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Abstract: Viral biomarkers are important tools for monitoring chronic hepatitis B virus (HBV)
hepatitis B early antigen (HBeAg) negative infection, both in its natural course as well as during
and after treatment. The biomarkers consist of antibodies against viral epitopes, viral proteins, and
molecular surrogate markers of the quantity and transcriptional activity of the stable episomal HBV
covalently closed circular DNA (cccDNA) which is located in the nuclei of the infected hepatocytes.
HBV deoxyribonucleic acid (DNA) or else viral load measurement in plasma or serum is a marker of
HBV replication of major clinical importance. HBV DNA is used for staging and treatment monitoring
as described in international scientific guidelines. Quantification of HBV antigens, mainly hepatitis B
surface antigen (HBsAg) as well as Hepatitis B core related antigen (HBcrAg), play an important yet
secondary role, especially in cases of low or undetectable HBV DNA and has been evaluated for the
classification of the inactive carrier state, as a predictor of subsequent HBsAg clearance, treatment
outcome, and development of hepatocellular carcinoma (HCC). The measurement of the replicative
intermediate HBV RNA in serum is currently evaluated and may also prove to be a significant
biomarker particularly in patients treated with nucleot(s)ide analogs. This review focuses on the viral
biomarkers mentioned above and their role in HBV, HBeAg negative, infection.
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1. Introduction

Chronic liver inflammation, or chronic hepatitis, is a common disease and a worldwide public
health issue. Although, nonalcoholic fatty liver disease (NAFLD) is considered the most rapidly and
continuously increasing cause of chronic hepatitis, chronic viral hepatitis is still of major importance,
concerning approximately 330 million people worldwide. Specifically, chronic hepatitis B (CHB)
affects about 240 million people and although the diagnostic tools are widely available, is still
under-diagnosed [1].

The diagnosis and follow up of chronic hepatitis B virus (HBV) infection relies on laboratory
viral biomarkers. There are two major categories of HBV biomarkers. The first one is serology, a term
comprising the detection and quantification of viral antigens and viral specific antibodies and the
second is nucleic acid testing (NAT) for the detection and quantification of HBV genome and its RNA
transcripts [2] (Figure 1).

Both serology and NAT are in routine use, not only for the diagnosis of chronic and acute HBV
infection, but also for monitoring chronic HBV infection with or without treatment. By definition, HBV
serology for hepatitis B early antigen (HBeAg) and the corresponding antibody, is imperative for the
specific diagnosis of HBeAg negative CHB. Moreover, serological and molecular biomarkers are used
for the identification of the HBeAg negative inactive carrier (IC) state, for treatment initiation and
monitoring, and as predictors of HBV and liver related events [3,4].
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are used for the identification of the HBeAg negative inactive carrier (IC) state, for treatment initiation 
and monitoring, and as predictors of HBV and liver related events [3,4].  

 
Figure 1. Hepatitis B virus (HBV) gene expression. The HBV covalently closed circular DNA 
(cccDNA) serves as the template for the transcription of the pregenomic RNA and subgenomic 
messenger RNA (mRNA) transcripts (shown as thin lines), aligned to a linear depiction of the viral 
open reading frames (shown as open boxes). The corresponding protein products for each of the major 
HBV transcript are listed on the right. HBcAg: HBV core antigen; HBeAg: HBV early antigen; HBsAg: 
HBV surface antigen; HBxAg: HBV X protein.  

2. Viral Biomarkers 

2.1. Serology 

2.1.1. Antigen and Antibody Detection 

The first identified biomarker of HBV infection was the hepatitis B surface antigen (HBsAg), 
formerly named Australia antigen. Its discovery by Blumberg was the most important milestone that 
led to the diagnosis, prevention, and treatment of hepatitis B [5]. The detection of HBsAg remains the 
principal diagnostic tool of HBV infection. HBsAg is produced in excess in HBV infected hepatocytes 
and circulates in high quantities in the serum [6], consequently, it is a very sensitive as well as specific 
biomarker for HBV infection. The patient’s profile, based on the results of the detection of HBsAg 
combined with the measurement of the respective anti-HBs antibodies plus the detection of anti-HBc 
antibodies (total and IgM), is adequate for the diagnosis of acute and for the screening of chronic 
HBV infection. Once the diagnosis of chronic HBV infection is made, testing for HBeAg and the 
corresponding anti-HBe antibody is mandatory and is usually performed by the use of the same 
methodology, as the previously mentioned serological markers. 

Nowadays, extremely sensitive immunoassays on automated analyzers are used for HBV serology 
based on chemiluminescence (CLIA) and electrochemiluminescence technology (ECLIA) [7,8]. In some 
cases, however, the increased sensitivity of the HBsAg assays may lead to false positive results. Thus, 
in patients with HBsAg index values close to the cut off and with inconsistent other serological markers, 
verification of HBsAg positivity with a confirmatory assay is recommended [9] HBV antibodies and 
HBeAg detection are also performed on these automated immunoassay systems [10–12]. 

In many laboratories, standard enzyme-linked immunoassay (ELISA) is still used for HBV 
serology as it is an inexpensive alternative that does not require instrumentation other than a 
microplate reader (photometer). Commercial ELISAs demonstrate high sensitivity (>99%) and 
acceptable specificity (>95%) for HBsAg [13], but positive results with low absorbance need to be 
confirmed. Also, in the case of rheumatoid factor positivity there may be positive or negative 
interference in these assays [14]. The concordance between ECLIA and ELISA has been found to be 
97.05% for HBsAg, 92.62% for anti-HBs, 100% for HBeAg, 76.75% for anti-HBe, and 58.67% for anti-
HBc. Particularly in patients with HBeAg and anti-HBe coexistence, the concordance for HBeAg 
detection was found to be 45.83% and for anti-HBe 79.17%. The discrepancies of the assays were 
attributed mainly to differences in their sensitivity [15].  

