
 

www.aging-us.com 6565 AGING 

INTRODUCTION 
 

Tumors are complex ecosystems characterized by 

extensive heterogeneity which plays a critical role in 

tumor progression and treatment response [1]. The 

tumor microenvironment (TME) consists of malignant 

cells and genetically stable stromal cells. Cancer cells 

are heterogeneous because of genetic diversification. 

Similarly, stromal cells also form heterogeneous 

cellular compositions by combining many different cell 

types with a range of biological roles [2]. Tumor 

cellular diversity is both a challenge and an opportunity 

for cancer diagnosis and treatment. Increasing cancer 

therapies targeting the TME such as immunotherapies 

have been developed to complement the traditional 
treatment options. However, TME diversity influences 

treatment response of targeted agents resulting in 

inconsistent outcomes among patients [3]. It is therefore 
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ABSTRACT 
 

Tumors are complex ecosystems harboring multiple cell types which might play a critical role in tumor 
progression and treatment response. The endometrial epithelial cell identities and immune microenvironment 
of endometrial carcinoma (ECC) are poorly characterized. In this study, a cellular map of endometrial carcinoma 
was generated by profiling 30,780 cells isolated from tumor and paratumor tissues from five patients using 
single-cell RNA sequencing. 7 cell types in lymphocytes, 7 types in myeloid cells and 3 types in endometrial 
epithelial cells were identified. Distinct CD8+ T cell states and different monocyte-macrophage populations 
were discovered, among which exhausted CD8+ T cells and macrophages were preferentially enriched in tumor. 
Both CD8+ T cells and macrophages comport with continuous activation model. Gene expression patterns 
examination and gene ontology enrichment analysis of endometrial epithelial cells revealed 3 subtypes: stem-
like cells, secretory glandular cells and ciliated cells. Overall, our study presents a view of endometrial 
carcinoma at single-cell resolution that reveals the characteristics of endometrial epithelial cells in the 
endometrium, and provides a cellular landscape of the tumor immune microenvironment. 
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essential to distinguish the specific cellular components 

in terms of morphological and phenotypic profiles as 

well as characterize the interactions between the diverse 

cell types.  

 

Endometrial cancer (EC) is a common gynecologic tumor 

whose incidence is increasing [4]. Endometrioid 

carcinoma (ECC) is the most common type of 

endometrial carcinoma, accounting for approximately 

85% of cases [5]. Most ECC patients can be diagnosed at 

an early stage and be treated successfully after 

hysterectomy. However, some young patients may have a 

need of fertility preservation, so conventional surgical 

treatment is not the best option [6, 7]. In addition, some 

patients are too old to tolerate surgery or its side effects. 

As such, more effort needs to be put into promoting trials 

that will improve more treatment options for patients. 

Moreover, novel biomarkers for prediction of treatment 

responses and clinical decisions are also needed. TME is 

a fertile ground for the development of novel therapies 

and is thus a target of expanding EC studies [8]. For 

example, pembrolizumab demonstrated a favorable 

safety profile and durable antitumor activity in a 

subgroup of patients with PD-L1 positive endometrial 

cancer as an anti PD-1monoclonal antibody [9]. Apart 

from tumor PD-L1 expression correlating with 

pembrolizumab response, other factors from subsets of 

malignant cells and the microenvironment also play 

essential roles [10]. Illuminating the spectrum of immune 

and other cell states of EC can therefore be helpful in 

understanding how the TME influence tumor behavior. 

 

Single-cell RNA-sequencing (scRNA-seq) technology 

enables cell population profiling of tumors at single-cell 

resolution [11]. For instance, one recent study on lung 

tumor assembled a comprehensive catalog of the 

complex TME by characterizing the phenotype and co-

optive behavior of stromal cell. These findings shed new 

light into lung cancer biology [12]. Advances in single-

cell sequencing technologies such as those of aqueous 

droplets have enabled researchers to simultaneously 

sequence thousands of cells in a biopsy sample to obtain 

large datasets [13]. Further to this, multiple 

bioinformatics and algorithmic approaches have been 

developed to analyze these datasets as well as identify 

cell types by clustering scRNA-seq data while reducing 

their technological noise [14]. These advancements have 

allowed for the assessment of intra- and inter-tumoral 

heterogeneities of both stromal and cancer cell types. 

Moreover, they also help identify the states of these cells 

in the complex EC tumor cellular ecosystem.  

 

In this study, bioinformatics analysis of the single-cell 
transcriptome was done.  This data was used to reveal 

complexities of the endometrioid carcinoma’s (ECC) 

immune and the endometrial epithelial cellular 

composition as well as their differences with their 

counterparts residing in paratumor tissues. 

 

RESULTS 
 

Single-cell RNA-seq and cell typing in endometrial 

carcinomas and paratumor samples  
 

Focus was put on endometrioid carcinomas to explore 

the cellular diversity in ECC because they are the most 

common type of EC [5]. 20,008 cells collected from 5 

primary endometrial carcinomas were profiled using the 

single-cell RNA-seq. For comparison, 11,510 cells from 

the paratumor tissues (1 cm away from the tumor 

boundary, Supplementary Figure 1A) of three patients 

were also profiled (Figure 1A–1D). For patients EC4 

and EC5, the tumor sizes were too big to acquire the 

paired paratumor tissues. The five patients ranged from 

42 to 68 years old, with grade 1, FIGO stage I tumors 

(except for EC5 with FIGO stage II tumor) and without 

lymph node metastasis. In all patients, PTEN expression 

was negative, POLE display was intact, and the 

mismatch repair (MMR) proteins expression was 

positive. However, for EC5, one of the MMR proteins 

(MSH6) expression was negative (Figure 1B, 1C and 

Supplementary Figure 1B). Paratumor and tumor 

samples were obtained after resection and immediately 

processed into single-cell suspensions of enriched 

viable cells. The corresponding cell populations were 

then subjected to 3′ mRNA single-cell transcriptome 

analysis (scRNA-seq) using the 10x Genomics 

Chromium platform (Figure 1A). The average mean 

reads per cell was 199,328, and the average median 

number of genes detected per cell was 2,571 

(Supplementary Figure 2A). After quality filtering using 

the seurat package, 19,505 cells from tumor samples 

and 11,275 cells from paratumor samples remained for 

downstream analysis (Figure 1D). Graph-based 

clustering of the informative principle components (n = 

20) was then done to classify cellular compositions. 

