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ABSTRACT

Endonucleolytic cleavage of the coding region
determinant (CRD) of c-myc mRNA appears to play
a critical role in regulating c-myc mRNA turnover.
Using 32P-labeled c-myc CRD RNA as substrate,
we have purified and identified two endoribonu-
cleases from rat liver polysomes that are capable
of cleaving the transcript in vitro. A 17-kDa
enzyme was identified as RNase1. Apurinic/apyrimi-
dinic (AP) DNA endonuclease 1 (APE1) was identified
as the 35-kDa endoribonuclease that preferentially
cleaves in between UA and CA dinucleotides of
c-myc CRD RNA. APE1 was further confirmed to
be the 35-kDa endoribonuclease because: (i) the
endoribonuclease activity of the purified 35-kDa
native enzyme was specifically immuno-depleted
with APE1 monoclonal antibody, and (ii) recombi-
nant human APE1 generated identical RNA cleavage
patterns as the native liver enzyme. Studies using
E96A and H309N mutants of APE1 suggest that the
endoribonuclease activity for c-myc CRD RNA
shares the same active center with the AP-DNA
endonuclease activity. Transient knockdown of
APE1 in HelLa cells led to increased steady-state
level of c-myc mRNA and its half-life. We conclude
that the ability to cleave RNA dinucleotides is a
previously unidentified function of APE1 and it
can regulate c-myc mRNA level possibly via its
endoribonuclease activity.

INTRODUCTION

In higher eukaryotes, including mammals, endonucleolytic
cleavage intermediates were shown to be generated during

decay of a number of mRNAs (1). For instance, mRNA
decay intermediates have been described for the transfer-
rin receptor (2), insulin-like growth factor II (3), a—globin
(4), B—globin (5), c-myc (6,7), MDR1 (8), hepatitis B virus
(9) and mRNAs containing premature termination codons
(10). For most systems, the responsible endoribonuclease
has not been identified. This is in part due to the difficulty
in identifying this group of enzymes which so far appeared
to be substrate-specific and have no sequence homology to
known nucleases (1).

To fully understand the mechanism and significance of
endonucleolytic cleavage in the control of mRINA degra-
dation and abundance, the responsible endoribonuclease
must be identified and characterized. To date, endoribonu-
cleases that have been shown to cleave vertebrate mRNA
are: Ras GTPase-activating protein-SH3 domain binding
protein (G3BP) that cleaves between cytosine and adenine
residues at 3’ UTR of mouse c-myc mRNA (11), an estro-
gen-regulated polysomal endoribonuclease termed PMRI1
that cleaves albumin and vitellogenin mRNAs (12), ErEN
that cleaves a-globin (4), activator of RNA Decay (ARD-
1) (13), RNase L (14), endoplasmic reticulum-associated
type 1 transmembrane protein (IRE1) (15) and Argo-
naute2 (16). Rrp44, a component of eukaryotic exosome
(17,18), and SMG6, a protein involved in metazoan non-
sense-mediated decay pathway (19,20), have recently
demonstrated to possess endonucleolytic activity. Such
surprising findings underscore the significance of endonu-
cleolytic cleavage and suggest that this mode of RNA
cleavage to control mRNA decay should be re-examined.

The proto-oncogene c-Myc has been implicated in the
development of virtually all types of human cancers (21).
The c-myc mRNA can be degraded via two distinct
pathways. One pathway involves deadenylation followed
by 3’-5 exonucleolytic degradation catalyzed by
3’-5exoribonucleases (22). The c-myc mRNA can also be
degraded endonucleolytically, as discovered using a
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polysome-based in vitro mRNA decay assay (23). An
endoribonuclease is believed to target the exposed region
of polysome-associated c-myc mRNA referred to as the
c-myc coding region determinant or CRD. Indeed,
recent evidence suggests that translational pausing at the
CRD could result in a ribosome-deficient region that is
susceptible to endonucleolytic attack (24). Several studies
have confirmed that the coding region of c-myc mRNA,
including the CRD, is involved in the regulation of c-myc
mRNA stability in cells (25-29). Furthermore, endonu-
cleolytic decay intermediates for c-myc mRNA have
been detected in cells (6,7), which provided further sup-
port for the significance of endonucleolytic cleavage.
However, the endoribonuclease(s) that can cleave CRD
of c-myc mRNA remained to be identified. Here, we
describe the identification of the apurinic/apyrimidinic
(AP) DNA endonuclease 1 (APEl), also referred to as
Ref-1, as an endoribonuclease that can cleave c-myc
mRNA in vitro. We further show that APE1 could in
fact control c-myc mRNA level and half-life in vivo.

MATERIALS AND METHODS
Purification of the native rat liver endoribonucleases

The native endoribonucleases were purified from juvenile
frozen rat livers as previously described (30) except for the
following changes: (i) Reactive blue-4 chromatographic
step was omitted, (i) dialysis rather than dilution was
performed at each step to remove excess KCI, (iii)
Superdex 75 Hi Load 16/60 (GE Healthcare, Quebec)
gel filtration was used as the last preparative step and
(iv) RNasin was omitted in the standard endoribonuclease
assay. One unit (U) of enzyme was defined as the quantity
of purified enzyme (up to heparin-Sepharose column)
required to cleave 90 fmol of 5'-*?P-labeled c-myc CRD
RNA substrate in 5min at 37°C under the standard endo-
ribonuclease assay described below. For gel filtration pur-
ified enzyme, 1 U of 10-20-kDa or 30-40-kDa enzyme was
defined as the amount of the enzyme required to cleave 90
fmol of 5'-*’P-labeled c-myc CRD RNA substrate under
conditions as described above.