Figure 1. Hepatitis B virus (HBV) gene expression. The HBV covalently closed circular DNA (cccDNA)
serves as the template for the transcription of the pregenomic RNA and subgenomic messenger RNA
(mRNA) transcripts (shown as thin lines), aligned to a linear depiction of the viral open reading frames
(shown as open boxes). The corresponding protein products for each of the major HBV transcript
are listed on the right. HBcAg: HBV core antigen; HBeAg: HBV early antigen; HBsAg: HBV surface
antigen; HBxAg: HBV X protein.

2. Viral Biomarkers

2.1. Serology

2.1.1. Antigen and Antibody Detection

The first identified biomarker of HBV infection was the hepatitis B surface antigen (HBsAg),
formerly named Australia antigen. Its discovery by Blumberg was the most important milestone that
led to the diagnosis, prevention, and treatment of hepatitis B [5]. The detection of HBsAg remains the
principal diagnostic tool of HBV infection. HBsAg is produced in excess in HBV infected hepatocytes
and circulates in high quantities in the serum [6], consequently, it is a very sensitive as well as specific
biomarker for HBV infection. The patient’s profile, based on the results of the detection of HBsAg
combined with the measurement of the respective anti-HBs antibodies plus the detection of anti-HBc
antibodies (total and IgM), is adequate for the diagnosis of acute and for the screening of chronic
HBV infection. Once the diagnosis of chronic HBV infection is made, testing for HBeAg and the
corresponding anti-HBe antibody is mandatory and is usually performed by the use of the same
methodology, as the previously mentioned serological markers.

Nowadays, extremely sensitive immunoassays on automated analyzers are used for HBV serology
based on chemiluminescence (CLIA) and electrochemiluminescence technology (ECLIA) [7,8]. In some
cases, however, the increased sensitivity of the HBsAg assays may lead to false positive results. Thus,
in patients with HBsAg index values close to the cut off and with inconsistent other serological markers,
verification of HBsAg positivity with a confirmatory assay is recommended [9] HBV antibodies and
HBeAg detection are also performed on these automated immunoassay systems [10–12].

In many laboratories, standard enzyme-linked immunoassay (ELISA) is still used for HBV
serology as it is an inexpensive alternative that does not require instrumentation other than a microplate
reader (photometer). Commercial ELISAs demonstrate high sensitivity (>99%) and acceptable
specificity (>95%) for HBsAg [13], but positive results with low absorbance need to be confirmed.
Also, in the case of rheumatoid factor positivity there may be positive or negative interference in these
assays [14]. The concordance between ECLIA and ELISA has been found to be 97.05% for HBsAg,
92.62% for anti-HBs, 100% for HBeAg, 76.75% for anti-HBe, and 58.67% for anti-HBc. Particularly in
patients with HBeAg and anti-HBe coexistence, the concordance for HBeAg detection was found to be
45.83% and for anti-HBe 79.17%. The discrepancies of the assays were attributed mainly to differences
in their sensitivity [15].

Screening for HBV is also feasible with rapid tests at the point of care (POC). Point of care serology
is available as a single test for HBsAg only or in the form of multiple serological markers detection
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e.g., for hepatitis B, hepatitis C, human immunodeficiency virus (HIV), and syphilis [16]. Rapid tests
for HBsAg use capillary blood specimen obtained from a finger stick, are easy to execute and have a
sensitivity of greater than 90% and specificity of over 99.5%. On the other hand, the performance of
anti-HBs rapid tests is not optimal, with the major limitation being their low sensitivity [17]. Anti-HBc
POC tests are not available.

2.1.2. Hepatitis B Surface Antigen Quantification

HBsAg is translated from messenger RNAs (mRNAs) transcribed from covalently closed circular
DNA (cccDNA) and/or from HBV sequences integrated in the host genome. The quantification of
HBsAg in the past was performed for research purposes by serial serum dilutions that allowed the
determination of its titer with qualitative assays [18]. Currently, HBsAg quantification (qHBsAg) in
serum is measured in international units per milliliter (IU/mL) on the same instruments that are
used for routine serology, but with different reagents and in most cases with on board dilution of
the sample [19–21]. The lower limit of HBsAg detection for the majority of the quantitative assays is
0.05 IU/mL in undiluted samples, which is higher than the cut off of the respective qualitative assays.

Automated HBsAg quantification has been proven to be highly reproducible and the results
between different analyzers show very good correlation [19]. Nevertheless, it is recommended to
employ the same assay for monitoring, since differences, especially in the low ranges, might be of
importance. The concentration of HBsAg in serum has been studied in every aspect of HBV infection
and the test is commercially available and marked for in vitro diagnostics (IVD).

2.1.3. Hepatitis B Early Antigen Quantification

HBeAg quantification (qHBeAg) is not yet available as a standardized commercial assay.
Nevertheless, it has been evaluated, by in house methodologies, as a possible biomarker in HBeAg
positive infection [22]. Monitoring of qHBeAg has been found to be helpful for the prediction of
response to treatment and sustained HBeAg seroconversion [23–26]. There are ongoing efforts for
the standardization of qHBeAg assays, which is imperative for the generation of robust results and
potential clinical use of the test [22,27]. Evidently, in established HBeAg negative hepatitis, qHBeAg is
not applicable.