Known marker genes were then used to identify the 

major cell types such as epithelial cells, endothelial 

cells, fibroblasts, T cells, B cells and myeloid cells in 

each sample (Figure 1E, 1F). Variations in the number 

of cell type composition across tumors were observed 

(Figure 1G and Supplementary Figure 2B). For 

example, the fibroblasts fractions constituted 46% and 

22% in EC1-P and EC1-T respectively and only less 

than five percent (< 5%) in other samples (Figure 1G 

and Supplementary Figure 2B). Interestingly, we found 

that p16 was expressed in the spindle-shaped stromal 

cells while not commonly in glandular epithelial cells in 

patient EC3 (Supplementary Figure 1B, 1C). p16 is 
commonly used as a biomarker for diagnosing 

gynecological malignancies [15]. Differences in the p16 

expression status varied according to the degree of 
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Figure 1. Diversity of cell types in each sample from ECC patients delineated by single-cell transcriptomic analysis. (A) 

Experimental workflow of scRNA-seq procedure for ECC tumors and paratumor tissues. (B) Hematoxylin and eosin (HE) staining on paratumor 
and tumor slides of the 5 ECC patients. Scale bars, 100 mm. (C) Samples obtained from 5 EC patients and clinicopathological characteristics of the 
5 patients, more details are provided in Supplementary Figure 1B. (D) The remaining cell fraction (left bar plot) and cell number (right bar plot) 
after quality control and filtering step for each biopsy. (E) The t-distributed stochastic neighbor embedding (t-SNE) plot demonstrates the major 
cell types in each sample. (F) Expression of representative marker genes of the major cell types defined in EC samples. (G) The percentage of cell 
types assigned to each sample in (E). Pie charts of cell-type fractions for tumor-infiltrating immune cells of each patient, colored by cell type. 
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malignancy and histological type [16]. Endometrioid 

carcinomas usually show patchy p16 expression on the 

glandular epithelium, while stromal p16 expression is 

uncommon [17]. The spindle-shaped stromal cells are 

mainly fibroblasts, and the higher fibroblasts fraction of 

patient EC3 might have resulted from uncommon p16 

expression. For patient EC4, the big tumor size and a 

high Ki67 index of 30% may be related to its low 

immune cell fraction and high epithelial cell fraction 

(Supplementary Figure 1B, 1C). For patient EC5, one of 

the mismatch repair (MMR) proteins MSH6 expression 

was negative, suggesting an MSI type (Supplementary 

Figure 1B, 1C). Both MSI-positive endometrial cancers 

and POLE-mutated endometrial cancers have high 

neoantigen loads and immunogenic phenotypes [18, 

19], which may explain the high immune cell fraction in 

EC5. 

 

Data from 3 paratumor samples and 5 tumor samples 

was merged respectively to enable systematic 

comparison across patients. The merged data was then 

used to performed principle component analysis. PCA 

analysis revealed that there were 25 clusters in 

paratumor and 30 clusters in tumor datasets (Figure 

2A, 2B and Supplementary Figure 3A, 3B). The 

clusters were annotated by the expression of known 

marker genes as epithelial cells (KRT8, KRT18, 

EPCAM), endothelial cells (CDH5, VWF, ENG), 

fibroblasts (COL3A1, COL6A2, DCN), T cells (CD2, 

CD3D, CD3E, CD3G), B cells (CD79A, CD79B, 

CD19) and myeloid cells (CD14, CD68, LILRB4) 

(Figure 2A–2E). Immunohistochemistry (IHC) 

staining also performed to confirm the existence of 

different cell types (Figure 2F). Variations in the 

fraction of different cell types across tumors were 

observed (Figure 2G, 2H). Cell-to-cell correlations 

constructed from gene expression of the stromal single 

cells revealed separation of cells by cell-types  

while not by sample origin, suggesting that most 

stromal cell type populations were shared by different 

patients (Supplementary Figure 3C) [20]. Epithelial 

cells, T cells and myeloid cells were present in all 

patients, while the fibroblasts and endothelial cells 

showed relatively low fractions (Figure 2I). The low 

fractions of fibroblasts and endothelial cells may result 

from their well-known poor dissociation efficiency 

following tissue disaggregation [12], with fibroblasts 

and endothelial cells being more embedded in 

extracellular matrix and basement membrane than 

immune cells, and hence more difficult to dissociate. 

The percentage of myeloid cells was increased 

significantly in tumor samples (Figure 2J,  

2K). Enrichment of myeloid cells in tumor samples 
was also improved by IHC staining of the ECC tumor 

and paratumor sections with CD68 antibody (Figure 

4C, 4D).  

Macrophages were strongly enriched in the tumor 

and show a continuous range of macrophage 

activation states  

 

Lymphoid and myeloid cells are immune cells that are 

clinically impactful while the ECC malignant cells 

originate from endometrial epithelial cells [21]. As 

such, these three major cell types were further analyzed 

in-depth by identifying sub-clusters within each of 

them. 

 

After re-clustering, 878 myeloid cells in 10 clusters and 

3,966 myeloid cells in 13 clusters were detected in 

paratumor and tumor samples respectively (Figure 3A, 

3B and Supplementary Figure 4A, 4B). Within the 

myeloid cells, four distinct meta-subsets: monocytes, 

macrophages, dendritic cells (DCs) and mast cells were 

also identified. Overall, the percentage composition of 

monocytes, dendritic cells and mast cells were higher in 

Paratumor than in Tumor i.e. 24.5% (215 of 878) vs 

2.2% (86 of 3,966), 36.2% (318 of 878) vs 12.7% (504 

of 3,966) and 3.1% (27 of 878) vs 0.6% (24 of 3,966), 

respectively. On the other hand, the percentage 

composition of macrophages was higher in Tumor than 

in Paratumor i.e. 84.5% (3352 of 3,966) vs 36.2% (318 

of 878), respectively (Figure 4A and Supplementary 

Figure 4C–4E). 2 subtypes in monocytes were further 

analyzed: CD14+S100A12+ population 1 [22] (cluster 2, 

6 in Paratumor, and cluster 10 in Tumor) was 

transcriptionally similar to “classical” monocytes, and 

FCGR3A+ population 2 (cluster 8 in Paratumor) was 

similar to “nonclassical” monocytes (Figure 3C–3E) 

[23]. DCs were further subdivided into cDC1 (cross-

presenting dendritic cells; cluster 5 in Paratumor and 

cluster 11 in Tumor; CLEC9A+ and XCR1+), cDC2 

(cluster 1 in Paratumor and cluster 1 in Tumor; CD1C+) 

and plasmacytoid DC (pDC; cluster 4 in Paratumor and 

cluster 13 in Tumor; LILRA4+ and IL3RA+) (Figure 3C–

3E). Three clusters (0, 3 and 7 in Paratumor) 

corresponded to paratumor macrophages while seven 

clusters (0, 2, 4, 5, 6, 7 and 8 in Tumor) corresponded to 

tumor macrophages (Figure 3C–3E). ECC infiltrating 

myeloid subtypes mostly consisted of cells from three 

or more patients (Supplementary Figure 4D). We 

evaluated whether the relative presence of ECC 

infiltrating myeloid subtypes impacts patient survival 

using TCGA-UCEC data. We found that tumor 

infiltrating macrophages were associated with increased 

overall survival (Figure 3F). The macrophages showed 

strongly enrichment in the tumor samples (Figure 4B). 