Preparation of radiolabeled nucleic acids

To synthesize human c-myc CRD RNA corresponding to
nts 1705-1792, the plasmid pGEM4Z-myc 1705-1792 was
linearized and in vitro transcribed as previously described
(30,31). The RNA was then 5-labeled with y-[*’P]-ATP
using T4 polynucleotide kinase (30,31). This RNA sub-
strate was used throughout this study unless otherwise
indicated. For confirming recombinant APE1 as an endor-
ibonuclease, PCR-amplified DNA template corresponding
to c-myc CRD nts 1730-1766 was used to transcribe RNA
using T7 RNA polymerase as previously described (30).
For internal labeling, o-[**P]-UTP was used during tran-
scription. For 5'end labeling, in-vitro transcribed RNA
was 5'-labeled using T4 polynucleotide kinase as described
previously (30,31). The oligonucleotide SCAAGGTAGT
rUATCCTTG-3' corresponding to c-myc CRD nts 1742—
1757 (synthesized by IDT Inc.) was also 5-labeled and
used as substrate in the endoribonuclease assay.
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In vitro endoribonuclease assay and mapping of RNA
cleavage sites

The standard endoribonuclease assay has been described
previously (30,31). The standard 20-pl reaction mixture
used for this assay included 2mM DTT, 1.0U of
RNasin, 2mM magnesium acetate, S0mM potassium
acetate, 0.1 mM spermidine, 350 fmol of 5-end-labeled
3P.RNA (~5x 10*c.p.m.) and 10mM Tris-HCI, pH
7.4. Reactions were incubated for Smin at 37°C unless
otherwise indicated, placed in liquid nitrogen, and then
at 80-90°C to inactivate the enzyme. Five microliters of
loading dye (9 M urea, 0.2% xylene cyanol, 0.2% bromo-
phenol blue) were added to the reaction sample, and 5 pul
of the reaction mixtures were subjected to electrophoresis
in 8% or 12% polyacrylamide, 7 M urea gel depending on
the type of experiments. Gels were then dried and exposed
to PhosphorImager screen (Cyclone PhosphorImager). To
determine if the native enzyme was N-glycosylated, 100 U
of N-glycosidase F (Roche Diagnostics, Germany) was
incubated with 3.0 ml of post heparin-Sepharose samples
overnight at 30°C before subjecting the samples to gel
filtration analysis. The 0.5-ml fractions were collected
and analyzed for the presence of endoribonuclease
activity as described above. To determine if the native
enzyme was composed of multi-subunits linked by disul-
fide bonds, 3.0 ml of post heparin-Sepharose samples was
incubated with 250 mM DTT for 1h at 4°C before sub-
jecting the samples to gel filtration analysis followed
by endoribonuclease assay. For mapping RNA cleavage
sites, RNase T1 digestion and alkaline hydrolysis of
5-radiolabeled RNA were performed as described pre-
viously (30) and samples were separated on a 12% poly-
acrylamide/7 M urea gel.

Western blot analysis

Protein samples were separated in a 12.5% polyacryla-
mide/SDS Lammeli gel system, transferred to a nitrocel-
lulose membrane and incubated against APEI
monoclonal antibody (Affinity Bioreagents, Colorado) or
RNase A polyclonal antibody (GeneTex Inc, San
Antonio). For re-use, some blots were stripped by incubat-
ing at 50-55°C with gentle shaking in 63 mM Tris. pH 6.7,
2% SDS, 100 mM B-mercaptoethanol. Full-range rainbow
marker (GE Healthcare, Quebec) was used to identify size
of bands. Sizes of the marker proteins in kDa are: 250,
160, 105, 75, 50, 35, 30, 25, 15 and 10.

Immunodepletion of the native 35-kDa purified
endoribonuclease

PIERCE Seize X Protein A Immunoprecipitation kit
(MJS BioLynx Inc, Ontario) was used to assess whether
the endoribonuclease activity from the native 35-kDa pur-
ified enzyme was attributed to APEIl. Preparation of
the spin cup containing Protein A cross-linked to 50 pg
of APE1 or syntaxinl8 monoclonal antibody was per-
formed according to the manufacturer’s instruction.
After equilibrating with the binding/wash buffer (8 mM
sodium phosphate, 2mM potassium phosphate, 140 mM
NaCl, 10mM KClI, pH 7.4), 400 ul of gel filtration purified
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35-kDa native enzyme were loaded and incubated with
gentle rocking for 2h at 4°C. Spin cups were spun at
3000 r.p.m. for 30s and the flow through buffer was
used for analysis. Four hundred microliters of binding/
wash buffer was added to the mix, and the spin cups
were spun again. This was repeated a total of three
times and washed buffer from each spin kept for analysis.
Finally, bound proteins were eluted with 3 x 200 pl elution
buffer (primary amine solution, pH 2.8) followed by
immediate neutralization with equal volume of Tris—Cl,
pH 9.5.

Purification of recombinant proteins

The plasmid pETI15b-hAPEl containing human APEI]
cDNA was used to express the recombinant APE1 in
BL21(DE3) cells. The His-tagged APE1 was first purified
using Ni-NTA column chromatography as described (32).
Following removal of the His-tag with thrombin, the
recombinant protein was further purified by Superdex
HiPrep FPLC (GE Healthcare). Just prior to use, the
recombinant protein was dialyzed for 5h against 10 mM
Tris—=HCI, pH 7.4, 2mM DTT, 2 mM magnesium acetate,
and 50mM potassium acetate, with two buffer changes.
The recombinant human mutant APEI, H309N and
E96A, and  1-3-hydroxyacyl-CoA  dehydrogenase
(HADHSC) were purified in the same manner as described
above (33). The recombinant annexin III was purchased
from GenWay Biotech (San Diego).

Cell culture and siRNA transfection

Human cervical cancer cell line HeLa (ATCC) was cul-
tured in MEM medium supplemented with 10% fetal
bovine serum (Invitrogen) at 37°C in 5% CO,. The day
before transfection, ~1.0 x 10° cells were plated per well in
6-well plates. Transient transfection of 60 nM siRNAs was
carried out using Lipofectamine 2000 reagent (Invitrogen)
as according to the manufacturer’s instructions. The
double-stranded Dicer substrate RNAi directed against
APEl mRNA was chemically synthesized (IDT Inc.).
The sense and antisense sequences were: r(GUCUGGU
ACGACUGGAGUACCGG)dCA and r(UGCCGGUA
CUCCAGUCGUACCAGACCU). As control, the DS
Scrambled Negative (IDT Inc.) was used. The sense and
antisense sequences of DS Scrambled Negative were: r(CU
UCCUCUCUUUCUCUCCCUUGU)dGA and r(UCAC
AAGGGAGAGAAAGAGAGGAAGGA). Cells from
duplicate wells in each experiment were subjected to
either total RNA extraction as described below or to cell
lysate isolation as previously described (33).