2.1.4. Hepatitis B Core Related Antigen Quantification

Hepatitis B core related antigen (HBcrAg) is a rather new marker, that incorporates the
quantification HBcAg, HBeAg, and core related protein p22 (p22cr) in one test. These three proteins
are all products of the precore/core HBV gene and share the same 149 amino acid sequence. Obviously,
patients positive for HBeAg, which is included in the assay, are found with higher HBcrAg levels than
their HBeAg negative counterparts in whom HBcrAg is undetectable in many cases. This test has been
used for research only and was first available only in one automated analyzer (Lumipulse, Fujirebio),
with lower limit of detection (LOD) being high at 2 logs U/mL and lower limit of quantitation (LOQ) at
3 log U/mL [28,29]. The quantification of the denatured HBcr proteins is accomplished in reference to a
standard curve of known quantities of HBeAg recombinant peptides (1 U/mL = 10 fg/mL recombinant
HBeAg) [30,31].

There is ongoing and expanding research concerning its use as a potential biomarker in both
HBeAg positive and negative phase of the infection, since HBcrAg reflects the transcriptional activity
of intrahepatic cccDNA more accurately than qHBsAg, which is produced not only by cccDNA but also
from integrated HBV DNA sequences (Figure 2). HBcrAg levels have been associated with intrahepatic
cccDNA levels, even in serum HBV DNA negative patients [32].

On the whole, HBcrAg levels display a strong correlation with serum HBV DNA and statistically
significant but moderate (r = 0.78) correlation with qHBsAg, which is even less pronounced in the
HBeAg negative state [30].
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Hepatitis B Virus DNA, the genomic nucleic acid of the virus and internal constituent of the core 
particle, was identified by 1975 and has been sequenced since 1980 but was not used as a biomarker 
until the molecular techniques advanced to a level permitting their use in specialized clinical 
laboratories. Actually, until then, the presence of HBeAg was solely associated with active viral 
replication and active liver disease. With the application of low sensitivity molecular hybridization 
techniques for serum HBV DNA measurement in HBeAg negative patients, it became clear that 
although the viral load is higher in HBeAg positive individuals, there is a proportion of HBeAg 
negative patients who have detectable HBV DNA and active hepatitis [33–35].  

Subsequently, with the advent of polymerase chain reaction (PCR) assay for nucleic acid 
amplification and branched DNA for hybridized signal amplification, HBV DNA measurements 
became an important viral biomarker. Viral load measurement is currently accomplished with 
concurrent detection and quantification of HBV DNA in plasma or serum by sensitive real time PCR 
assays. Several manufacturers provide real time PCR platforms and reagents approved for patient 
diagnostic use (IVD marked). Some examples of the most commonly used assays are the Roche 
COBAS TaqMan HBV Test, Abbott RealTime HBV Assay, Siemens VERSANT HBV DNA, and 
Qiagen artus HBV RG PCR. These and even newer assays demonstrate good reproducibility with 
low imprecision, as measured by the coefficient of variation (CV 0.5–4%) and excellent correlation 
between the different systems (r > 0.9) [36,37]. Moreover, point of care NAT instrumentation is 
expanding their menu options to include HBV DNA testing. The current available HBV DNA POC 
assays are used for research only. Their performance appears to be similar to the assays used in 

Figure 2. Serum HBsAg reflects the transcriptional activity of both cccDNA and integrated HBV
sequences. preC mRNA: precore messenger RNA; pgRNA: pregenomic RNA; qHBcrAg: quantitative
HBV core related antigen.

2.2. Molecular Markers (Nucleic Acid Testing)

2.2.1. Hepatitis B Virus Deoxyribonucleic Acid

Hepatitis B Virus DNA, the genomic nucleic acid of the virus and internal constituent of the core
particle, was identified by 1975 and has been sequenced since 1980 but was not used as a biomarker until
the molecular techniques advanced to a level permitting their use in specialized clinical laboratories.
Actually, until then, the presence of HBeAg was solely associated with active viral replication and
active liver disease. With the application of low sensitivity molecular hybridization techniques for
serum HBV DNA measurement in HBeAg negative patients, it became clear that although the viral
load is higher in HBeAg positive individuals, there is a proportion of HBeAg negative patients who
have detectable HBV DNA and active hepatitis [33–35].

Subsequently, with the advent of polymerase chain reaction (PCR) assay for nucleic acid
amplification and branched DNA for hybridized signal amplification, HBV DNA measurements
became an important viral biomarker. Viral load measurement is currently accomplished with
concurrent detection and quantification of HBV DNA in plasma or serum by sensitive real time
PCR assays. Several manufacturers provide real time PCR platforms and reagents approved for patient
diagnostic use (IVD marked). Some examples of the most commonly used assays are the Roche COBAS
TaqMan HBV Test, Abbott RealTime HBV Assay, Siemens VERSANT HBV DNA, and Qiagen artus
HBV RG PCR. These and even newer assays demonstrate good reproducibility with low imprecision,
as measured by the coefficient of variation (CV 0.5–4%) and excellent correlation between the different
systems (r > 0.9) [36,37]. Moreover, point of care NAT instrumentation is expanding their menu options
to include HBV DNA testing. The current available HBV DNA POC assays are used for research only.
Their performance appears to be similar to the assays used in central laboratories on automated or
semi-automated analyzers, thus it is probable that some POC NAT HBV DNA tests and instruments
are going to be approved for IVD use in the near future [38].
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According to the American Association for the Study of Liver Diseases (AASLD) guidelines for
treatment of chronic hepatitis B and the European Association for the Study of the Liver (EASL) clinical
practice guidelines, the required sensitivity for HBV DNA detection is 10 IU/mL [39,40]. The PCR
assays that are commonly used demonstrate aLOD which is usually lower than 10 IU/mL and a
higher limit of quantification (LOQ). Therefore, a not quantifiable but detectable HBV DNA result is
probable and both laboratory and clinical personnel need to be aware of this possibility. The genetic
variability of different HBV genotypes and subgenotypes appears to have minimal, if any, effect in
HBV DNA quantification. Nonetheless, mutations in the primer or probe binding regions may lead to
underestimation of the viral load [41].