Similarly, their enrichment was also improved by IHC 

staining of EC tumor and paratumor sections with 

CD163 antibody (Figure 4C, 4E), while no significant 
difference was showed by CD8 staining (Figure 4C, 

4F). This was an indication that macrophages exert an 

important effect on tumor behavior. 
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Figure 2. Unbiased characterization of multiple cell types from integrated tumor and paratumor samples. (A, B) t-SNE projection 
of the 11,275 cells from 3 integrated paratumor samples (A) and 19,505 cells from 5 integrated tumor samples (B), color-coded by their 
associated cluster (left) or the assigned cell type (right). (C, D) Expression of marker genes of each cell type defined in A and B. (E) Heatmap 
showing the expression levels of known markers of epithelial cells epithelial cells (KRT8, KRT18, EPCAM), endothelial cells (CDH5, VWF, ENG), 
fibroblasts (COL3A1, COL6A2, DCN), T cells (CD2, CD3D, CD3E, CD3G), B cells (CD79A, CD79B, CD19) and myeloid cells (CD14, CD68, LILRB4) in 
Paratumor (left panel) and Tumor (right panel). (F) Representative images of epithelial cells, endothelial cells, fibroblasts, T cells, B cells and 
myeloid cells of EC4, after IHC staining with CKpan, CD31, VIM, CD3, CD20 and CD68 antibodies, respectively. Scale bars, 80 mm. (G, H) For each 
cell type: the cell fractions and numbers originating from each of the 3 paratumor and 5 tumor samples are shown. (I) The fractions of the six 
cell types in paratumor and tumor samples (left), and in each patient (middle and right). (J, K) The percentages of myeloid cells of all cells (J) 
and immune cells (K) in paratumor and tumor samples. Data were analyzed using a students’ t-test, *P < 0.05, **P < 0.01. 
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Figure 3. Myeloid cell clusters in paratumors and endometrial tumors. (A, B) t-SNE plot of 936 myeloid cells in Paratumor (A) and 

4,152 myeloid cells in Tumor (B), color-coded by their associated cluster (left) or the assigned subtype (right). (C, D) t-SNE plot, color-coded 
for relative expression (lowest expression to highest expression, gray to red) of marker genes for the myeloid subtypes in Paratumor (C) and 
Tumor (D). (E) Heatmaps created using known gene expression profiles of myeloid cells in Paratumor (left panel) and Tumor (right panel). The 
identity of each cluster was assigned using known markers. (F) The overall survival curves based on TCGA-UCEC data (n = 549 patients), 
stratified for the average expression (binary: high versus low) of tumor myeloid cell marker genes. 
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Based on these findings, further analysis of the 

macrophages was done. Three distinct populations in 

macrophages; OLR1+ macrophage population 1 (cluster 0 

in Paratumor, and cluster 4 in Tumor) [22], C1QC+ 

macrophage population 2 (cluster 3 in Paratumor, and 

cluster 0, 2, 5, 6, 7 in Tumor) [24], and MARCO+ 

macrophage population 3 (cluster 7 in Paratumor, and 

cluster 8 in Tumor) [25, 26] were observed (Figure 4G). 

As the cell states from population 1, 2 to 3, key 

macrophage-associated genes, such as APOE and 

complement genes (C1QA, C1QB, and C1QC) were 

broadly expressed across clusters in continuous gradients. 

The expression of genes such as CD14, FOS, HLA-

DRB5, and IL-1B decreased, while the expression of 

CD68 and APOE increased (Figure 4G). The Monocle 2 

algorithm was employed to characterize macrophages. 

Results indicated that macrophages comport with a 

continuous activation model that began with the OLR1+ 

macrophages, followed by C1QC+ macrophages and 

ended with MARCO+ macrophages (Figure 4H). OLR1+ 

early activated macrophages were enriched with 

monocyte activation genes whereas MARCO+ 

macrophages were enriched with macrophage activation 

genes (Figure 4I). Profiling of macrophages in terms of 

M1 and M2 signatures revealed that activation of 

macrophages was negatively correlated with M1 level but 

there was no association with M2 level (Figure 4I). 

Characterization of macrophages in terms of pro-

inflammatory and anti-inflammatory signatures showed 

that activation of macrophages was also negatively 

correlated with enrichment of pro-inflammatory factors 

but it was not associated with the level of anti-

inflammatory factors (Figure 4I). These results support 

the idea that macrophage activation in the tumor 

microenvironment does not comport with the polarization 

model wherein M1 and M2 activation states exist as 

mutually exclusive discrete states, consistent with the 

study by Azizi et al in 2018 [26]. These formed the basis 

for further examination into the role of monocyte/ 

macrophage subsets in endometrial carcinomas. 

 

Tumor T cells downregulate immune activation 

pathways and tumor CD8+ T cells show higher 

exhaustion level 

 

Tumor-infiltrating lymphocytes (TILs) such as CD8+ T 

cells are essential for successful immune surveillance and 

tumor killing. In this study, gene expression profiles of 

distinct lymphocyte populations were examined to yield a 

comprehensive understanding of the ECC TIL landscape. 

Through the scRNA-seq data, 2,896 lymphocytes in 11 

clusters and 3,591 lymphocytes in 11 clusters were 

detected in paratumor and tumor samples, respectively 

(Figure 5A, 5B and Supplementary Figure 5A). The 

lymphocyte repertoire was categorized into two broad 

groups: conventional T cells and innate lymphoid cells 

(Supplementary Figure 5B). Conventional T cells 

included conventional CD4+ T cells (cluster 4 in 

Paratumor and cluster 3, 8, 11 in Tumor; CD4+), 

regulatory T cells (cluster 8 in Paratumor, and cluster 5 in 

Tumor; FOXP3+), CD8+ T cells (cluster 2, 5, 10 in 

Paratumor, and cluster 0, 1, 2 in Tumor; CD8A+) (Figure 

5C–5E and Supplementary Figure 5C). Innate-like 

lymphoid cells included natural killer T cells (NKT cells) 

(cluster 11 in Paratumor, and cluster 10 in Tumor; 

FGFBP2+ and FCGR3A+) [12], natural killer cells 

(cluster 0, 6, 12 in Paratumor, and cluster 7 in Tumor; 

NCAM1+ and GNLY+) and type 3 innate lymphoid cells 

(ILC3) (cluster 1 in Paratumor, and cluster 4 in Tumor; 

NCR2+) (Figure 5C–5E and Supplementary Figure 5C). 

Cluster 3 in Paratumor and Cluster 6 in Tumor had 

proliferating cells (MKI67+) of various lymphocyte 

lineages (Figure 5C–5E and Supplementary Figure 5C). 