Total RNA extraction and quantitative reverse
transcription-PCR

Total RNA was extracted from cells using TRIzol reagent
(Invitrogen) as according to the manufacturer’s instruc-
tions. APEIl, c-myc and B-actin mRNA levels were
examined by quantitative real-time reverse transcription-
PCR (qRT-PCR). The first strand cDNA synthesis was
performed using QuantiTect RT kit (Qiagen) on 1 pg of
total RNA, and the qRT-PCR was performed using iQ
SYBR Green Supermix (Bio-Rad) on an iQ5 Multicolor

Real-Time PCR Detection System (Bio-Rad). The PCR
primers synthesized by IDT Inc. were: APEl forward
primer, 5-TGG AAT GTG GAT GGG CTT CGA
GCC-3' and APE1 reverse primer, 5-AAG GAG CTG
ACC AGT ATT GAT GA-3'; c-myc forward primer,
5-ACG AAA CTT TGC CCA TAG CA-3 and c-myc
reverse primer, 5 GCA AGG AGA GCC TTT CAG
AG-3'; B-actin forward primer, 5-TTG CCG ACA
GGA TGC AGA AGG A-3 and B-actin reverse primer,
5-AGG TGG ACA GCG AGG CCA GGA T-3'. The
cycling protocol consisted of 95°C for 3min and 40
cycles of denaturation at 95°C for 10s, annealing at
52°C for 30s. To confirm amplification specificity, we per-
formed a melting curve analysis at the end of each cycling.
Each sample was run in triplicate. The data were analyzed
using 1Q5 optical system software. Serial dilutions were
carried out for each total RNA sample and reverse-tran-
scribed under the above-mentioned conditions for each
primer set to ensure amplification with efficiencies near
100%. Ct values for target genes (APE1 and c-myc) and
reference gene (B-actin) were then used in the comparative
Cr method or commonly known as the 2722T method
(34) to determine the expression level of target gene in
APEl-knockdown samples relative to the DS Scrambled
Negative-treated sample.

Statistical analysis

For statistical analysis, Student’s ¢-test was performed for
Figure 8 and linear regression analysis was performed for
Figure 9 using Prism 3.0 software (GraphPad, Inc.,
San Diego, CA, USA).

RESULTS

Purification and identification of the 35-kDa liver
endoribonuclease

We previously reported partial purification of an endori-
bonuclease from rat liver for cleaving the c-myc CRD
RNA (30). Five major proteins of ~10-35-kDa size were
co-purified with this activity. To determine the identity of
the responsible enzyme, we first repeated earlier enzyme
purification steps with slight modifications as described in
the ‘Materials and Methods’ section. Two endoribonu-
clease activities from the final gel filtration column at
elution volumes 46-50ml and 62-68 ml, corresponding
to 30-40-kDa and 10-20-kDa sizes, were prominent
(Figure 1A). Pooled protein fractions visualized by
silver-staining in SDS-PAGE gel (Figure 1B) shows a dis-
tinct protein band of ~35kDa at elution volume 40-50 ml
and four protein bands from 10-20 kDa at elution volume
60-66ml. These fractions were separately pooled from
three separate preparations and visualized by Coomasie
blue-staining after SDS-PAGE (Figure 1C). Gel slices at
around protein bands 1-6 (Figure 1C) were excised for
LC/MS mass spectrometry protein identification analysis
at the Genome BC Proteomics Centre, University of
Victoria. Based on molecular weight of proteins, number
of matched peptides, and percentage of amino acid
sequence against the ‘rodentia’ protein database, the top
three proteins that matched for each band were selected
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Figure 1. Purification and identification of proteins that co-purified with endoribonuclease activity. (A) Autoradiograph of an endoribonuclease assay
in gel filtration fractions (elution volume 20-76) using 350 fmol 5" 3*P-labeled CRD c-myc RNA as substrate. The endoribonuclease assay was
performed for 5min at 37°C under the standard condition as described in the ‘Materials and Methods’ section. Filled arrow indicates undigested
substrate RNA and unfilled arrow indicates endonucleolytic decay products. (B) Silver-stained SDS-PAGE gel of pooled samples from gel filtration
in (A). (C) Coomasie blue-stained SDS-PAGE gel of pooled samples from three separate gel filtration columns. Arrows indicate protein bands that

were excised and subjected to LC-MS/MS protein identification analysis.

Table 1. Summary of LC/MS mass spectrometry data and peptide analysis to identify purified proteins following gel filtration

Protein Top three protein matches from Rodentia species Amino sequence Number of
band # coverage (%) matched peptides
1 1) Apurinic/apyrimidinic endonuclease lyase 1) 32% 1) 7
(AP endonuclease/APE1) (35.8 kDa)

2) Annexin III (36.5kDa) 2) 38% 2) 10

3) Aldo-keto reductase E1 (34.8 kDa) 3) 40% 3) 11
2 L-3-hydroxyacyl-CoA dehydrogenase (HADHSC) (34 kDa) 55% 8
3 1) Peroxisomal enoyl hydratase-like protein (36.5kDa) 1) 46% 1) 12

2) HADHSC (34kDa) 2) 20% 2)3

3) Glutathione S-transferase (25.6 kDa) 3) 54% 3)7
4 Cyclophilin B (23 kDa) 56% 14
5 Pancreatic ribonuclease A (RNasel) (17 kDa) 45% 5
6 Cytochrome C (12.5kDa) 55% 11