HBV viremia can be measured not only in fresh blood, but also in dried blood spots (DBS) of
whole blood collected by venipuncture or capillary blood collected by finger puncture. The DBS
specimens are sent to a central laboratory where they are extracted and tested with conventional HBV
DNA techniques. This approach, although not IVD marked as yet, could be important in resource
restricted areas with limited access to NAT. In a recent meta-analysis of 12 studies meeting the inclusion
criteria, the pooled estimate of sensitivity was 95% (95% confidence interval (CI): 83–99) with a higher
specificity at 99% (95% CI: 53–100) for HBV DNA detection in DBS. The correlation with serum assays
was reported in five studies and was found to be strong (r = 0.6–0.96) but the LOD was higher for
DBS (914–2000 IU/mL). DBS sample storage conditions do not seem to affect the results of HBV DNA
detection [42].

The measurement of HBV DNA in oral fluid samples, a different and slightly cheaper approach
for the detection of active viral replication, has been used and evaluated in few studies [43–46]. This
approach lacks in sensitivity particularly in the HBeAg negative infection and does not appear to be
an appropriate alternative.

Additionally, recent advances in technology, made possible the direct detection and quantification
of HBV cccDNA in serum, which is released into circulation due to the destruction of infected
hepatocytes [47]. There is still need of detailed and extensive studies and of course wider availability
of the latest technology, in order to start considering cccDNA in serum as a robust clinical biomarker.

2.2.2. Hepatitis B Virus Genotype

HBV is classified in at least 10 genotypes (A to J) based on genetic divergence of more than 8%
and further in subgenotypes within HBV genotypes with divergence of >4%. HBV genotypes and
subgenotypes have distinct geographical distribution. There is increasing evidence of association of
genotypes with disease progression and the pathogenesis of HBV infection [48].

The gold standard method for the identification of HBV genotype is whole genome sequencing
followed by phylogenetic analysis [49], but most commonly, sequence of the preS-S/pol gene with
comparison (sequence alignment) to HBV genotype consensus sequences or the line probe assay, are
used [50,51]. It is of interest that mutations in the precore region of HBV, confirmed by sequencing,
prevent the production of HBeAg (mainly the G1896A substitution), and are prevalent in HBeAg(-)
patients with active liver disease and HBV genotypes D, C, and B [52,53].

The same methods that are applied for genotyping, are also used for the detection of genetic
resistance of HBV to NAs [54].

Although different HBV genotypes seem to have diverse biological behavior, HBV genotyping
is not used as a routine viral biomarker most probably due to their already recognized
geographical distribution.

2.2.3. Hepatitis B Virus Ribonucleic Acid

The HBV cccDNA nuclear episome, is the template for transcription by host enzymes producing
the viral mRNA transcripts which are translated into viral proteins, as well as the 3.5 kb pregenomic
(pg) RNA which is the template for reverse transcription. Synthesis of the minus (–) strand DNA and
synchronous degradation of the RNA pregenome is followed by partial synthesis of variable length
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plus (+) strand leading to the production of mature viral particles containing the relaxed circular
(RC) DNA genome. Virions are either enveloped and secreted or recycled to the nucleus to increase
the available cccDNA pool. However, HBV RNA can be detected in the serum of either HBV DNA
positive or negative patients in the natural course of CHB and under treatment [55–62]. Several
investigators have confirmed that at least the majority of serum HBV RNA is pgRNA encapsidated
in virus-like particles [62–64], however other HBV RNA species have been detected both in vivo and
in vitro [64–67].

Serum HBV RNA is currently under evaluation as a surrogate non-invasive marker, for monitoring
intrahepatic cccDNA transcriptional activity. Detectable HBV RNA in the serum is indirect evidence for
cccDNA persistence. A number of different experimental methods for the quantification of intrahepatic
and serum HBV RNA are utilized based on quantitative real-time RT PCR assays, however there is no
consensus on a single technique and commercial available assay for the detection of HBV RNA. Units
used in this experimental setting are either HBV RNA copies/mL or IU/mL of serum, independently
standardized by investigators.

3. Clinical Significance of Viral Biomarkers in HBeAg(-) Infection

3.1. Biomarkers for the Diagnosis of Chronic HBeAg Negative Hepatitis B Virus Infection

The diagnosis of chronic hepatitis B virus (HBV) infection is made based on the presence of
hepatitis B surface antigen (HBsAg) in serum over six months or a specific serological pattern that
includes positive HBsAg, negative respective antibody (anti-HBs) and positive total core antibody
(anti-HBc) with negative IgM anti-HBc (Table 1).

Table 1. Hepatitis B Virus (HBV) serology interpretation.

HBsAg Total Anti-HBc IgM Anti-HBc Anti-HBs Interpretation

- - - - No HBV
infection—susceptible

- - - + 1 HBV immune—vaccinated
- + - + Past HBV infection
+ + + - Acute HBV infection
+ + - - Chronic HBV infection
- + - - Inconclusive 2

1 anti-HBs > 10 mIU/mL; 2 Past Infection (more common), False positive anti-HBc, Occult HBV infection. HBsAg:
hepatitis B surface antigen; Anti-HBc: hepatitis B core antibody; anti-HBs: hepatitis B surface antibody.

The differentiation between HBeAg positive and negative chronic infection is made with the use
of two additional serological markers namely the HBeAg and the respective antibody. Depending
on how close to HBeAg seroconversion the patient is, HBeAg negative patients may be anti-HBe
negative or positive. If a patient was known to be HBeAg positive and recently seroconverted, serial
determinations are necessary to establish that the patient transcended to the HBeAg negative stage of
chronic HBV infection.

