
sensors

Review

Recent Progress in Self-Powered Sensors Based on
Triboelectric Nanogenerators

Junpeng Wu, Yang Zheng and Xiaoyi Li *

����������
�������

Citation: Wu, J.; Zheng, Y.; Li, X.

Recent Progress in Self-Powered

Sensors Based on Triboelectric

Nanogenerators. Sensors 2021, 21,

7129. https://doi.org/10.3390/

s21217129

Academic Editors: Youfan Hu,

Jin Yang and Caofeng Pan

Received: 3 October 2021

Accepted: 19 October 2021

Published: 27 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China;
wujunpeng@stu.ouc.edu.cn (J.W.); zhengyang@stu.ouc.edu.cn (Y.Z.)
* Correspondence: lixiaoyi@ouc.edu.cn

Abstract: The emergence of the Internet of Things (IoT) has subverted people’s lives, causing the rapid
development of sensor technologies. However, traditional sensor energy sources, like batteries, suffer
from the pollution problem and the limited lifetime for powering widely implemented electronics
or sensors. Therefore, it is essential to obtain self-powered sensors integrated with renewable
energy harvesters. The triboelectric nanogenerator (TENG), which can convert the surrounding
mechanical energy into electrical energy based on the surface triboelectrification effect, was born of
this background. This paper systematically introduces the working principle of the TENG-based
self-powered sensor, including the triboelectrification effect, Maxwell’s displacement current, and
quantitative analysis method. Meanwhile, this paper also reviews the recent application of TENG in
different fields and summarizes the future development and current problems of TENG. We believe
that there will be a rise of TENG-based self-powered sensors in the future.

Keywords: sensor; self-powered; TENG; contact electrification; application of TENG

1. Introduction

The first generators used Faraday’s principle of electromagnetic induction to convert
other forms of energy into electricity, but large generators required a lot of materials
and complicated equipment. Based on Maxwell’s shift currents, TENG collects energy
from the surrounding environment and converts it into electricity [1]. The use of TENG
reduces/replaces the dependence of various small electronic devices on traditional energy
sources (such as chemical batteries) [2]. Compared with chemical batteries and traditional
circuits, TENG greatly extends the service life of electronic products under long-term
operation, reduces the maintenance times of miniaturized electronic devices, and minimizes
environmental pollution due to its unique energy harvesting method. In addition, TENG
does not need a lot of materials and large, expensive equipment, which greatly reduces
the cost.

Sensors play an important role in developing the economy and promoting social
progress [3–5]. As technology continues to evolve, many types of sensors have been devel-
oped [6–8]. The nanogenerator-based sensors with other harvesting principles (piezoelec-
tric, pyroelectric, flexoelectric) have been studied extensively. TENG has unique harvesting
methods of environmental energy, strong adaptability to the environment, and compatibil-
ity with small electronic devices [9]. In line with the trend of intelligent and miniaturized
scientific and technological equipment in the current society, TENG has attracted more
attention and more studies have been conducted on TENG [10,11]. The TENG of output
powers, energies, voltages, and currents has been measured by Stanford research systems
SR570 and an electrometer 6514 in usual conditions. From the theoretical study of tribo-
electrification to the use of TENG as a means of energy supply, to the static measurement
of low-frequency signals using TENG voltage output in sensors, to the dynamic measure-
ment of low-frequency signals using TENG current signals, the great potential of TENG
development has been gradually explored.
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In this paper, we discuss the principle and four main modes of TENG. It is confirmed
that the TENG output can be improved by increasing the surface charge density σ, the
effective contact area S, and the energy conversion efficiency by device design. Then,
the progress of TENG-based self-powered sensors is systematically studied. Firstly, the
application of TENG in the field of motion monitoring can monitor not only biological
motion but also mechanical motion. There are also applications for collecting wave energy
in the ocean using various models of TENG. As a self-powered sensor, TENG can monitor
natural energy, toxic gases, and humidity conditions in the environment. TENG can also
be used as an intelligent medical portable device for respiration, pulse monitoring, steril-
ization, and cardiac pacing systems. In the smart skin field, due to the high compatibility
of TENG with portable devices, a TENG-based wearable sign language translation system
and self-powered sensing friction skin intelligent soft actuator has emerged. The problem
of capacitance and load matching in the TENG detection system and the cost of the TENG
detector are discussed. TENG-based self-powered sensors show strong adaptability in the
field of sustainability. After nearly a decade of development, it has flourished in several
fields. It could solve some of the key problems facing the world’s sustainable development.
This is also the goal of current and future TENG-based self-powered sensors. Therefore,
the research progress of TENG-based self-powered sensor is summarized and prospected
here. We believe that TENG-based self-powered sensors will develop more rapidly in the
future and will soon be industrialized.