Although the number of EC infiltrating lymphocytes 

showed variation across both the tissues and patients, 

ECC infiltrating lymphocyte subtypes mostly consisted 

of cells from three or more patients (Figure 6A and 

Supplementary Figure 5D–5F). We evaluated whether 

the relative presence of ECC infiltrating lymphocyte 

subtypes impacts patient survival using TCGA-UCEC 

data. We found that 3 tumor infiltrating lymphocyte 

subtypes (CD8+ T cells, regulatory T cells and type 3 

innate lymphoid cells) were associated with increased 

overall survival (Figure 5F). A comparison of the 

pathway expression levels between paratumor and tumor 

T cells revealed pervasive changes. The expression levels 

were mostly coherent across four T-cell types detected. 

The T-cell types had an increased response to unfolded 

protein and neutrophil activation, while decreased 

lymphocyte differentiation and activation in tumor 

samples (Figure 6B and Additional File 1). 

 

Moreover, gene expression programs for distinct cell 

functional status in T cells were analyzed. These 

expression programs included naive, costimulatory, 

regulatory, exhaustion and cytotoxicity expression 

signatures (Figure 5E). CD8+ T cells could be further 

identified into four distinct cell states. Early activated 

(pro-memory) CD8+ T cells expressed marker genes 

IL7R [27, 28] (cluster 5 in Paratumor) or XCL1 [29] 

(cluster 1 in Tumor) while with low expression of 

activated makers such as HLA-DR (Figures 5E and 6C). 

Effector memory CD8+ T cells (cluster 2 in Paratumor) 

were characterized by the expression of GZMH and 

other activated cytotoxic genes associated with effector 

functions (Figures 5E, 6C and 6D). GZMK+ CD8+ T cells 

[30] (cluster 2 in Tumor) represented an intermediate 

state between the effector and exhausted T cells. They 

showed high expression of activated makers like 
effector cells, while also shared a few common genes 

with exhausted cells such as PDCD1 (Figures 5E, 6C, and 

6D). Exhausted (terminal differentiation) CD8+ T cells 
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Figure 4. Enrichment of macrophages in endometrial tumors and distinct macrophage populations. (A) The fractions of myeloid 
subtypes in Paratumor and Tumor. (B) The percentage of macrophages in paratumor and tumor tissues. *P < 0.05, Student’s t test. (C) IHC 
staining images of CD68, CD163 and CD8 in paratumor and tumor slides isolated from endometrial carcinoma sections. Scale bars, 80 μm. (D–
F) Quantification of the numbers of CD68+, CD163+ and CD8+ cells as presented in (C) Data are means ± SEM (30 paratumor sections and 40 
tumor sections were analyzed). **P <0.01 versus paratumor group (Student’s t-test). (G) Violin plots displaying the expression profile of 
representative genes related to monocyte-macrophage lineage across the macrophage clusters in Paratumor (left panel) and Tumor (right 
panel). The y axis shows the normalized expression. (H) Pseudo-time analysis of 3 macrophage populations from Paratumor (left) and Tumor 
(right) inferred by Monocle2. Each point corresponds to a single cell, and each color represents a macrophage population as indicated. (I) 
Violin plots indicating relative expression levels of monocyte activation, macrophage activation, M1, M2, pro-inflammation and anti-
inflammation gene signatures across the macrophage clusters in Paratumor (left panels) and Tumor (right panels). 
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Figure 5. Lymphoid cell clusters in paratumors and endometrial tumors. (A, B) t-SNE plot of 3,223 lymphoid cells in Paratumor (A) 

and 3,712 lymphoid cells in Tumor (B), color-coded according to their associated cluster (left) or the assigned subtype (right). (C, D) t-SNE 
plot, color-coded to show the relative expression (gray to red) of marker genes for the lymphoid subtypes in Paratumor (C) and Tumor (D). (E) 
Heatmap created using known gene expression profiles of lymphoid cells in Paratumor (left panel) and Tumor (right panel). The gene 
expression profiles include marker genes for cell type and naive, costimulatory, regulatory, exhaustion and cytotoxicity expression signatures. 
The identity of each cluster was assigned with known markers. (F) The overall survival curves based on TCGA-UCEC data (n = 549 patients), 
stratified for the average expression (binary: high versus low) of tumor lymphoid cell marker genes. 
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(cluster 10 in Paratumor and cluster 0 in Tumor) were 

enriched with exhaustion genes CTLA4, PDCD1 and 

HAVCR2 (Figures 5E, 6C and 6D). Evaluation of the 

expression of T cell activation and exhaustion genes of 

distinct populations revealed that the exhaustion 

program was relative to that of activation genes (Figure 

6E). This observation was consistent with the 

“activation-dependent exhaustion expression program” 

reported previously [31, 32]. A comparison of the 

expression of exhaustion gene sets of overall paratumor 

and tumor CD8+ T cells showed that tumor cells display 

higher “exhaustion scores” (Figure 6F, 6G). These 

results provided a baseline description of the 

lymphocyte transcriptomes in endometrial carcinomas. 

 

Endometrial epithelial cells  

 

The human endometrium forms the uterine cavity. It is a 

highly regenerative organ that undergoes menstrual 

cycle in response to the ovarian hormones, estrogen and 

progesterone [33, 34]. After puberty, the endometrium 

is functionally divided into two major zones, the basalis 

and the functionalis. The functionalis is composed of 

luminal epithelium, loose stroma and the superficial 

glands. It is shed at menses. On the other hand, the 

basalis resides at the endometrial/myometrial interface 

and contains compact stroma and the deeper glands. It is 

the source for the regeneration of the functionalis layer 

[33]. The endometrial epithelial cells consist of 

secretory cells and ciliated cells. It is also proposed that 

there exist progenitor/stem cells that reside in the 

basalis layer [35]. 

 

Endometrial carcinoma arises from epithelial cells. 

Therefore, presumably the epithelial compartment 

contains the malignantly transformed tumor cells. To 

distinguish the malignant status of cells, we calculated 

large-scale chromosomal copy number variation (CNV) 

for each cell type based on the average expression 

patterns across intervals of the genome (See Materials 

and Methods). We found that epithelial cells exhibited 

remarkably higher CNV levels than other types of cells 

(Figure 7A, 7B). The epithelial cells were further 

divided into five groups (Figure 7A, 7C). All five 

groups showed high expression of epithelial genes 

(Figure 7D). Specifically, group 3 showed a low CNV 

level and high expression of ribosomal genes such as 

RPL5 which are enriched in stem-like subtype; group 2 

showed a high CNV level and high expression of 

ciliated cell-associated genes such as FOXLJ1; group 1 

showed a moderate CNV level and high expression of 

secretory glandular-associated genes such as MUC5B; 

group 4 showed an intermediate status between G3 and 
G1 with both a moderate expression of RPL5 and 

MUC5B; group 5 showed an intermediate status 

between G1 and G2 with both a moderate expression of 

FOXLJ1 and MUC5B (Figures 7D, 8C and 8D). The 

CNV level related to epithelial cell subtypes was 

consistent with the developmental trajectory revealed by 

Pseudo-time analysis (Figure 8G). Gene expression 

differences were compared in the epithelial cells of the 

tumor samples vs. their paratumor counterparts in EC1-

3. We identified 227 differentially expressed genes 

(Figure 7E and Additional File 2). The gene set 

enrichment analyses showed that genes up-regulated in 

tumor samples were mainly enriched for cancer-related 

functions, such as epithelial cell proliferation and 

enhanced RNA polymerase II (Pol II) function, 

suggesting the malignant state (Figure 7F). In contrast, 

genes expressed at higher levels in the paratumor 

counterparts were mainly related to negative regulation 

of proteolysis, and its enzymes—endopeptidase and 

peptidase activity (Figure 7F). Proteolytic enzymes are 

active in the tumor microenvironment, and are believed 

to be related to tumor progression [36, 37]. Therefore, 

the inhibition of endopeptidase and peptidase activity in 

paratumor tissues is well understood. 