(Table 1). The three major proteins, L-3-hydroxyacyl-CoA
dehydrogenase (HADHSC), annexin III and AP endo-
nuclease (APEl), were identified as possible candidates
for the 35-kDa endoribonuclease. The band in between
band 2 and 3 in Figure 1C was determined to be
HADHSC by LC/MS spectrometry (data not shown).
This band may in fact represent a truncated or non-
post-translationally modified form of HADHSC.
In addition to the criteria described above, HADHSC
was chosen because it contains a predicted RNA-binding

Rossman fold motif (35) and annexin III was chosen
because a related protein, annexin I, has been shown to
bind human c-myc RNA (36). Both HADHSC and
annexin III were present in the gel filtration fractions as
determined by western analysis (data not shown).
However, neither purified recombinant HADHSC nor
annexin III exhibited any endoribonuclease activity (see
later in Figure 6B). APEI then became the prime candi-
date because it is a known multifunctional protein with
DNA-specific endonuclease and RNase H-like activities
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Figure 2. Mapping the cleavage sites generated by the purified 17-kDa and 35-kDa native endoribonucleases. (A) Three hundred and fifty femtomole
S -labeled c-myc CRD RNA were subjected to post-heparin-Sepharose purified enzyme (lanes 3 and 9), 30-40-kDa fraction purified enzyme (lanes
4-6 and 12 and 13) and 10-20-kDa fraction purified enzyme (lanes 10 and 11) from gel filtration column under the standard endoribonuclease assay.
The radiolabeled RNA was also subjected to alkaline hydrolysis (lanes 7 and 14), bovine pancreatic RNase A (1 U) (lane 8), and RNase T1 digestion
(1U) (lane 1) as described previously (30,31). Samples were run on a 12% polyacrylamide/7 M urea gel. The amount of 30-40-kDa fraction purified
enzyme used were 0.75U (lane 4), 0.6 U (lane 5), 0.4 U (lane 6), 0.2 U (lane 12) and 0.1 U (lane 13). The amount of 10-20-kDa fraction purified
enzyme used were 3U (lane 10) and 1U (lane 11). Asterisks indicate the 1751UA dinucleotide preferentially cleaved by the 30-40-kDa fraction
enzyme. Arrows on the left indicate guanosine cleavage sites generated by RNase T1 and the numbers indicate position of nucleotide sequence.
Numbers on the right indicate the cleavage sites generated by the endoribonucleases. (B) Secondary structure of c-myc CRD RNA and the cleavage

sites generated by the 35-kDa endoribonuclease.

(37-39). To further confirm its identity, we performed
duplicate LC/MS mass spectrometry on individual
35-38-kDa protein in the gel slices isolated after
heparin-Sepharose chromatography. Both HADHSC
and APE1 were again two of the matched proteins (data
not shown), suggesting that both proteins co-purified with
the 35-kDa endoribonuclease activity.

The 17-kDa endoribonuclease belongs to the RNase
A superfamily

Based on the above identification criteria, protein bands 4,
5 and 6 (Figure 1C) were convincingly identified as cyclo-
philin B, pancreatic rat ribonuclease A family member
RNasel, and cytochrome c respectively (Table 1). We rea-
soned that the 17-kDa RNase 1 is most likely responsible
for the 10-20-kDa endoribonuclease activity based on the
following observations: (i) RNase 1 is the only known
protein with ribonuclease activity identified from
10-20-kDa protein bands 4, 5 and 6, (ii)) RNA sequence
cleavage specificity of the partially purified 10-20-kDa
native enzyme from gel filtration resembled, yet was not
identical, to that exhibited by the bovine pancreatic
RNase A (compare lanes 10 and 11 to lane 8 in

Figure 2A), and (iii) polyclonal antibody against RNase
A detected a protein band at around 17-kDa range in
elution volume 60-80ml from gel filtration column
(lanes 7 and 8, Figure 3) which correlated with the endo-
ribonuclease activity (Figure 1A), and finally the presence
of 17-kDa protein band on silver-stained SDS-PAGE gel
(Figure 1B).

The 35-kDa endoribonuclease activity is not attributable
to a modified form of pancreatic RNase A

The cleavage sites on c-myc CRD RNA generated by the
purified native enzyme in the heparin-Sepharose and gel
filtration fractions with proteins of 10-20-kDa and 30-
40-kDa size range were mapped as previously described
using RNase T1 digest and alkaline hydrolysis (30,31).
The 30-40-kDa fraction appeared to exhibit similarity
with the 10-20-kDa fractions in sequence cleavage speci-
ficity (compare lanes 4, 5, 6, 12 and 13 with lanes 10 and
11, Figure 2A). However, there were some differences in
that the 30-40-kDa fractions had stronger preference
for the 1751UA dinucleotide (shown by asterisks)
(Figure 2A). The 30-40-kDa fractions also had some
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Figure 3. Presence of RNasel and APEI in partially purified native
enzyme. Western blot analysis of pooled samples from gel filtration
(lanes 3-8) as detected by RNase A (upper panel) or APEl (lower
panel) antibody. Lane 1 contains 5 pg of recombinant bovine pancreatic
RNase A.

preference for the 1771CA and 1773UA dinucleotides
(Figure 2A).

Given the similarity in RNA cleavage patterns between
the 30-40-kDa and the 10-20-kDa fractions, together with
the observations that the polyclonal antibody against
RNase A detected a faint band corresponding to 30-kDa
(lane 6 in Figure 3) and 35-kDa (data not shown) poly-
peptides on western blots, we considered whether the
30-40-kDa endoribonuclease activity is contributed by a
modified form of pancreatic RNase A. This is plausible
because the dimeric RNase A is known to exist (40), and a
monomeric N-glycosylated RNase A of approximately
24-36-kDa size has been reported (41). To test the possi-
bility that the 35-kDa endoribonuclease is a disulfide-
linked dimeric RNase A, we treated the purified
post-heparin Sepharose fraction with 250mM DTT
before gel filtration analysis. Endoribonuclease analysis
of the fractions showed two distinct activities (data not
shown) similar to the profile of the original sample
(Figure 1A). We therefore concluded that the 35-kDa
endoribonuclease is unlikely to be a disulfide-linked
dimeric form of 17-kDa RNasel, and is likely a mono-
meric protein. To test the possibility that the 35-kDa
endoribonuclease is a N-glycosylated RNase A, we treated
the heparin Sepharose fraction with 100 U endoglycosi-
dase F before gel filtration chromatography. Our results
(data not shown) show that the elution profile
of endoribonuclease activity remained unchanged com-
pared to the original sample. Thus, the 35-kDa endoribo-
nuclease is unlikely to be N-glycosylated RNase A.