2. The Principle of TENG
2.1. Triboelectrification Effect (Contact Electrification)

With the progress of human society, people have a deeper and deeper understanding
of static electricity and have gradually understood how static electricity is produced. One
widely accepted theory is called triboelectricity. As the surfaces of two different materials
contact each other, a limited amount of charge is transferred through the interface [2]. In
general, the charge transfer occurs through the thermodynamic movement of electrons
from a high-energy state occupied on one surface (valence band) to an unoccupied low-
energy state (conduction band) on another surface. The contact potential difference (CPD)
drives this movement. The energy distribution and state density of the two corresponding
surfaces are proportional to CPD. The Fermi level of the conducting surface and the effective
Fermi level of the insulator lead to CPD [12]. The energy gap between the acceptor and
donor states is defined as the effective Fermi level of an insulator. As originally described
by Duke et al. [13], in the case of conductor-insulator contact and insulation-insulator
shell, any transferred charge to the insulating surface is confined and concentrated here
instead of passing through immediately. The polarity of any charge remaining on the
insulating surface after contact depends entirely on the direction of electron flow during
the contact, which in turn depends on the polarity of the CPD driving the electron flow.
This phenomenon of the accumulation of charge on the surface of the contact insulator
is often referred to as contact charging. When two contact materials move horizontally
across each other, the dynamic change of the contact charge is called triboelectricity or the
triboelectric effect [14].

2.2. Triboelectric Sequence

After nearly a decade of research on TENG, the frictional electrification effect exists in
the vast majority of materials contacted by human beings, thus the choice of TENG friction
layers becomes diverse [15]. However, with different friction layers of material, the output
signal is very different. It has been found that the ability of friction layer materials to
gain and lose electrons is one of the main factors affecting TENG, which depends on their
relative polarity. The triboelectric sequences of various common materials are determined
by comparing relative polarity [16]. The more obvious the relative polarity difference
between the two materials in the sequence, the more prominent the triboelectric effect of the
two materials is, and the more the corresponding charge transfer amount is. These studies
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allow the generation of triboelectric sequences, in which materials are organized into a list
in the order of the charges they generate on the surface. The materials that are sufficient
to produce maximum CPD have been identified, and attempts have been made to create
more quantitative triboelectric sequences against the corresponding materials. Because the
structure relatively easily accommodates various functional groups, its dielectric properties
and surface polarization are highly customized. A good understanding of transferred
electron mechanisms has been established, including material parameters, the relationship
between transferred charges, and environmental parameters, such as temperature and
external electric fields. However, the more dynamic aspects of triboelectrification and the
mechanisms remain to be fully understood.

2.3. Maxwell’s Displacement Current

In 2006, the concept of a nanogenerator (NG) was proposed by Zhong Lin Wang’s
research group [17]. TENG was discovered in 2012, and more and more in-depth studies on
NG have been conducted, and the theoretical system has become more and more perfect [1].
The most significant discovery was that Maxwell’s displacement current was the theoretical
source of the nanogenerator [2]. The displacement field is denoted by D, the magnetic
field is denoted by B, the electric field is denoted by E, the magnetization field is denoted
H, the free charge density is denoted by ρ f , the free current density is denoted by J f , the
polarization field density is P, and ε0 represents the vacuum dielectric constant, Maxwell’s
specific expression.