Occasionally, a non-diagnostic serological profile with negative HBsAg and anti-HBs but positive
anti-HBc is encountered. Although in the majority of these cases this profile is due to past HBV
infection there is a possibility of occult chronic HBV infection. Occult HBV infection is defined as
HBsAg negative and HBV DNA positive in serum and/or liver [68–73]. In circumstances where
patients positive for anti-HBc only, are going to receive immunosuppressive therapy it is imperative to
be tested for HBV viremia with NAT (HBV DNA). Immunosuppression may lead to HBV reactivation,
thus prophylactic antiviral treatment is implemented [74,75].

3.2. Biomarkers for the Identification of the Inactive Carrier State

HBeAg negative patients with chronic HBV infection are categorized in two main states. In the
inactive carrier state (recently renamed by EASL as ‘HBeAg negative chronic infection’), there is limited
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viral replication and liver inflammation [40]. The inactive HBV carrier presents with normal alanine
aminotrasferase (ALT) levels (less than 35 U/L in males and less than 25 U/L in females) and low
(<2000 IU/mL) or undetectable HBV DNA. Although the above cut-offs are based on international
guidelines, the characterization of a patient as inactive carrier requires serial determinations of ALT
and HBV DNA, every 3–4 months for the first year and subsequently every 6 months. This approach is
imperative due to the fluctuations of HBV DNA and ALT that occur in patients at the second state of
HBeAg negative infection with active hepatitis [39,40,76].

Since close follow up and serial testing of two biomarkers is essential for the identification of
inactive carriers, the addition of a third biomarker has been evaluated. Given that the majority of
inactive HBV carriers, have lower HBsAg levels in serum than patients with active inflammation [77,78],
the first biomarker that was studied was qHBsAg. In a thorough study on HBV genotype D
infection, qHBsAg values at a single time point of less than 1000 IU/mL in combination with HBV
DNA < 2000 IU/mL and normal ALT demonstrated a diagnostic accuracy (DA) of 94.5% for the
identification of the inactive carrier state, compared to monthly monitoring with the latter two
biomarkers for one year. More specifically, the sensitivity of a single three-markers measurement was
91.1%, a specificity of 95.4%, a positive predictive value (PPV) of 87.9%, and a negative predictive
value (NPV) of 96.7% [79]. Similar results have been observed in other HBV genotypes. In one study
of 1068 Taiwanese HBeAg negative patients that had been diagnosed as HBV carriers, infected with
HBV genotype B or C, the relationship between HBsAg level > 1000 IU/mL and the development of
HBeAg-negative hepatitis in 13 years follow up was found to be significant (hazard ratio (HR) = 1.5,
95% CI = 1.2–1.9) and HBsAg < 1000 IU/mL in combination with low HBV DNA and ALT were
found to be useful for identifying minimal-risk HBV carriers [80]. In the REVEAL cohort, in patients
infected with B or C genotype, the combined testing with the same HBsAg cut-off, showed diagnostic
accuracy for IC of 78% [81]. This HBsAg threshold of 1000 IU/mL seems to be the most reliable one
for the differential diagnosis of CHB and the inactive carrier state [82]. The use of a lower qHBsAg
cut-off e.g., 100 IU/mL for increased specificity, results in significant decrease in sensitivity (35%) [83].
Besides qHBsAg, the addition of liver stiffness measurement (LSM) as a fourth parameter, with a cut
off of 6.2 kPa further improves the diagnostic accuracy of testing ALT, HBV DNA, and qHBsAg in a
single time point, showing 100% specificity, 96% sensitivity, 100% PPV, 92% NPV, and 97% DA for the
identification of ICs [84].

Recently, it was suggested that serum HBcrAg is more accurate than qHBsAg for the identification
of inactive carriers, regardless of hepatitis B virus genotype [85]. In this study, the diagnostic accuracy
of HBcrAg ≤ 3 logU/mL combined with HBV DNA ≤ 2000 IU/mL was 87% for genotype D, lower
for genotypes F or H (73%) but higher for genotypes A and E (91 and 94%).

Some patients who display HBeAg negative serological profile with normal ALT, low viremia
and/or qHBsAg higher than 1000 IU/mL, have a benign course of the infection and a proportion
of them fulfill the criteria of IC in later time. In a recent study with such population included,
the combined qHBsAg and HBV-DNA quantification had a diagnostic accuracy of 65.4% and 100% NPV
for the identification of ICs. In this study HBV-DNA ≤ 2000 IU/mL and HBcrAg < 3 log or
HBV DNA ≤ 2000 IU/mL and total anti-HBc ≤ 16,937 IU/mL had higher and almost the same DA
around 86.5% and their diagnostic performance was improved by combing HBV-DNA ≤ 2000 IU/mL,
HBcrAg ≤ 3 log and total anti-HBc ≤ 16,937 IU/mL (DA 89.5%, sensitivity 93%, specificity 84.8%,
PPV 88.9%, NPV 90.3%) [86]. Total anti-HBc was quantified by a double-antigen sandwich immune-assay,
calibrated using WHO standards.