Immuno-depletion of the 35-kDa endoribonuclease with
APE1 monoclonal antibody

Our results so far suggested that the 35-kDa endoribonu-
clease was APE1 which we then tested by western analysis
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Figure 4. Immuno-depletion of the 35-kDa endoribonuclease activity
using APEl or syntaxinl8 antibody. (A) Partially purified 35-kDa
native enzyme was subjected to Seize X Protein A spin column which
has been cross-linked with anti-APEl antibody. Four microliters of
washed (lanes 6 and 7) and eluted samples (lanes 8-10) were tested
against 350 fmol 5'-labeled c-myc CRD RNA as described in
‘Materials and Methods’ section. Lane 1 contains the RNA only with-
out any treatment with proteins. Lanes 2 and 3 contain 2U and 3 U,
respectively, of partially purified native enzyme from heparin-Sepharose
column. Lanes 4 and 5 are 0.75U and 1 U, respectively, of pre-loaded
partially purified 30-40-kDa fraction native enzyme from gel filtration.
Filled arrow indicates the intact c-myc CRD RNA and the decay pro-
ducts are shown with a bracket and unfilled arrow. (B) Western blot
analysis of samples from (A) as detected using anti-APE1 antibody.
Lane 1 contains 0.5 pg recombinant APEI and lane 2 has the partially
purified 30-40-kDa fraction native enzyme. FT is flow-through from
the spin column. (C) As in (A), partially purified 35-kDa native enzyme
was subjected to spin column which has been cross-linked with anti-
syntaxinl8 antibody. Lane 1 contains 2U of partially purified native
enzyme from heparin-Sepharose column. Four microliters of flow
through (lane 2), washed (lane 3) and eluted samples (lanes 4 and 5)
were tested against 5-labeled c-myc CRD RNA as described in
‘Materials and methods’ section.

of the 30-40-kDa fractions from gel filtration. Figure 3
shows that APEI is present only in the elution volume
45-55ml (lane 6, Figure 3, bottom panel) which correlates
with the 35-kDa endoribonuclease activity (Figure 1A).
We performed immunodepletion studies of the purified
native 35-kDa endoribonuclease with the APE1 antibody.
Endoribonuclease analysis of the fractions eluted from an
APE1l monoclonal antibody spin column is shown in
Figure 4A. Washed fractions (lanes 6 and 7) had no endor-
ibonuclease activity while the earlier elution fractions
(lanes 8 and 9) contained endoribonuclease activity.
Endoribonuclease activity in Elution 1 (lane 8) was as
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Figure 5. Endoribonuclease activity of recombinant APEl on c-myc
CRD RNA. (A) Left panel, Coomasie blue-stained SDS-PAGE gel
of recombinant human APEl at Spg (lane 2) and 1pg (lane 3). Lane
1 is molecular weight marker. Right panel, western blot analysis of 3 pg
of recombinant human APEl generated by us (lane 1) or in Dr.
Hickson’s laboratory (lane 2), as detected by specific monoclonal anti-
body against APE1. (B) Left panel, 350 fmol 5" -labeled c-myc CRD
RNA were treated with 0.1 U of the partially purified 35-kDa native
enzyme for Smin (lanes 2 and 3), or with 0.05ug of purified recombi-
nant human APEl generated in Dr. Hickson’s laboratory (lane 4).
Lane 1 had no protein added. Right panel, 350 fmol 5’ -labeled c-myc
CRD RNA were treated with 0.1 pg of purified and renatured recom-
binant human APEI for 5min (lane 2), 10 min (lane 3) and 20 min (lane
4), or with 0.1 U of the partially purified 35-kDa native enzyme for
Smin (lane 5), 10min (lane 6) and 20 min (lane 7) under the standard
endoribonuclease assay. Lane 1 had no protein added. Samples were
run on 8% polyarylamide/7 M urea gel. Numbers on the right indicate
cleavage sites generated by the enzymes.

high as those from partially purified post-heparin-
Sepharose sample (lanes 2 and 3). In both cases, excess
nuclease activity led to almost complete degradation of
RNA substrate. Figure 4B shows western blot analysis
of samples taken from the same immunoprecipitation
experiment described in Figure 4A. There was striking
correlation between the endoribonuclease activity in the
pre-loaded purified native 30—40-kDa gel filtration frac-
tion, Elutions 1 and 2, and the presence of APEI in
those fractions (compare lanes 2, 6 and 7 in Figure 4B
with lanes 4, 5, 8 and 9 in Figure 4A). In addition, there
was correlation between the absence of endoribonuclease
activity in the wash fractions, and the absence of APEI in
those fractions (compare lanes 4 and 5 in Figure 4B with
lanes 6 and 7 in Figure 4A). To confirm the specificity of
the immunodepletion experiment using APE1 antibody,
we performed similar experiments using another antibody
cross-linked to the spin column, which in this case was
syntaxinl8 antibody. Figure 4C shows that endoribonu-
clease analysis of the fractions eluted from syntaxinl8
antibody spin column. The flow through (lane 2) and
washed fractions (lane 3) showed strong nuclease activity
whereas the Elution 1 and 2 (lanes 4 and 5) had no

endoribonuclease activity. This control experiment con-
firmed that the immunodepletion of endoribonuclease
activity observed in Figure 4A was produced specifically
by the presence of anti-APE1 antibody.