Gauss’s law describing how an electric charge produces an electric field:

∇·D = ρ f (1)

Gaussian magnetic law without magnetic monopole:

∇·B = 0 (2)

Maxwell–Ampere’s law:

∇× E = −∂B
∂t

(3)

Faraday’s law:

∇× H = J f +
∂D
∂t

(4)

The relation between D and P is:

D = ε0E + P (5)

For isotropic media, Equation (5) is defined as: P = (ε− ε0)E, D = ε0E. The second
term in Equation (4) is defined as the Maxwell displacement current:

JD =
∂D
∂t

= ε0
∂E
∂t

+
∂P
∂t

(6)

The displacement current is different from the current carried by free electrons that we
normally observe but was due to the time-varying electric field (vacuum or medium) com-
bined with the tiny time-varying motion of atom-bound charges and dielectric polarization
in the material. In Equation (5), the first term and the second term were combined, and the
displacement current becomes: JD = ε ∂E

∂t . In the triboelectric material, the displacement
current has the polarization density caused by static charge:

JD =
∂D
∂t

= ε
∂E
∂t

+
∂Ps

∂t
(7)
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The first term of displacement current is the theoretical basis of electromagnetic waves.
The second is the basic theoretical basis and source of the nanogenerator, which shows that
the current is caused by the static charge on the surface of the polarization field [18].

3. Main Working Mode and Quantitative Analysis Method of TENG
3.1. Main Working Modes of TENG

The concept of TENG was first proposed by Zhong Lin Wang’s research in 2012 [1].
After several years, more and more studies on TENG were conducted, and TENG has
gradually been recognized and understood by everyone [18]. The collection and utilization
of low-frequency energy in TENG has always been discussed. TENG has also been applied
in various fields, such as sports monitoring, environmental monitoring, and ocean energy
harvesting, as well as medicine and sports, demonstrating its adaptability to today’s society
and technology. For so many types of TENG, there are four basic working modes.

The vertical separation mode TENG is shown in Figure 1a. In this structure, two layers
of friction layer with different electronegativity are formed in the middle, and there are
electrodes on the back of the friction layer. In the beginning when two layers of friction layer
are in contact, due to the triboelectrification effect an equal number of opposite charges
will be formed on the contact surface, and the positive and negative charges depend on
the relative electronegativity of the friction layer. When the two friction layers begin to
separate due to the principle of electrostatic induction, the electrode will be charged, and
the inductive potential difference will be formed. When electrodes are connected, electrons
move from one electrode to the other, and at the end of the separation the surface charge of
the friction layer and the charge carried by the electrode reach an electrostatic balance. As
the friction layers get closer and closer together, the electrons slowly flow backward until
the friction layers are fully in contact, and the inductive potential difference between the
electrodes is zero.
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sliding freestanding mode. (d) TENG in single–electrode mode.

The horizontal sliding mode TENG is shown in Figure 1b. The initial structure is
the same as that of the vertical friction mode TENG, which is charged by contact of the
friction layer. Then, as the friction layers slide, opposite charges begin to be induced on the
electrodes to maintain electrostatic balance, and an induced potential difference is formed.
As the electrodes are connected, electrons migrate between the two electrodes. When the
two friction layers are no longer in contact, the induced charge on the electrode and the
friction charge on the friction layer reach an electrostatic balance and no electrons flow.
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After sliding, the two layers slowly contact each other, and the electrons slowly flow until
the two layers are in full contact and the charge on the electrode is zero. This process is
repeated, producing an electrical output of alternating current. The horizontal sliding
configuration is not only suitable for plane sliding, but also cylinder sliding, disk sliding,
and so on.