The biological importance and clinical relevance of serum HBV RNA during the natural course of
HBV infection and the differentiation between HBeAg negative carriers and active infection remain
unclear. An early study suggested that HBV RNA in serum could be a useful marker for the recognition
of the stages of chronic HBV infection [61]. Recently, HBV RNA levels were found to be independently
associated with HBeAg status, serum ALT, HBV genotype, and the presence of BCP variants, in a
large multiethnic cohort including 122 HBeAg(-) individuals (80% HBV genotype D) [87]. In another
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study including 24 HBeAg(-) patients (genotype B or C), it was shown that serum HBV RNA levels
best correlated with intrahepatic HBV RNA levels, reflecting cccDNA transcriptional activity, rather
than with intrahepatic cccDNA itself. The correlation with cccDNA, observed in HBeAg(+) patients,
was not found in the HBeAg(-) group. No correlations between liver injury or histopathology and
HBV-RNA levels were observed, nonetheless, the ratio of HBsAg to serum HBV-RNA was found to be
the highest in IC patients [88]. Similarly, in a study of CHB patients, the correlation between serum
HBV RNA and intrahepatic cccDNA levels was reported to be dependent on the serostatus of HBeAg
and was not found in HBeAg(-) patients [89]. Furthermore, in an investigation that included HBeAg(-)
negative subjects, the authors proposed the arithmetic addition of serum RNA on serum DNA levels in
order to most accurately reflect intrahepatic cccDNA levels. However, this heterologous combination
also failed to produce a correlation between serum RNA and liver cccDNA in the group HBeAg(-)
chronically infected individuals [90]. Thus, concerning HBeAg(-) CHB, it is not clear whether or not
and in what context serum HBV RNA can serve as a biomarker during the natural course of infection.
Although correlation with intrahepatic cccDNA levels is poor, serum HBV RNA reflects viral activity
at some level, specifically the transcriptional activity of cccDNA. However, its biological and clinical
significance in the progression and pathogenesis of HBV infection require further investigation.

3.3. Biomarkers for the Prediction of Spontaneous HBsAg Clearance

Since 0.4–2.3% of HBe Ag negative inactive carriers clear HBsAg yearly [91–93], AASLD in 2018
suggested as practice guidance that HBeAg negative ICs should be tested annually for HBsAg [76].

In mostly Asian studies of patients infected with HBV genotypes B and C, it has been shown
that the levels and kinetics of HBsAg in serum are predictors of subsequent spontaneous HBsAg loss.
In one of the first studies, a threshold of baseline qHBsAg ≤ 100 IU/mL had 75% sensitivity and 91%
specificity to predict subsequent HBsAg seroclearance, which was not associated with baseline serum
HBV DNA [94]. Very low qHBsAg < 10 IU/mL was found to be an excellent predictor of its clearance,
with a hazard ratio (HR) 13.2 compared to levels above 1000 IU/mL [80]. In another study, a baseline
qHBsAg < 200 IU/mL resulted in a sensitivity of 84.2% and specificity 73.4% and qHBsAg kinetics,
that is an annual 0.5 log reduction, in a sensitivity of 62.8% and 88.7% specificity for the prediction
of HBsAg clearance, in a three year follow-up period [95]. More recently, in a cohort of patients with
3.08% annual HBsAg clearance rate, baseline qHBsAg levels predicted HBsAg loss (AUROC 0.965
(95% CI, 0.947–0.980)), with baseline levels < 10 IU/mL showing diagnostic an accuracy of 93.4%,
a sensitivity of 87.2%, a specificity of 94.8%, a positive predictive value of 79.1%, and a negative
predictive value of 97.0% [96]. In addition, a scoring system for the prediction of HBsAg seroclearance
in HBeAg-seronegative chronic hepatitis B patients with genotype B or C infection has been proposed
incorporating baseline qHBsAg and HBV DNA levels [97].

In a recent study, in patients infected mainly with HBV genotype D and 4.6% annual serum
HBsAg clearance, the combination of qHBsAg ≤ 100-IU/mL with HBV-DNA ≤ 200-IU/mL exhibited
good performance (87.5% DA, 84.2% sensitivity, 88.2% specificity, 66.7% PPV, and 95.2% NPV) for
the prediction of HBsAg loss. Baseline q HBsAg levels were independently correlated with HBsAg
clearance and were significantly lower (median 0.75 vs. 2.81 log10 IU/mL, p < 0.001) in patients who
cleared HBsAg. Yearly decline of qHBsAg was also found to be a predictive factor being higher in
patients who cleared HBsAg (median 0.22 vs. 0.020 log10 IU/mL/year, p < 0.001). HBcrAg was not
found to be a predictor of HBsAg loss [86].

3.4. Treatment Monitoring

The clinical target of treatment in HBeAg negative hepatitis is to stop the progress of liver
disease to cirrhosis and/or HCC. According to current guidance, therapy in HBeAg negative hepatitis
is recommended in patients with elevated ALT ≥ 2 × upper limit of normal (ULN) and HBV
DNA ≥ 2000 IU/mL and in cirrhosis irrespective of ALT [76]. These patients are in an immune
active state with liver inflammation, viral replication, and transcriptional activity or they already
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have severe liver damage. The preferred regimen is an antiviral nucleos(t)ide analog (NA) with high
genetic barrier (entecavir-ETV, tenofovir-TDF, and tenofovir alafenamide-TAF). Pegylated interferon
(Peg IFN), which is not safe in cirrhotics and contraindicated in patients with decompensated cirrhosis,
is used sometimes in patients with mild to moderate disease. Older NAs, in which the development of
resistance is a major issue, are still used in some cases or in some countries due to their lower price.

The measurable goals of treatment are biochemical response with normalization of ALT levels
in serum with viral remission with undetectable HBV DNA (complete viral response) in blood and
ultimately functional cure which corresponds to HBsAg clearance. HBV DNA is the crucial biomarker
used for monitoring the virologic response in treatment with NAs (Table 2).

Table 2. HBV virological on treatment monitoring and evaluation of results.

HBV DNA Comment

Primary non-response Drop < 1 log10 IU/mL Treatment week 12

Partial virological response Detectable and drop > 1 log10 IU/mL) Treatment week 24 (Low GB NA)
or 48 (High GB NA)

Complete virological response Undetectable Treatment week 48

Viral breakthrough 1
Increase >1 log10 IU/mL compared to nadir
achieved during treatment, or detectable >
100 IU/mL when previously undetectable

Confirmed in 2 measurements
1 month apart

Functional cure 2 Undetectable and HBsAg negative Anti-HBs +/-

GB: genetic barrier; NA: nucleos(t)ide analog; 1 In virological breakthrough, treatment compliance should
be considered. In compliant patients virological breakthrough is related to HBV drug-resistance; 2 HBsAg
seroconversion is considered the optimal endpoint of treatment, even if it does not correspond to complete
viral clearance and covalently closed circular DNA (cccDNA), while in low levels, is still found present in
infected hepatocytes.