 

Further analysis was performed to better understand the 

cell subtypes in epithelial cells. 3,403 and 9,789 

epithelial cells in paratumor and tumor samples 

respectively were profiled. The t-SNE projection 

revealed that there were 17 clusters in Paratumor and 23 

clusters in Tumor (Figure 8A, 8B). Examination of gene 

expression patterns and gene ontology enrichment 

analysis were done to identify the cluster characteristics 

and to study the cluster function in each cluster (Figure 

8C–8F). The cell clusters were then assigned to three 

epithelial subtypes using known markers obtained from 

the published literatures [35, 38, 39] (Figure 8C, 8D). 

However, a large number of cells in tumor samples 

could not be assigned to any of the three epithelial 

subtypes. Majority of these clusters originated from one 

patient (EC4) indicating that their marker genes were 

patient specific (Figure 8B). Stem-like cells, secretory 

glandular cells and ciliated cells were identified in both 

paratumor and tumor samples (Figure 8C, 8D). Ciliated 

cells expressed high levels of markers such as the 

ciliated marker TPPP3, the radial spoke gene RSPH1 

and the dynein assembly genes DNAAF1 and 

ZMYND10 related to motile cilia and ciliogenesis as 

well as transcription factor FOXJ1 (Figure 8C, 8D). 

Gene ontology analysis of the cluster specific genes 

further revealed terms related to cilia organization, 

assembly and movement for the ciliated subtype (Figure 

8E, 8F). Secretory glandular cells highly expressed 

genes related to epithelial cell development and 

differentiation (PODXL, LGR5, CLDN10, SLC26A2 

and S100A9) and gland morphogenesis (TNC and 
LAMA3) (Figure 8C, 8D). Other than epithelial cell 

development and gland development, gene ontology 

analysis of secretory glandular cell cluster also showed 
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Figure 6. Subtype marker genes expressed in lymphoid cells and functional genes expressed in CD8+ T cells. (A) The fractions of 

lymphoid subtypes in Paratumor and Tumor. (B) Enriched pathway activities for up- (red) and down- (blue) regulated genes, between T cells 
from Tumor versus Paratumor. Color key from white to red indicates z-score of -Log10(P value), color key from white to blue indicates z-score 
of Log10(P value). (C) t-SNE plot, color-coded to show the relative expression (gray to red) of marker genes for the 3 states of indicated CD8+ T 
cells. (D) Violin plots displaying the expression profile of cytotoxic and exhausted genes of the CD8+ T cell clusters in Paratumor (left panel) 
and Tumor (right panel). (E) Violin plots indicating relative expression levels of T cell activation and exhaustion gene signatures across the 
CD8+ T cell clusters in Paratumor (left panel) and Tumor (right panel). (F, G) Violin plots indicating relative expression levels of T cell activation 
(F) and exhaustion (G) gene signatures in different tissue types. 
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terms related to extracellular matrix, cell adhesion 

molecules and leukocyte migration indicating that they 

might interact with surrounding stromal cells (Figure 

8E, 8F). Stem-like cells did not express specific marker 

genes but showed elevated expression of ribosomal 

genes indicating that there was presence of 

stem/progenitor cells (Figure 8C, 8D) [40, 41]. The 

Monocle 2 algorithm was performed on the three 

 

 
 

Figure 7. CNV landscape of epithelial cells. (A) Heatmap showing large-scale CNVs for individual cells (rows) of eight samples from five 

patients. (B) Violin plots showing distributions of CNV scores among different cell types. (C) Violin plots showing distributions of CNV scores 
among different CNV groups. (D) Violin plots showing expression of epithelial subtype-related genes among different CNV groups. (E) 
Differential expressed genes detected between tumor samples vs. their paratumor counterparts from EC1-3. (F) Representative enriched GO 
terms for up- (red) and down- (blue) regulated genes as displayed in E, respectively.  



 

www.aging-us.com 6577 AGING 

 
 

Figure 8. Endometrial epithelial cell clusters in paratumors and endometrial tumors. (A, B) t-SNE plot of 3,403 endometrial 

epithelial cells in Paratumor (A) and 9,789 endometrial epithelial cells in Tumor (B), color-coded by their associated cluster (left) or the 
assigned subtype (right). (C, D) Heatmap analysis using known gene expression profiles of endometrial epithelial cells from Paratumor (C) and 
Tumor (D). The identity of each cluster was assigned by known markers recently reported. (E, F) The enriched gene ontology terms for genes 
with specific expression in each endometrial epithelial cluster in Paratumor (E) and Tumor (F). Color key from blue to red indicates z-score of -
Log10(P value). (G) Pseudo-time analysis of endometrial epithelial cells from Paratumor (left) and Tumor (right) inferred by Monocle2. Each 
point corresponds to a single cell, and each color represents an endometrial epithelial subtype as indicated. 
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epithelial subtypes to establish their developmental 

trajectories. Pseudo-time analysis revealed that  

the different subtypes were formed in a relative 

developmental trajectory that began with the stem-like 

cells, followed by secretory glandular cells and ended 

with ciliated cells. This indicated that there was a 

possibility that stem-like cells could transform to 

secretory glandular cells and then to ciliated cells 

(Figure 8G). This result is similar to the mucociliary 

differentiation trajectory of nasal epithelial cultures 

published by Ruiz Garcia et al. [42]. These results 

extended the human endometrial epithelial 

transcriptional signature. 

 

DISCUSSION 
 

The host immune system can play paradoxical roles in 

tumor outgrowth. On one hand, tumor infiltrating 

lymphocytes (TILs) especially the CD8+ T cells are 

essential for tumor killing. On the other hand, myeloid 

compartment especially the macrophages exert tumor-

promoting activities [43]. Despite the development of 

cancer immunotherapies such as immune checkpoint 

inhibitors, mechanisms of drug response or prediction 

of efficacy remain elusive. This is because of the 

heterogeneous immune composition in tumors. In this 

study, unbiased single-cell RNA-seq analysis was used 

to construct an immune atlas of endometrial carcinomas 

by combining immune cells isolated from tumor and 

paratumor tissues. This atlas revealed cellular 

diversities of both the lymphoid and myeloid 

compartment. 

