for the heat sink case, heat is
removed from the system which reduces the temperature.

Figures 14–17 predict the influence of the Lewis number Le, thermophoretic parameter Nt, Brownian
motion parameter Nb, and reaction parameter K1 on concentration profiles φ(η). Figures 14 and 15
show that concentration profiles increase with the increase in Le and Nt. Physically, the Lewis number
is associated with the mass diffusion coefficient. The higher variation in Lewis number corresponds
to low mass diffusion which declines the concentration of nanoparticles. Figures 16 and 17 show
decreasing behavior of concentration profile by increasing the value of Brownian motion parameter
Nb and chemical reaction parameter K1.The Brownian constant Nb occupies a reverse relation with
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dimensionless concentration Equation (14), which means that the maximum values assigned to Nb retarded
the concentration distribution.Figures 18 and 19 aim to report the influence of Casson fluid parameter β
and stretching ratio constant γ on entropy generation number NG. Figure 18 revealed that an improved
total entropy generation distribution is examined when Casson fluid parameters get maximum values.
Figure 19 examined that entropy generation rates decrease the function of stretching ratio constant γ.
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5. Concluding Remarks

• It is noted that the porosity parameter, Casson fluid, and stretching ratio parameter upsurge the
radial velocity component.

• The radial component of velocities is increased due to the variation of the porosity parameter and
Casson fluid parameter, while the impact of magnetic parameter is reverse.

• Temperature profiles increase for thermophoretic and heat source parameters.
• A declining nanoparticles temperature results from the Prandtl number and heat sink parameter.
• Concentration profile shows increasing behavior for the Lewis number and thermophoretic parameter.
• Increasing values of the stretching ratio and Prandtl number increase the Bejan number,

while reverse behavior is observed for the Casson fluid parameter.
• The observations from current analysis can be useful in thermal energy exchange processes, cooling

processes, energy consumptions, thermodynamics applications, aircrafts, thermal extrusion
systems etc.
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Nomenclature

B0 magnetic field strength β Casson fluid parameter
µ, dynamic viscosity p pressure
ρ density σ electrical conductivity
k permeability of porous medium T temperature
α thermal diffusivity cp specific heat
Q0 heat generation parameter DT thermophoretic diffusion coefficient
DB Brownian diffusion coefficient τ ratio of heat capacity
k0 reaction constant Tm mean temperature
Nb Brownian motion parameter k∗ coefficient of Rosseland mean absorption
σ∗ constant of Stefan-Boltzmann γ is stretching ratio
λ heat source parameter Rd thermal radiation parameter
Re Reynolds number Pr Prandtl number
Le Lewis number. M parameter of magnetic
Nb Brownian motion parameter DB Brownian diffusion parameter
Nt thermophoretic parameter (λ1,λ2) slip lengths
S porosity parameter DT thermophoresis diffusion coefficient
K are thermal conductivity, T0 reference temperature
Φ viscous dissipation
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