HBV cccDNA is responsible for viral persistence during prolonged antiviral therapy [98,99] and
the production of pg HBV RNA reflects cccDNA transcriptional and replicative activity. Long term
treatment with NAs results in suppression and undetectability of serum HBV DNA levels, by the
inhibition of reverse transcription. This process does not directly affect the transcriptional activity
of cccDNA and the production of pgRNA, mRNAs, and viral proteins is continued by the residual
intrahepatic cccDNA [100]. Thus, HBV RNA pregenomes may accumulate in the hepatocytes during
treatment and be packaged and exported in virion-like particles in the serum. It was firstly shown that,
in patients receiving lamivudine therapy, HBV RNA becomes detectable in serum during treatment
and that is inhibited by interferon-alpha (IFN-α) [59,101]. It has also been postulated that serum HBV
RNA might be a predictor of early emergence of viral resistance mutations during NA therapy [55,102].
In one fairly recent study that included 12 HBeAg(-) NA treated patients, a positive correlation between
the levels of serum HBV RNA and HBV DNA as well as with qHBsAg was demonstrated and the
HBV RNA kinetics of HBeAg(-) and HBeAg(+) patients who achieved seroconversion were found
to be similar [65]. More recently, in a study on entecavir treated patients, including 22 HBeAg(-)
with genotype B or C HBV infection, it was shown that serum HBV RNA levels reflect intrahepatic
viral activity and are associated with liver histopathology [103]. It is thus obvious that more studies
are needed in HBeAg(-) infection in order to establish a possible role for HBV RNA in serum for
treatment monitoring.

3.4.1. Predictive Biomarkers for the Response to Pegylated-Interferon

Although only a limited number of HBeAg-negative patients receive pegylated-IFN (peg-IFN),
several parameters have been identified as baseline predictors of response to this treatment. Younger
age, female sex, higher ALT levels, and lower HBV DNA levels have been associated with greater
probability of a sustained virological and biochemical response [104]. HBV genotypes appear to have
an impact on sustained response (SR), with HBV genotype D infected patients being less likely to attain
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biochemical and virological remission enduring one year after treatment, compared to genotype B
(odds ratio (OD): 3.69, p = 0.003) or genotype C (OD: 5.46, p < 0.001). It is also known that treatment with
peg-IFN induces a decrease in qHBsAg which is much greater than in NA treatment [105]. Furthermore,
baseline pretreatment qHBsAg titer < 1250 IU/mL has also been associated with sustained off-treatment
viral response [106].

On treatment monitoring of HBV DNA and HBsAg have been proven to be essential since the
negative predictive value for SVR is 100% when no decrease in qHBsAg combined with HBV DNA
decrease of less than 2 log10 IU/mL are noted at week 12 of treatment [107]. Thus, a stopping rule
or motivation for continuing peg-IFN treatment has been established for HBeAg negative patients,
based on qHBsAg and HBV DNA measurements at baseline and 12 weeks after the initiation of
treatment [108]. Additionally, a second stopping rule at 24 weeks in cases of HBsAg > 7500 IU/mL
has been proposed to increase the cost effectiveness of treatment in HBeAg-negative patients with E
genotype [109]. In a Greek study with patients infected with genotype D virus, a qHBsAg decline of
greater than 10% at week 24 of peg-IFN treatment was associated with SR and when combined with the
12 week stopping rule almost two-thirds of patients who did not achieve SR could be identified [110].

In combination treatment with Peg-IFN and adefovir, HBeAg(-) patients who responded to
therapy were shown to have lower HBV-RNA levels than non-responders at all time points, there was
an independent association of low pretreatment HBV RNA and response to Peg-IFN and adefovir
(OD: 0.44; p = 0.019) and an earlier and steeper HBV RNA decline in the group of responders
(p = 0.028) [62].

3.4.2. Predictive Biomarkers for Functional Cure with Nucleos(t)ide Analog Treatment

The third generation NAs are potent and with high genetic barrier, therefore able in the majority
of cases to lead to viral suppression with undetectable HBV DNA in serum. In this case, the prediction
of NA treatment-related HBsAg clearance (the most closely related to cure outcome) has become an
important issue, although it is rare and accomplished after long duration of therapy [111,112].

Absolute values of qHBsAg could be an important predictive marker in HBeAg(-) NA treated
infection, as low levels at baseline (<730–1000 IU/mL) have been associated with functional
cure [113,114]. Also, the kinetics of qHBsAg during NA treatment has been studied. An early decline
in qHBsAg at six months of therapy [115], on-treatment yearly reductions > 0.166 log IU/mL [105],
and a >0.5 log IU/mL drop in the two years after viral response [116] were found to be predictive of
subsequent HBsAg clearance.

In a recent study, a qHBsAg reduction > 0.3 log IU/mL in three years of NA treatment had positive
and negative predictive values of 42% and 100% respectively, for the identification of patients achieving
low levels of HBsAg (<120 IU/mL). The annual decline of qHBsAg was also greater in patients
achieving low HBsAg levels (−0.257) than in those who did not (−0.057), (p < 0.001). No baseline
variables predicted functional cure under NA treatment [117].