 

In this study, CD8+ T cells in endometrial carcinomas 

displayed a continuous spectrum of T cell activation 

states of early activated, effector memory, intermediate 

 

 
 

Figure 9. Summary map of the endometrial carcinoma ecosystem. The endometrium is the inner lining of the uterus and consists of 
epithelial and stromal cells. These are further divided into glandular (GE) and luminal (LE) epithelium. The basalis layer is the source for the 
regeneration of the endometrium. The two major zones of the endometrium, the basalis and the functionalis, are functionally divided while 
not anatomically partitioned. The subtype of epithelial cells was not confirmed by immunohistochemical staining and is inferred as a result of 
pathway analysis and transcriptional similarity to the published gene expression patterns. Stromal cells consist of endothelial cells, 
fibroblasts, myeloid cells- including DCs, monocytes, macrophages, mast cells, and lymphocytes- including B cells, T cells, ILC3s and NK cells. 
Exhausted CD8+ T cells and macrophages are preferentially enriched in tumor. CD8+ T cells and macrophages show continuous activation 
pattern among distinct cell subsets. 
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state between effector and exhausted, and exhausted. 

Exhausted CD8+ T cells were accumulated in tumor 

samples. However, immune checkpoint blockade of 

PD1/PDL-1 pathway was shown to reinvigorate 

exhausted CD8+ T cells with intermediate expression of 

PDCD1, but not those with high PDCD1 expression 

[44]. This meant that it was more beneficial if T cell 

exhaustion could be reversed earlier rather than later. 

GZMK cluster expressed both cytotoxic and exhausted 

genes possibly representing a transition state between 

effector and exhausted T cells [30]. As such, promoting 

transition of GZMK+ CD8+ T cells back to effector-like 

cells and preventing them from further exhaustion 

would be a strategy for cancer immunotherapy. 

 

Ongoing studies revealed pro-tumor role of 

macrophages in endometrial carcinomas [45]. In this 

study, three macrophage populations were discovered 

that had a continuous range of macrophage activation 

states. Activated macrophage populations 2 and 3 were 

enriched in the tumor tissues and had lower expression 

of M1 phenotype signature compared to the OLR1+ 

macrophages. Activated macrophage populations 2 and 

3 lowly expressed IL-1B suggesting that it had an anti-

inflammatory property. Based on these findings, 

switching the macrophage transcriptome towards an M1 

phenotype could be a potential EC therapeutic strategy. 

MARCO was reported to be associated with M2 

phenotype [26] and was linked to poorer outcomes in 

human breast cancer [46]. Another study found that 

MARCO-positive macrophages secreted less TNF-α in 

response to LPS/ IFN-γ stimulation than MARCO-

negative CD68+ macrophages [25]. Therefore, the sub-

population of macrophages which expressed MARCO 

might serve as a new immunotherapy target.  

 

Characterization of endometrial epithelial cell subtypes 

is problematic because of the lack of specific markers 

for isolating and examining their functional properties. 

In this study, features of gene expression profiles of 

three identifiable endometrial epithelial cell subtypes 

were characterized through gene expression patterns 

examination and gene ontology analysis based on 

scRNA-seq data. Progenitor/stem cells are postulated to 

reside in the basalis layer and are the source of regrowth 

of the functionalis layer. However, the two major zones 

of the endometrium are not anatomically partitioned. 

Studies on endometrial epithelial cell types that exist in 

different regions of the endometrium are sparse. 

Because spatial information of cells in the tissue is often 

lost during the single-cell suspension preparation steps, 

direct correlation of the subtypes with endometrium 

regions/layers is essential. As such, new techniques 
such as single-molecule FISH (smFISH), laser capture 

microdissection and laser scanning microscopy are 

required [11]. These techniques were not a part of this 

study and thus the layer property of the cell subtypes 

requires more careful examination. In tissues that renew 

rapidly such as epithelium, skin and gastrointestinal 

tract, stem cells and their progeny in the epithelial 

lineage are responsible for tumor initiation because they 

have a long life span that allow accumulation of genetic 

damage [33, 47]. Currently, there are no credible 

specific epithelial stem cell surface markers [48] thus 

necessitating further investigations to answer whether 

there are stem cells in the stem-like cell subtype. 

 

The host immune system can be leveraged to treat 

tumor and improve outcomes for cancer sufferers [49]. 

Reprograming the tumor immune microenvironment 

(TME) to attract the right type of immune infiltrate e.g., 

by reversing exhaustion status, switching the 

macrophage transcriptome towards an M1 phenotype or 

deletion of pro-tumor macrophages is a promising anti-

tumor therapeutic strategy. Evidently, this study 

provides a deeper understanding of the complex 

immune and endometrial epithelial cell types and their 

functional states within the endometrioid carcinoma 

ecosystem (Figure 9). It further provides reference 

points for future translational applications. 

Nevertheless, further studies are necessary to clarify the 

interplay between immune and endometrial epithelial 

cell types as well as their functional states in space and 

time. 

 

MATERIALS AND METHODS 
 

Ethics approval and consent to participate 

 

This research project was approved by the Human 

Investigation Ethical Committee of Shanghai First 

Maternity and Infant Hospital. All patients participating 

in the study signed an informed consent. 

 

Histopathology and immunohistochemistry 

 

Tissue samples from representative lesions were 

collected and fixed in 10% formalin. 5 μM slides were 

obtained from paraffin-embedded tissues and stained 

with hematoxylin and eosin for histopathological 

examination. For immunohistochemistry analysis, the 

“UltraVision Quanto Detection System HRP DAB” 

IHC kit (TL-125-QDH, Thermo Fisher Scientific) was 

used for the tyramide signal amplification according to 

the manufacturer’s protocol. Primary antibodies used in 

this assay are as follows: anti-Ckpan (GM351529, Gene 

Tech), anti-CD31 (M082329-2, Dako), anti-vimentin 

(VIM) (Y23037, Ventana), anti-CD3 (ab16669, 

Abcam), anti-CD20 (M0755, Dako), anti-CD68 (ab955, 

Abcam), anti-CD163 (ab156769, Abcam), and anti-CD8 

(ab17147, Abcam), anti-Ki67 (M0350, Long Island 

Antibody), anti-p16 (F07961, Roche), anti-MSH6 
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(RMA-0770, MXB Biotechnologies). Images were 

taken and quantitative image analysis was performed 

using ImagePro software. 