When substances of different electronegativity come into contact, they become charged.
Some materials have frictional contact with a surface where the charge density reaches
saturation, and the static charge can remain on the surface for some time. The simplified
TENG structure of the sliding freestanding mode is shown in Figure 1c. The reciprocating
movement of charged objects between two discontinuous electrodes through friction will
cause a change in the potential difference, thus driving the continuous flow of free electrons
between the electrodes.

The operating modes described earlier have two electrodes connected by a load.
However, the single-electrode mode TENG (structure as shown in Figure 1d) has only
one electrode, which is grounded or connected to a reference electrode. Contact with the
charged friction layer by friction will change the charge distribution on the electrode when
it is close to and away from the lower electrode according to the principle of electrostatic
induction, so that the electric potential between the electrode and the reference electrode is
constantly changing and free electrons flow between the two, forming a current.

This section is divided by subsections. They will provide a concise and precise de-
scription of the experimental results, their interpretation, and the experimental conclusions
that can be drawn.

3.2. TENG Quantitative Analysis Method

The improvement of TENG’s output performance can be achieved in many ways,
but output power, such as open-circuit voltage and short-circuit circulating current, is not
measured by a unified standard. Different TENGs have different structures, number of
electrodes, materials, effective contact area, maximum separation distance, mechanical
frequency, load resistance, capacitance, and cost, which make it difficult to measure. At the
same time, TENG is a configuration of pure capacitive devices, so the traditional method
based on voltage-current (VI) diagrams to characterize most other energy harvesters—for
instance, solar cells, thermoelectric generators, and electromagnetic generators—is not
suitable for understanding the performance of TENG. We need to develop a set of unified
standards to evaluate the performance of TENG and define its advantages. Wang et al. [19]
designed a new method to understand the nature of the information generated by TENG,
and the modified structural figure of merit (FOMCS) could be used to predict the charging
characteristics of the TENG in the energy storage system, further promoting the develop-
ment of TENG. As shown in Figure 2, Li et al. [20] designed the edge approximation-based
equivalent capacitance method (EDAEC) for quantitative analysis of all modes of the TENG
system, and this universal method is a milestone. It provides a more refined analysis model
for the in-depth understanding of the working principles of different TENG systems.
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permission [20]. Copyright 2019 Royal Society of Chemistry).

4. Enhancing Output Performances

The main principle of TENG is the coupling of friction contact electrification effect and
electrostatic induction effect. When the friction layer of TENG contacts, the contact surface
of the friction layer has an equal and opposite charge quantity Q due to the friction contact
electrification effect, which is equal to the product of the contact area S of the friction layer
and the surface charge density σ on the friction layer. In the process of TENG friction layer
separation, due to the principle of electrostatic balance, an equal and opposite amount
of transferred charge Qsc is induced on the electrode of the friction layer. The higher the
transfer charge Qsc is, the stronger the TENG output will be. Therefore, to improve the
TENG output, the most important thing is to improve the transfer charge quantity Qsc.

At present, there are several ways to improve TENG output: increasing surface charge
density σ, increasing effective contact area S, and improving energy conversion efficiency
through equipment design. As shown in Figure 3a, Park et al. [21] proposed and de-
signed a TENG with a friction layer consisting of polyvinylidene fluoride-trifluoroethylene
(PVDF-TrFE)/MXene composite membrane and poly-ω-aminoundecanoyl (PA11) com-
posite membrane. They doped MXene nanosheets into PVDF-TrFE composite films to
form microscopic dipoles which increased the electronegativity of the friction layer and
the surface charge density σ. Then electrostatic spinning technology was used to improve
the surface volume ratio of nanofibers and to increase the effective contact area S of the
friction layer. Due to the increasing of σ and S, the frictional charge Q increased, and thus
the transferred charge Qsc and the TENG output increased.