Recombinant human APE1 and purified native 35-kDa
endoribonuclease exhibited similar RNA cleavage pattern

We then directly tested whether the recombinant human
APE] possesses endoribonuclease activity for c-myc CRD
RNA. The purified proteins were almost homogenous
with more than 95% pure based on Coomasie blue-stain-
ing after SDS-PAGE (Figure 5A, left panel) and identity
checked by western analysis (Figure 5A, right panel). The
minor, lower-molecular-weight band in the immunoblot
assay (Figure 5A, right panel) and the SDS-PAGE
gel (Figure 5A, lane 2 in left panel) was likely to be a
N-terminal cleavage product of APEI (42). This is com-
monly observed as the protein is quite susceptible to spe-
cific hydrolysis upon boiling. Endoribonuclease analysis
confirmed that recombinant APEl from two separate
sources (one was prepared by us and the other from
Dr. Ian Hickson’s lab, University of Oxford) exhibited
endoribonuclease activity against c-myc CRD RNA with
a distinct preference for the 1751UA dinucleotide
(Figure 5B, left panel). Furthermore, when the recombi-
nant APEI was reduced, denatured with guanidine hydro-
chloride and renatured, the renatured recombinant APE1
exhibits the same cleavage specificity (lanes 2—4, right
panel in Figure 5B) as the native enzyme (lanes 5-7,
right panel in Figure 5B) with 1751UA still being the dom-
inant cleavage site.

Specificity and identification of active residues in APE1
for endoribonuclease activity

Specific residues Glu96 and His309 have been identified as
critical for the AP DNA endonuclease (37,43), exonu-
clease (44) and RNase H activities of APEI (39). To exam-
ine whether the c-myc CRD RNA-cleaving activity of
APEI1 requires the same amino acid residues as these
nuclease activities of APEl, E96A and H309N APEIl
mutant polypeptides were purified under identical purifi-
cation methods as the wild-type APE1 and tested for
endoribonuclease activity under our standard endoribonu-
clease assay. Figure 6A shows the lack of RNA cleaving
activity of the E96A mutant at up to 0.5 pug of the protein
(lanes 6-8, Figure 6A). H309N mutant also did not exhibit
any endoribonuclease activity at 0.1 and 0.3 pg (lanes 3
and 5, Figure 6A). Interestingly, at a higher concentration
(0.5pg), the H309N mutant cleaved CRD RNA at
1727CA, 1768CA, 1771CA, 1773UA and 1775CA but
not at 1757UA, 1751UA, 1747UA and 1742CA (compare
lane 4 to lanes 2 and 9, Figure 6A). These results suggest
that the endoribonuclease activity of APE1 against c-myc
CRD RNA shares, to some extent, common critical amino
acid residues with AP DNA endonuclease, RNase H and
exonuclease activities. ND42 mutant APE1 missing the
first 42 amino acids at the N-terminus demonstrated activ-
ity which is similar to the wild-type APE1 (Figure 6A,
right panel). This suggests that the N-terminus domain,
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Figure 6. Endoribonuclease activity of recombinant APEI1 polypeptide. (A) Left panel, 350 fmol 5’ -labeled c-myc CRD RNA were treated with the
purified and renatured wild-type APEL (lanes 2 and 9), H309N (lanes 3-5) or E96A (lanes 6-8) mutant APE1 for Smin at 37°C at the amount
indicated under the standard endoribonuclease assay containing 20 ul reaction. Lanes 1 and 10, no protein added. Right panel, 350 fmol 5'-labeled
c-myc CRD RNA were treated with the purified and renatured wild-type recombinant APEI (lane 2) or N-terminus truncated APE1, ND42 (lane 3).
Lane 1, no protein added. Samples were run on 8% polyarylamide/7 M urea gel. Numbers on the right indicate cleavage sites generated by the
enzymes. (B) 5-labeled c-myc CRD RNA were treated with purified recombinant human APE1 (lanes 2 and 3), HADHSC (lanes 4 and 5) or
annexin3 (lanes 6 and 7) for Smin at 37°C at the amount indicated under the standard endoribonuclease assay.

at least the first 42 amino acids, does not participate in the
RNA-cleaving of APEI.

To further confirm specificity of the endoribonuclease
activity exhibited by the wild-type and APE1 mutants, we
also tested other recombinant proteins. Figure 6B shows
that the lack of endoribonuclease activity exhibited by
recombinant HADHSC (lanes 4 and 5) and annexin III
(lanes 6 and 7) while the wild-type APEI (lanes 2 and 3)
exhibited the typical endoribonuclease activity. Overall,
the results in Figure 6 confirms the specificity of the endor-
ibonuclease activity exhibited by the purified wild-type
APEl and absence of RNase A-like contaminants
amongst other purified recombinant proteins including
the E96A and H309N APEI mutants.

APEL1 is an endoribonuclease

To confirm that APEI is indeed an endoribonuclease,
we challenged the enzyme with two new substrates.
First, we tested APEl on *P-5-labeled or **P-UTP
1nternally labeled RNA corresponding to nts 1730-1766
of c-myc CRD RNA. Figure 7A shows the 5 fragment of
the cleavage products generated by APE1 on the 5'-labeled
RNA. Figure 7B shows the cleavage products generated

when the RNA was internally labeled with **P-UTP. The
corresponding 5 and 3’ cleavage fragments were clearly
visible indicating the endonucleolytic cleavage of the RNA
substrate by APE1l. To further confirm this, we tested
APEl on a Y-labeled DNA oligo corresponding to nts
1742-1757 of c-myc CRD DNA with an incorporation
of an uridine at position 1751. As expected, being an
endoribonuclease APE1 was only capable of cleaving at
position 1751 to generate the 5-fragment of the oligo
(Figure 7C). A recent study has shown that APEIl can
cleave AP-site-containing single-stranded RNA (45,46),
presumably at the phosphodiester bond immediately 5’
to the AP-site. Therefore, it is expected that removal of
any bases, including uracil, in single-stranded region of
RNA will be susceptible to the abasic RNA-endonuclease
activity of APEI.