3.4.3. Predictive Biomarkers for Discontinuation of Nucleos(t)ide Analogs

As stated in the recent EASL guidelines, NAs in HBeAg(-) patients should be administered long
term until HBsAg loss, but in selected cases of non-cirrhotic patients stopping treatment could be
considered after long term (>3 years) of on treatment complete viral response, but only if close post-NA
monitoring is feasible [40]. According to previous guidelines of the Asian Pacific Association for the
Study of the Liver (APASL), cessation of NAs can be considered in HBeAg(-) hepatitis, if HBV DNA
has been undetectable on three separate measurements, each at least six months apart [118,119].

When NA treatment is discontinued, sustained off-therapy virological response is defined based
on serum HBV DNA levels, which according to EASL 2017 guidelines should be less than 2000 IU/mL
for at least 12 months after end of treatment (EOT). In the majority of the cases, after stopping NAs, HBV
DNA becomes detectable in serum accompanied or not with increased aminotransferases. This flare
can be benign, even beneficial and in fact, following cessation of NA therapy, a high percentage of
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patients achieve HBsAg clearance after a transient increase in ALT and/or detectable viremia [120–122].
This is probably due to the restoration of the immune system which becomes capable of clearing the
replicating virus after the inhibition of the viral reverse transcriptase is withdrawn [123,124].

HBsAg levels at EOT appear to be an important predictor of HBsAg loss. In HBeAg negative
patients qHBsAg < 100 IU/mL at EOT has been found to be a significant independent factor for
subsequent functional cure [120,122,125]. Moreover, it was recently suggested that close qHBsAg
monitoring, at least every three months and more frequently according to ALT, after stopping NA
therapy, is important for the differentiation of benign flare that could lead to HBsAg seroclearance,
from a flare that would lead to further liver deterioration and needs to be treated. Decreasing qHBsAg
after the ALT peak appears to be related with benign flares and in those patients re-treatment could be
withheld [126].

On the other hand, prediction of virological and clinical relapse after NA discontinuation is also
extremely valuable. In an Asian study [56], including HBeAg(-) patients, serum HBV RNA levels
were found to be significantly associated with virological relapse after NA discontinuation. In one
study that included 33 patients who discontinued NA treatment after a long period of undetectable
serum HBV DNA, it was found that at the EOT 21 patients (63.64%) were serum HBV RNA positive.
Viral relapse was seen in 21 (100%) of the HBV RNA positive versus 3 (25%) of the 12 patients with
undetectable HBV RNA at the EOT (p = 0.001) [63]. Although these results are promising, it needs to be
noted that the majority of HBeAg(-) patients under effective NA treatment become serum HBV RNA
negative [62]. Nevertheless, it appears that serum HBV RNA may prove to be a predictive biomarker
for the safe discontinuation of NA therapy, primarily as an indicator of virological and possibly clinical
relapse, since the detection HBV RNA in serum is associated with the risk of viral rebound.

3.5. Hepatocellular Carcinoma

Hepatocellular carcinoma (HCC) is a frequent and life-threatening complication of HBV chronic
infection even in HBe antigen negative phases [127]. Liver cirrhosis and HBV viremia (positive HBV
DNA) are the critical factors for the development of HCC in chronically infected individuals, even on
long-term antiviral treatment [128]. In fact, low level viremia (<2000 IU/mL) under treatment with
potent NAs has been associated with a higher risk of HCC than in maintained complete virological
response (HR 1.98, 95% CI 1.28–3.06, p = 0.002) [129].

Although in cases of HCC, serum HBV DNA levels do not have a strong association with
intrahepatic viral load, which also differs between the areas of tumor and surrounding non tumor
tissue [130], the level of HBV viremia has been shown to be an independent HCC risk factor
(HBV DNA ≥ 5.0 vs. < 5 log IU/mL, HR 3.78, 95% CI 1.20–11.9, p < 0.02) [131].

In a relatively recent meta-analysis, high qHBsAg was found to be associated with HCC.
Unfortunately, pooled data from only two studies that fulfilled the criteria were used and showed that
the risk of HCC occurrence in patients with high HBsAg levels compared to low HBsAg levels [132,133]
was significant (OR: 2.21; 95% CI, 1.52–3.22; p < 0.01) [134].

More recently, in a group of CHB patients who were not treated with NAs several viral biomarkers
including HBV DNA, HBV genotype and HBcrAg, but not qHBsAg, were found to be associated with
the incidence of HCC. Specifically, HBcrAg was independently associated with HCC development
at levels > 2.9 log U/mL (HR, 5.05; 95% confidence interval (CI), 2.40–10.63) was better predictive
marker than HBV DNA [135]. In another study involving patients with undetectable HBV DNA due
to effective antiviral therapy, HBcrAg ≥ 7.8 kU/mL was also found to be predictive for HCC with
OR 3.27 in the total group and higher at 5.95 in non cirrhotics [136].

3.6. Future Therapies and Viral Biomarkers

Current treatment of HBeAg negative chronic hepatitis with potent NAs with high genetic barrier
for resistance, is highly effective in terms of viral suppression but does not lead to viral elimination.
New drugs and therapeutic strategies are emerging that target different steps of the virus life cycle
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and enhance the immune response against HBV, aiming at complete viral clearance [137]. It is obvious
that treatment monitoring and evaluation of response to future therapies would require increased
sensitivity of the current assays of viral molecular markers, for a negative result to reflect complete
viral eradication from the liver. Moreover, according to the mode of action of the drug (inhibition of
viral entry, capsid formation, gene expression, cccDNA formation and stability, etc.) [138] it is possible
that other drug specific viral biomarkers will emerge.

4. Conclusions

Viral specific biomarkers are used for the diagnosis and monitoring of HBeAg negative hepatitis.
Serology and HBV DNA quantification are the established and widely used tests. The implementation
of HBsAg quantification is expanding for monitoring the disease in its natural course and on treatment.
Other biomarkers, including HBcrAg and HBV RNA, are still under evaluation.
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