Figure 3b shows that Sang-woo Kim et al. [22] designed a TENG with serrated elec-
trodes. The main principle uses the gap between the sawtooth electrode and the wire
to generate spark discharge, and the spark discharge allows a large number of electrons
from the sawtooth electrode to move quickly to the wire through the device design to
improve the energy conversion efficiency. The output voltage of TENG is 5 kV and the
current density is 2 A m−2. The most common way is to change the surface structure of
the friction layer to obtain a larger effective contact area, obtaining a larger amount of
friction charge Q. As can be seen in insets of Figure 3c, Xu et al. [23] reported a TENG
based on nickel and copper double-metal hydroxyl-nano wrinkles and nanometer nickel-
copper double-metal hydroxide by folding the scale of the microsurface topography, greatly
increasing the area of effective contact frictional contact S. TENG output also increased
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dramatically, and the output of the same friction layer of TENG increased 13 times. Simi-
larly, Bae et al. [24] also formed micro-domes and nano-pores on the TENG friction layer
to realize nano/microstructure on the friction electric surface, increasing its total surface
area by 210% and improving the TENG output, as presented in Figure 3d. Figure 3e
shows that Wang et al. [25] prepared a kind of TENG for electret film. Due to the charge
injection principle of electret film, the surface charge density σ of the friction layer greatly
increased, and the short-circuit current and open-circuit voltage could achieve up to about
seven times that of traditional TENG. However, much work has been done to improve
energy conversion efficiency through friction surface optimization, ion implantation, or
device design, but none of these methods can break through the fundamental limitations
of the inevitable electrical breakdown effect, which limits the output energy density. Illus-
trated in Figure 3f, Zi et al. [26] proposed a high-pressure gas environment to suppress the
breakdown effect. Increasing the gas pressure between the friction layers to prevent gas
breakdown can increase the maximum TENG energy density by more than 25 times in the
contact separation mode and by more than five times in the sliding independent mode.
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Figure 3. The method of TENG output performance improvement. (a) The electronegativity of
the friction layer improves by doping with MXene nanosheets. (Reproduced with permission [21].
Copyright 2021 Elsevier). (b) The TENG improves energy conversion efficiency through serrated elec-
trodes. (Reproduced with permission [22]. Copyright 2020 Elsevier). (c) The nanowrinkle structure
of the friction layer increases the effective contact area of TENG. (Reproduced with permission [23].
Copyright 2020 Elsevier). (d) The layered surface nano/microstructure on the triboelectric surface
increases the effective contact area of TENG. (Reproduced with permission [24]. Copyright 2020
American Chemical Society). (e) The electret charge injection principle greatly increases the surface
charge density of the TENG friction layer. (Reproduced with permission [25]. Copyright 2016
Elsevier). (f) Using a high-pressure gas environment to suppress the breakdown effect increases the
TENG output. (Reproduced with permission [26]. Copyright 2021 Springer Nature).
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5. Application of TENG in the Field of Motion Detection

TENG has great application potential in low-frequency energy collection. TENG, as a
self-powered sensor, could collect and detect various environmental energies in human
living activities and nature [27]. TENG could get rid of the limitation of traditional batteries,
greatly improving the portability and usability of the sensor [28].