APE1 knockdown upregulates c-myc mRINA expression

To assess if APEl can in fact regulate c-myc mRNA
expression in cells, we employed siRNA to knockdown
APEI expression in HeLa cells. We previously established
that about 80% transfection efficiency can be achieved
using Lipofectamine 2000 (33). We used double-stranded
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Figure 7. APEI is an endoribonuclease. c-myc CRD RNA corresponding to nts 1730-1766 was either 5'-labeled with **P-y-ATP (A) or uniformly
labeled with *?P-0-UTP (B) before subjecting to 0.1 pg purified recombinant human APE1 for 2min (lane 2) or 5min (lane 3) under the standard
endoribonuclease assay. Samples were run on 8% polyarylamide/7 M urea gel. The secondary structure of RNA is on the right of each figure and
arrows indicate the cleavage sites generated by APEIL. Asterisks on the structure in (B) indicate radiolabeled uridine. Schematic RNA secondary
structures on the right represent 5'fragment of cleavage products while those on the left in (B) represent 3'fragment of cleavage products. (C)
S'-labeled oligonucleotide corresponding to nts 1742-1757 of c-myc CRD was treated for Smin with increasing concentrations (0.08-0.8 ug) of
recombinant APEI (lanes 3-9) or with 2U partially purified native APEl from heparin sepharose column (lane 2). Samples were run on 12%
polyarylamide/7 M urea gel. The secondary structure of the oligo is on the right panel and the arrow indicates the RNA cleavage site generated by
APEI. Schematic secondary structures on the right represent the full-length oligo (top) or 5'fragment of the cleavage product (bottom).

Dicer substrate RNAi (dsRNAi) against APEI
(APEI1-dsRNAI) based on siRNA sequences used success-
fully to knockdown APEI (47). As a negative control,
we used DS Scrambled Negative (Control-dsRNAi) with
randomly rearranged nucleotides. The effect of
APE1-dsRNAi on APEI protein and mRNA levels was
monitored over a 2-day period. The levels of APEI
mRNA were examined using qRT-PCR and normalized
against B-actin mRNA levels. Figure 8B (top panel) shows
that APE1 mRNA was reduced by 80% at 24 h and 85%
at 48 h. This was accompanied by reduction of APEI pro-
tein of 60% and 70% at 24 and 48 h, respectively, as deter-
mined by western analysis (Figure 8A).

The effect of APEl knockdown on c-myc mRNA
expression was investigated. Using the same total RNA
samples as above, we found 1.7-fold and 4.6-fold increase
at 24 and 48h, respectively, in the steady-state c-myc
mRNA levels upon knockdown of APE1 (Figure 8B,
bottom panel). To assess whether elevated c-myc mRNA
levels upon APEl knockdown were due to more stable
transcript, the decay of c-myc mRNA was examined. We
transfected HeLa cells with either APEI-dsRNAi or
Control-dsRNAi for 30h, followed by treatment with
200 uM 5,6-dichloro-1-B-p-ribobenzimidazole (DRB) to
inhibit transcription. Total RNA extracted at various
time points were analyzed for c-myc and B-actin mRNA
levels by qRT-PCR. c-myc mRNA level was normalized to

B-actin mRNA level at each time point and then expressed
as percentage to the level at 0 min (Figure 9). As shown in
Figure 9, the levels of c-myc mRNA in the Control-
dsRNAi-treated cells exhibited decay with a half-life of
about 30 min. In contrast, the levels of c-myc mRNA in
APE1-dsRNAi-treated cells were relatively stable up to
60 min.

DISCUSSION

We set the goal of identifying endoribonuclease(s) that are
capable of cleaving c-myc CRD RNA in vitro for four
specific reasons. First, endonucleolytic cleavage of c-myc
mRNA has been shown to occur in vivo (6,7,25-29),
implying the presence of the responsible endoribonu-
clease(s) in cells. Second, many vertebrate mRNA decay
intermediates have been detected but only a handful of
endoribonucleases that degrade specific mRNAs have
been identified (1). Third, our understanding about
the role of endoribonucleases in mRNA decay and gene
expression in vertebrates is still unclear. Lastly, given that
c-Myc is implicated in human cancers, characterization of
enzymes that degrade c-myc mRNA may help develop
new therapeutic approach via destruction of c-myc
mRNA. In this study, we describe the purification and
identification of RNasel as a 17-kDa enzyme and APEI1
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three independent experiments (*, P <0.05). The APE1/B-actin mRNA
ratios are presented as a percentage relative to Control-dsRNAi (top
panel). The same RNA samples were analyzed for c-myc mRNA levels
and the c-myc/B-actin mRNA ratios are presented as a percentage rel-
ative to Control-dsRNAi (bottom panel).

as a 35-kDa endoribonuclease that are capable of cleaving
c-myc CRD RNA in vitro.

RNasel is a known endoribonuclease, belonging to the
RNase A superfamily of ribonucleases (48). Therefore, it
is not surprising to see its ability to cleave c-myc CRD
RNA in vitro. However, whether RNasel has a role in
cleaving c-myc CRD RNA, and therefore in the regulation
of c-myc mRNA level in vivo remains unknown. In addi-
tion, APE1 was identified as the 35-kDa endoribonuclease
that cleaved c-myc mRNA in vitro. Four findings confirm
that APEI is the protein that contributes to the 35-kDa
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Figure 9. Effect of APE1 knockdown on c-myc mRNA decay in HeLa
cells. Twenty-four hours after plating at 1.0 x 103 cells/well, cells were
transfected with either 60nM Control-dsRNAi or 60nM APEI-
dsRNAi. After a further 30 h incubation, cells were subjected to tran-
scriptional inhibition by the addition of 200 uM DRB. Total RNA was
then extracted from cells after 20, 40 and 60 min of further incubation.
c-myc and B-actin mRNA levels were then quantified as described in
Figure 8. After normalizing the levels of c-myc mRNA to B-actin
mRNA, c-myc/p-actin mRNA ratios at different time points were
expressed as percentage to that at Omin. Data are the mean £ SD of
two independent experiments. Linear regression analysis was performed
to compare the two treatment groups and statistically significant differ-
ence was found in the slope (P <0.05).

endoribonuclease activity. (i) Two independent sets of
LC/MS-MS data identified APE1 with 32% amino acid
sequence coverage and seven matched peptides (Table 1).
(i1) As determined by western analysis, APE1 is present
in the 30-40-kDa fractions from gel filtration which con-
tained the endoribonuclease activity (Figures 1A and 3).
(iii) The endoribonuclease activity was specifically
immuno-depleted with APEl monoclonal antibody
(Figure 4). (iv) The cleavage pattern generated on c-myc
CRD RNA by the recombinant human APE]1 is similar to
that generated by the purified native 35-kDa endoribonu-
clease from rat liver (Figure 5B).