 

Preparation of single-cell suspensions 

 

Following resection, a representative tumor fragment 

and paratumor tissues (1cm from the boundary of 

tumor) were isolated and transferred rapidly to the 

laboratory for study (Supplementary Figure 1A). For 

patients EC4 and EC5, the tumor sizes were too big to 

acquire the paratumor tissues. Fresh tumor and 

paratumor tissue samples were initially cut into 

segments, then transferred to 10 ml digestion DMEM 

medium containing 0.2% collagenase type I/II (Thermo 

Fisher Scientific, USA) and DNAse I (Sigma, USA), 

and were incubated for 15 min at 37° C. The digested 

pieces were triturated with a 1 ml syringe plunger and 

passed through a 70μm cell strainer (Coring, USA). The 

resulting suspension was centrifuged at 300 g for 5 min, 

then resuspended in red blood cell lysis buffer 

(Solarbio, China) and incubated on ice for 5 min. After 

washing with 1x PBS, live cells were enriched using a 

Dead Cell Removal kit (Miltenyi Biotec, Germany) as 

per manufacturer’s instructions. Enriched live cells 

were washed and counted using a hemocytometer with 

trypan blue. Cells were then resuspended in PBS 

containing 0.04% BSA at a concentration of 1 × 106 

cells/ml with a viability of > 80% as determined with 

the Countess. Overall, the entire dissociation procedure 

took about 2 h from obtaining samples to generating 

single-cell suspensions. The single-cell suspensions 

were then run on the Chromium 10X device (10 × 

Genomics, USA). 

 

10× library preparation and sequencing 

 

Single-cell library preparation was carried out using 

Chromium Single cell 3’ Reagent v2 Kits (10 × 

Genomics, USA) according to the manufacturer’s 

protocol. Cells were loaded on the Chromium Single Cell 

Controller Instrument to generate single cell gel beads in 

emulsions (GEMs). Next, reverse transcription was 

performed, cDNA was cleaned up with DynaBeads 

Myone Silane Beads (Thermo Fisher Scientific, USA), 

and was then amplified by PCR with appropriate cycles. 

Subsequently, the amplified cDNA was fragmented, end-

repaired, A-tailed, index adaptor-ligated and subjected to 

library amplification. Then these libraries were 

sequenced on the HiSeq X Ten instruments (Illumina, 

USA) and 150 bp paired-end reads were generated. 

 

Single-cell RNA-seq data preprocessing.  

 

The Cell Ranger software pipeline (version 2.2.0, 

https://support.10xgenomics.com/single-cell-gene-

expression/software/downloads/2.0) provided by 

10xGenomics was used to process reads. Fastq files 

generated from Illumina sequencing output were 

mapped to the human reference genome (GRCh37) and 

transcriptome using the STAR aligner, and then read 

count matrices were generated by counting unique 

molecular identifiers (UMIs). Finally, we generate a 

gene-barcode matrix containing the barcoded cells and 

gene expression counts. We combine multiple libraries 

and generate normalized aggregate data across samples 

using the cellranger aggregation function. 

 

We imported the count data into the Seurat (version 

2.3.4) R package for quality control. We first excluded 

genes detected in < 3 cells and cells where < 100 genes 

had nonzero counts. We further discarded low-quality 

cells that had > 5% mitochondrial genes.  

 

 Library size normalization was performed in Seurat on 

the filtered matrix to obtain the normalized count. 

Additional cell–cell normalization was performed using 

the LogNormalize method, and inherent variation 

caused by mitochondrial gene expression and the 

number of unique molecular identifiers (UMIs) per cell 

was regressed out. Gene expression matrices were 

normalized to total cellular read count and to 

mitochondrial read count using linear regression as 

implemented in Seurat’s ScaleData function. Before 

incorporating a sample into our merged dataset, we 

individually inspected the cells-by-genes matrix of each 

as a Seurat object. 

 

Dimensionality reduction and clustering 

 

Following normalization, highly variable genes we 

identified using the Seurat FindVariableGenes function. 

This function calculates the mean expression and 

dispersion for each gene, then places genes into 20 bins 

based on expression. Biologically variable genes were 

then captured as having a normalized log mean 

expression between 0.125 and 8, and a dispersion 

exceeding 1. 

 

The generated variable genes were used to perform 

principle component analysis (PCA). We then used the 

first 20 principle components (PCs) to construct a two-

dimensional representation of the data using t-

distributed stochastic neighbor embedding (t-SNE) with 

perplexity 20. This representation was then used to 

visualize the data.  

 

Clusters were identified from PCA-reduced expression 

data at a resolution of 1 using the Seurat "FindClusters" 
algorithm, which calculates the neighborhood overlap 

between every cell and its nearest neighbors. Graph-

based clustering results were visualized in 2-dimension 

https://support.10xgenomics.com/single-cell-gene-expression/software/downloads/2.0
https://support.10xgenomics.com/single-cell-gene-expression/software/downloads/2.0
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using t-SNE. Individual samples and sample groups 

were also visualized using t-SNE. 

 

Cell clusters in the resulting two-dimensional 

representation were annotated to known biological cell 

types using canonical marker genes.  

 

Identification of cluster marker genes and 

differential expression analysis 

 

The cluster-specific marker genes were identified using 

differential expression analysis. The difference between 

clusters was analyzed by “FindAllMarkers” function in 

the Seurat package. A marker gene was identified when 

it was expressed in a minimum of 25% of cells and at a 

minimum log fold change threshold of 0.25. In paired 

analyses, we identified differentially expressed genes 

(DEGs) if the absolute log2 expression fold change was 

≥ 0.4 and the Benjamini–Hochberg adjusted P value 

was ≤ 0.01.  

 

Subclustering of the major cell types 

 

To identify subclusters within epithelial, T, and myeloid 

cell types, we reanalyzed cells annotated to these three 

cell types separately. Briefly, first we get annotated 

clusters form cells form raw Seurat object using the 

“SubsetData” function of the Seurat package. We 

performed dimensionality reduction using PCA in each 

cell type on variable genes as described above. Using 

the graph-based clustering approach implemented in the 

“FindClusters” function of the Seurat package, with a 

conservative resolution of 1 and otherwise default 

parameters, each cell type was reclustered by its 

principle components. For visualization purposes, these 

informative principle components were converted into t-

SNE plots as above. Gene expression data for 

subclusters are available in Additional File 3. 

 

To identify marker genes for each of these subclusters 

within the immune cell types, we contrasted cells from 

that subcluster to all other cells of other subclusters 

using the Seurat FindMarkers function. Marker genes 

were required by log2FoldChange ≥ 1, adjust P value ≤ 

0.01, and ranking top 100. When analyzing marker 

genes for several subclusters in aggregate, such as for 

tumor macrophages (myeloid clusters 0, 2, 4, 5, 6, 7 and 

8 in Tumor), we simply combined the marker genes for 

all associated subclusters [12] (Additional File 4). 