For example, as presented in Figure 4a, Lee et al. [29] prepared a cotton sock-style
TENG with a sensitivity of 0.06 V·N−1, which realized low-frequency movement energy
collection and monitoring of various physiological signals (e.g., gait, contact force, sweating
level, etc.), providing a way of thinking for portable intelligent devices in the future. As a
self-powered sensor, TENG also has great application potential in the field of biological
motion monitoring. Figure 4b shows that the TENG-based self-powered pressure sensor
prepared by Wei et al. [30] can monitor the motion of various joints during movements,
such as the motion of hands, elbows, armpits, knees, feet, and other different motion
speeds. People breathe differently (at different rates and depths) at different levels of
exercise. Zheng et al. [31] prepared a machine washable and stretchable TENG that can
record human respiration rate and depth, which is very promising for further application
in the field of sports, as shown in Figure 4c. In table tennis, players adjust and change
their state by hitting position and hitting power. Wang et al. [32] prepared a TENG
with a square grid structure which is used to collect vibration energy and sense pulse
force to accurately display the position of each shot and impact force so that athletes can
monitor their state in real-time and make adjustments and changes quickly, which can
be seen in Figure 4d. TENG, as a sensor, can monitor not only human movement but
also mechanical movement. Wang designed a self-powered TENG which can monitor
wheel temperature and wheel speed in real-time during train running [33]. As presented in
Figure 4e, Chen et al. [34] developed a self-powered motion tracking system to monitor the
speed, direction, acceleration, start and end positions, and even the motion path of moving
objects. This research will provide a new idea for TENG in the field of self-powered motion
detection. Figure 4f shows that Wang et al. [35] also designed a novel sweep-type TENG
which can directly monitor drivers’ driving habits and reflect road conditions through the
output of TENG and has great application potential in future intelligent transportation.
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Figure 4. (a) Self-powered and self-functional cotton sock-style TENG. (Reproduced with permission [29]. Copyright 2019
American Chemical Society). (b) Self-powered pressure sensor by biomass-based, wearable TENG. (Reproduced with
permission [30]. Copyright 2021 Elsevier). (c) TENG can monitor human respiratory information, including rate and depth.
(Reproduced with permission [31]. Copyright 2016 John Wiley and Sons). (d) Square-grid TENG for harvesting vibrational
energy and sensing impulsive forces. (Reproduced with permission [32]. Copyright 2017 Springer Nature). (e) TENG
can be used for wheel safety monitoring. (Reproduced with permission [34]. Copyright 2021 John Wiley and Sons). (f) A
sweep-type TENG can be used to monitor a driver’s habits. (Reproduced with permission [35]. Copyright 2020 Elsevier).

6. Application of TENG-Based Sensors in Marine Fields

In total, 70% of the earth’s surface is ocean, which contains a lot of energy. Ocean
energy is pollution-free and recyclable, known as blue energy. TENG has low dependence
on the environment and can collect disordered low-frequency marine energy, which has
attracted more and more attention [36]. As presented in Figure 5a, TENG, a tower-based
device, can efficiently convert wave energy in any direction to electrical energy, providing
a feasible method for collecting ocean energy on a large scale [37]. Figure 5b shows that
Wang et al. [38] combined and utilized the spring-assisted structure and swinging structure
TENG. A TENG of this structure can transform low-frequency water wave vibration into
high-frequency motion, thus increasing the frequency of current output by 205 times, which
is also a method of rapid and large-scale collection of ocean energy. The contact separation
mode is generally adopted for marine energy collection TENGs, but the material will be
abrased during the process of TENG operation and its output performance will be reduced,
while the surface friction charge of non-contact suspended TENG will gradually decay
without charge replenishment. However, Figure 5c details Wang et al.’s [39] adoption
of a flexible rabbit hairbrush and segmental pair structure for swinging TENG, which
effectively extended the energy collection time, reduced abrasion, and extended the service
life of TENG, thus improved the total energy conversion efficiency. Most of the TENG
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models used to collect ocean energy are solid-solid models, but some of the energy is
lost in the form of heat energy during the operation of solid-solid TENG. Solid-liquid
TENG can greatly reduce the energy loss and mechanical loss in the friction process. In
Figure 5d, Wang et al. [40] designed a simple open-structure TENG that can maintain
output in a variety of marine environments and weather conditions, providing an efficient
way to obtain all-weather marine energy in a real marine environment. In the ocean,
providing sustainable and cost-effective marine distributed buoys has been a challenge.
However, Figure 5e details how Xu et al. [41] designed a sandwich structure TENG that
can continuously light a high brightness LED, providing an effective solution to solve the
distributed buoy in the ocean problem. TENG has been gaining more and more attention
in the ocean as an energy collector and sensor. However, most TENG become damaged
or lost in the ocean, which can affect the marine environment. Wang et al. [42] prepared
a seawater-degradable TENG which can convert wave vibration energy into electricity
without maintenance and without damaging the environment. In the insets of Figure 5f, the
first example of combining solar-driven interface evaporation with water wave detection is
demonstrated. Self-powered sensors in the combined TENG and solar fields have great
application potential [43]. At the same time, the device can detect several water wave
parameters (frequency, height, velocity, and wavelength) in real-time by integrating the
brake steam generator with TENG. It provides a feasible idea for clean water production in
open water and for engineering self-powered water wave detection, prediction, and blue
energy acquisition systems [44].
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Figure 5. (a) TENG based on a tower-like structure is used to collect wave energy from any direction.
(Reproduced with permission [37]. Copyright 2019 American Chemical Society). (b) Spherical
TENG based on spring-assisted swing structure harvests water wave energy. (Reproduced with
permission [38]. Copyright 2021 Elsevier). (c) TENG made of a flexible rabbit hairbrush and
segmented structure. (Reproduced with permission [39]. Copyright 2021 John Wiley and Sons).
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(d) TENG based on droplets can be used to collect ocean wave energy. (Reproduced with permis-
sion [40]. Copyright 2021 American Chemical Society). (e) TENG that can be used for self-powered
navigation buoys. (Reproduced with permission [41]. Copyright 2021 Elsevier). (f) A schematic dia-
gram and a digital image of integrated steam generator and TENG. (Reproduced with permission [43].
Copyright 2020 John Wiley and Sons).