Overall, the endoribonuclease activity of the purified
native APEl and the recombinant APEl resemble
RNase A-like activity, a standard contaminating ribonu-
clease in RNA studies. However, the following evidence
strongly argue against the possibility that the observed
endoribonuclease activity of APE1 is due to RNase A
contaminants: (i) APE1 antibody which does not cross
react with RNase A, specifically immuno-depleted the
endoribonuclease activity of the purified native APEI
(Figure 4); (i1) gel filtration used in the last step to partially
purify the 35-kDa native APE1 would have excluded any
possible RNase A contaminants which are typically below
20kDa in size; (iii) the cleavage pattern generated by the
purified native APE1 on c-myc CRD RNA (Figure 2) and
other RNAs are similar but not identical (data not shown)
to that generated by RNase A; and (iv) at higher concen-
trations, other recombinant proteins including mutant
APE1 E96A which was purified under identical conditions
failed to exhibit any endoribonuclease activity (Figure 6).
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APEIl has been identified as an unusual, multi-func-
tional protein (37,38). It endonucleolytically cleaves
DNA at AP sites, and is a key enzyme in the base excision
repair pathway (37). APE1 also provides the major redox
activity for AP-1, p53, H1Flalpha and other transcription
factors (49). In addition to its AP DNA endonuclease
activity, APE1 has 3’ -5 DNA exonuclease (50) and 3’
phoshodiesterase activities (37). APEl has also been
shown to bind to a fragment of human topoisomerase
T RNA and possesses RNase H activity (39) but the
overall biological significance of this function has
remained unclear. We have not examined the RNase H
activity of recombinant APE1 but the previously partially
purified native enzyme which contained both RNasel and
APEI did not appear to have any RNase H activity (30).
Here, we show that recombinant APEI cleaves specific
sequences on the c-myc CRD RNA, namely in between
CA and UA dinucleotides (Figure 5B). To our knowledge,
this is the first demonstration of a sequence specific endor-
ibonuclease activity intrinsic to APE1. The endoribonu-
clease activity of APE1 on c-myc CRD RNA appears to
share some of the same active site with other nuclease
activities of the protein because both E96A and H309N
APEl mutants were inactive or less active in cleaving
c-myc CRD RNA.

To initiate studies on examining the RNA-cleaving
potential of APEI in cells, we used the siRNA technology
to transiently knockdown APEI and then measure c-myc
mRNA expression in HeLa cells. Figure 8 shows that tran-
sient knockdown of APE1 at the protein and mRNA levels
lead to significant increase in steady-state c-myc mRNA.
Such observation could be attributed to: (i) more stable
c-myc mRNA due to less APEI in cleaving c-myc mRNA,
or/and (ii) decrease in transcriptional repressor of c-myc
gene due to less APEI in keeping some transcriptional
factors active. To test the former hypothesis, we assessed
the decay of c-myc mRNA upon knockdown of APEI.
We found that indeed c-myc mRNA was more stable
upon knockdown of APEI supporting the notion that
APEI can cleave c-myc mRNA and control its abundance
in cells. Interestingly, one of the c-myc mRNA endonu-
cleolytic decay intermediates previously detected in cells
(7) corresponded to 1727CA, which is a site cleave by
APEI1 (Figure 2). Our results of increased c-myc mRNA
upon knockdown of APEI is in contrast to a recent report
of a modest decrease in c-myc mRNA using micro-array
approach (51). This discrepancy could due to the differ-
ences in the experimental design. These investigators used
stable siRNA-inducible cells that were knockdown for 10
days upon stimulation with siRNA expression and as
pointed out by the investigators, compensatory mechan-
isms and indirect effects may set in for the observed molec-
ular results (51).

We have observed stable association of APE1 with YB-
1 and hnRNP-H both of which are involved in RNA
metabolism (52). In addition to its expected localization
to the nucleus, APE]I is also found in the cytoplasm and in
some cases, appears to be exclusively located there (38).
Such observations and the finding of redistribution of the
protein between the nucleus and cytoplasm in some can-
cers had many researchers baffled for some time (38,49).

APEI has been reported to associate with ribosomes in
motor neurons and also possibly in highly proliferative
cells including hepatocytes (38), and such observations
had led to the speculation that it may have an undefined
role in ribosomal function (49). Indeed, a recent report
provided strong evidence that the N-terminus of APEI
is physically associated with a number of proteins
known to be involved in ribosome biogenesis and RNA
processing (46).

Interestingly, we have purified APE1 from rat liver
polysomal fraction which supports its role in RNA pro-
cessing. We had earlier shown that APEI interacts with an
RNA-binding protein hnRNP-L in negative regulation of
the parathyroid hormone gene (53). Of particular interest
is the report that hnRNP-L can regulate the stability of
human VEGF mRNA through its AU-rich element during
hypoxia (54). Thus, given the evidence provided in this
study and the prior evidence, it is tempting to speculate
that a previously unknown function of cytoplasmic APE1
is its ability to serve as an endoribonuclease for mRNAs
including c-myc mRNA. APE1 has recently been shown to
cleave AP-site-containing single-stranded RNA (45,46),
providing further support that the enzyme is involved in
RNA metabolism in cells.

We have previously shown that an RNA-binding pro-
tein, CRD-BP, can protect c-myc CRD RNA from degra-
dation by the partially purified native enzyme (55). With
the identification of APE1 as a responsible enzyme for the
control of c-myc mRNA, we are now in a position to
directly investigate if APEI interacts with CRD-BP in
controlling the turnover of c-myc mRNA and other
mRNAs in cells.
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