 

Gene set enrichment analysis  
 

Gene set enrichment analysis for differentially expressed 
genes was performed using Gene Ontology (biological 

process, cell component, and molecular function), and 

Kyoto Encyclopedia of Genes and Genomes (KEGG) 

pathway database. In a pairwise comparison between 

paratumor vs tumor data in Figure 6B, DEGs were 

identified by |log2FoldChange| ≥ 0.4 and adjust P value ≤ 

0.01 (Additional File 1). In the pairwise comparison 

between paratumor vs tumor data in Figure 7E, 7F, DEGs 

were identified by |log2FoldChange| ≥ 0.25 and adjust P 

value ≤ 0.01 (Additional File 2). When performing 

pathway enrichment analysis in endometrial epithelial 

clusters in Figure 8E, 8F, up-expressed genes in per 

cluster were used with log2FoldChange ≥ 0.25 and adjust 

P value ≤ 0.01. We used the “clusterProfiler” function 

implemented in R packages to identify significant altered 

pathways. The z scores were computed from normalized 

-log10(P value) generated from the Fisher exact test. 

Pathway enrichment heatmap results were visualized 

using R package heatmap (version 1.0.12). 

 

Pseudo-time analysis  

 

The monocle R package (version 2.10.1) was used to 

perform the trajectory analysis on the epithelial cells. 

Genes expressed in fewer than 3 cells were excluded, 

library size normalization was performed by the 

"estimateSizeFactors" function, and negative binomial 

over-dispersion was estimated for each gene using the 

"estimateDispersions" function. We selected genes that 

have mean expression > 0.5 and variance greater than 

the empirical dispersion (the best fit mean-dispersion 

trend-line). We used the DDRTree to do dimension 

reduction on the selected genes and then constructed a 

trajectory using the "orderCells" function. 

 

State analysis in T cells and macrophages 

 

T cell exhaustion, T cell activation, anti-inflammatory 

(immunosuppressive) and pro-inflammatory (immuno-

stimulatory) gene signatures were taken from Azizi et 

al. [26] and used for CD8+ T cells state analysis. M1, 

M2, monocyte activation and macrophage activation 

gene signatures were taken from Azizi et al. [26] and 

used for macrophage state analysis. In all cases, the 

intensity of expression of the signature in question was 

computed as the mean expression of the genes included 

in the signature.  

 

CNV estimation 

 

The normalized scRNA-seq gene expression matrices 

were used to estimate CNV profiles with inferCNV R 

package as previously described [50]. Initial CNVs were 

estimated by sorting genes based on their chromosomal 

location and applying a moving average of gene 

expression with a window size of 101 genes. The 
expression was then centered to zero by subtracting the 

mean. The stromal cells were assigned as "normal" cells 

and background for analysis. The de-noising was 
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carried out to generate the final CNV profiles. The CNV 

score of each cell was calculated as quadratic sum of 

CNVregion. 

 

TCGA data analysis 

 

Pre-processed gene expression data (fragments per 

kilobase per million fragments) RNaseq v3 mRNA 

expression data as well as clinical parameters for tumors 

and normal solid tissue, for endometrial cancer (TCGA-

UCEC), using the Bioconductor TCGAbiolinks package 

(version 2.10.5). In order to assess the expression and 

prognostic value of a gene set, the average log-

normalized expression of selected genes was computed. 

The samples were further stratified as “low expression” 

group and “high expression” group by the average 

expression of immune cell marker genes. The statistical 

analysis was performed by the R package ‘survival’ 

(version 3.1.8), and survival curves were fitted by the 

survfit function and the difference between high and 

low expression group was test by survdiff. 

 

Statistical analysis 

 

Data were analyzed with GraphPad Prism software. For 

comparison between two groups, statistical evaluation 

was done by two-tailed Student’s t-test. For all 

statistical tests, the P values <0.05 were considered 

statistically significant. All error bars show standard 

error of the mean (SEM). 

 

Data availability 

 

The sequencing raw data have been deposited on SRA 

database. The SRA accession number is PRJNA650549, 

and the SRA records link is: https://www.ncbi.nlm.nih. 

gov/sra/PRJNA650549 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. Additional details of the samples, related to Figure 1. (A) Representative image of paired tumor and 

paratumor tissues (1cm from the boundary of tumor) acquisition. (B) Samples obtained from 5 EC patients, clinicopathological 
characteristics of the 5 patients, expression of phenotype-related genes (ER, PR, PTEN, p53, p16, Ki67, MLH1, MSH2, MSH6, and PMS2) 
detected by immunohistochemical analysis and genotyping of POLE gene. ER and PR values denote proportion of tumor cells that express 
the receptor. (-) Means negative expression, while (+) means positive expression. WT in p53 means positive normal phenotype expression. 
P16 expression was estimated in the epithelial cells. (C) IHC staining images of p16, Ki67 and MSH6 in tumor slides isolated from 
endometrial carcinoma sections. Scale bars, 80 μm. 
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Supplementary Figure 2. Quality control and cell type numbers of each sample, related to Figure 1. (A) Aggregated quality 

control and metric information for each sequencing sample. (B) Cell number of major cell types in each sample. 
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Supplementary Figure 3. Integrated clustering of paratumor and endometrial tumor samples and centred correlation matrix 
for stromal single cells, related to Figure 2. (A, B) t-SNE projection of the 11,275 cells from 3 integrated paratumor samples (A) and 

19,505 cells from 5 integrated tumor samples (B). Each cell type (left) and the corresponding patient (right) is shown by different color. (C) 
Centred correlation (Pearson’s r) matrix for stromal single cells from different samples. Each row and column represents single cells. 
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Supplementary Figure 4. Ambiguous cells in myeloid cell subclustering and myeloid cell subtypes distribution, related to 
Figure 3. (A, B) t-SNE plot, color-coded for relative expression of marker genes for non-myeloid cells (ambiguous cells) in Paratumor (A) and 

Tumor (B). (C, D) For each cell subtype: the cell fractions and numbers originating from each of the 3 paratumor (C) and 5 tumor (D) samples 
are shown. (E) The fractions of the myeloid cell subtypes in each sample. 
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Supplementary Figure 5. Subclustering of paratumor and tumor lymphocytes, related to Figure 5. (A) t-SNE plot, color-coded for 

relative expression of marker genes for non-lymphocytes (ambiguous cells) in Paratumor and Tumor. (B) t-SNE plot, color-coded to show the 
relative expression (gray to red) of marker genes for the conventional T cells and innate lymphoid cells. (C) Violin plots displaying the 
expression profile of known marker genes of lymphoid subtypes in the cell clusters in Paratumor (left panel) and Tumor (right panel). The y 
axis shows the normalized expression. (D) The fractions of the 7 lymphoid subtypes in each sample. (E, F) For each cell subtype: the cell 
fractions and numbers originating from each of the 3 paratumor (E) and 5 tumor (F) samples are shown.  
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Supplementary Files 
 

Please browse Full Text version to see the data of Additional Files 1–4. 

 

Additional File 1. DEGs of tumor vs para of T cell types. 

 

Additional File 2. DEGs of tumor vs para of epithelial cells. 

 

Additional File 3. Average expression. 

 

Additional File 4. Cluster characteristics. 

 