7. Application of TENG in Environmental Monitoring

Nature contains a variety of energy, such as wind, light, and water energy, and hu-
mans are increasingly experienced in collecting and monitoring this energy. As technology
advances, electronics get smaller and smaller, and batteries become more and more trou-
blesome to replace. TENG, as a highly efficient self-powered sensor, blurs the boundary
between traditional batteries and sensors and improves energy efficiency. In the natural
environment, the instability of TENG energy acquisition and output restricts its application
and development. As shown in Figure 6a, Yu et al. [45] proposed gravity TENG, which
can convert wind energy into stable electric energy and can realize the stable collection
of natural wind energy. Poisonous gas in the living environment can seriously damage
human health, so the poisonous gas monitoring device with an early warning function is of
great significance. As presented in Figure 6b, the TENG prepared by Feng et al. [46] com-
bines a metal oxide semiconductor (MOS) with a highly integrated self-powered unit, thus
achieving accurate detection of toxic gases from aniline. Recycling waste energy-harvesting
materials can not only reduce environmental pollution but also recycle environmental en-
ergy to generate renewable electricity and power wireless electronic equipment. Therefore,
our lives will be more environmentally friendly. Figure 6c shows that a TENG prepared by
Wang et al. [47] from wasted milk cartons can be used for pH detection and early landslide
monitoring in the natural environment. The wind information is converted directly into
an inductive electrical signal by TENG’s active wind sensor, but the signal processing
and transmission of this active wind sensor still require an external power source. As
shown in the insets of Figure 6d, Wang et al. [48] prepared the breeze-wind-driven TENG
which is used to harvest wind energy and sense wind speed, realizing a complete set of the
self-powered intelligent wireless sensing systems. Most TENG cannot work well in harsh
environments (strong acids and bases), but Long et al. designed an acid-base-resistant
TENG that can work well in harsh environments, providing the basis for a self-powered
sensor for TENG to work in harsh environments, as presented in Figure 6e. The output
performance of most TENGs is affected by ambient humidity [49] As humidity can change
the charging phenomenon at the contact interface, the surface charge density dissipates
rapidly. As shown in Figure 6f, Wang et al. [50] demonstrated a TENG with a kind of
biofilm material which can achieve high output in high humidity, providing ideas for early
warning devices in oceans and other high humidity environments.
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Figure 6. (a) A TENG that can stably collect wind energy. (Reproduced with permission [45]. Copyright 2021 Elsevier).
(b) A TENG used to monitor the toxic gas of aniline. (Reproduced with permission [46]. Copyright 2020 John Wiley and
Sons). (c) A TENG made of waste milk cartons can be used for actual environmental monitoring. (Reproduced with
permission [47]. Copyright 2018 Elsevier). (d) A complete self-powered intelligent wireless sensor system can be realized
through a kind of TENG. (Reproduced with permission [48]. Copyright 2021 American Chemical Society). (e) A kind of
acid- and alkali-resistant TENG. (Reproduced with permission [49]. Copyright 2020 Royal Society of Chemistry). (f) A
TENG with high output performance in a 95% humidity environment. (Reproduced with permission [50]. Copyright
2020 Elsevier).

8. Medical Applications of TENG Sensors

As portable devices become more and more popular, self-powered portable intelligent
medical devices are attracting more and more attention. TENG has long been proven to be
a reliable self-powered sensor and energy collector. As shown in Figure 7a, Hu et al. [51]
prepared a low-cost, ultra-sensitive, self-powered pressure sensor with 150 mV·Pa−1. The
ultra-sensitive pressure sensor can be installed on the chest and wrist of the human body
to monitor respiration and pulse, respectively, which has a great application prospect in
the field of intelligent medical equipment. TENG can be a sensor, but most of them use
metal electrodes as metal has a certain hardness and is extremely impermeable, affecting
wearability. As presented in Figure 7b, Qiu et al. [52] demonstrated a type of TENG with
polyaniline (PANI) electrodes that can monitor patients’ respiratory status in real-time and
give an alarm when they stop breathing, which has great application potential in the field of
critical monitoring. There are many techniques for rehabilitation after physical injury, but
most of the rehabilitation equipment requires an external power source. However, Bhatia
et al. [53] prepared a portable TENG for patient rehabilitation, which has the potential to
be a practical tool for patient rehabilitation and can be seen in the insets of Figure 7c. It
is particularly dangerous for patients to be left alone during an infusion and at the end
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of infusion. Therefore, Yang et al. [54] prepared a liquid-solid contact super-hydrophobic
TENG, as shown in Figure 7d, which can realize intelligent blood transfusion monitoring
and real-time blood transfusion monitoring. Skin wounds are common in everyday life, but
bacterial infections can seriously affect healing. Figure 7e shows that Tao et al. [55] proposed
a flexible TENG patch which can kill nearly 100% of escherichia coli and Staphylococcus
aureus and can greatly promote the proliferation and migration of fibroblasts, providing
a convenient solution for the treatment of infected wounds. In smart medical devices,
self-powered implants can extend the operating time of the device in the body and reduce
the need for high-risk repeat surgery. In Figure 7f, Kim et al. prepared a commercial coin-
sized TENG with a high-performance inertial drive based on body motion and gravity and
realized a self-charging cardiac pacemaker system, which has great application prospect in
the field of implantable electronic devices [56].
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smart skin field [57,58]. As shown in Figure 8a, Cao et al. [59] demonstrated a TENG for 
intelligent electronic skin using a fish bladder membrane as friction. This TENG has good 
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Figure 7. (a) A TENG used as an ultra-sensitive pressure sensor for breathing and pulse monitoring.
(Reproduced with permission [51]. Copyright 2019 Elsevier). (b) A TENGTENG used as a vital sign
monitoring and finger click communication sensor. (Reproduced with permission [52]. Copyright
2019 Elsevier). (c) Wearable TENG–based exercise system for upper limb rehabilitation post neuro-
logical injuries. (Reproduced with permission [53]. Copyright 2021 Elsevier). (d) Superhydrophobic
liquid–solid Contact TENG as a droplet sensor for biomedical applications. (Reproduced with permis-
sion [54]. Copyright 2020 American Chemical Society). (e) TENG promoting the healing of infected
wounds. (Reproduced with permission [55]. Copyright 2021 Elsvier). (f) Self-rechargeable cardiac
pacemaker system with TENG. (Reproduced with permission [56]. Copyright 2021 Springer Nature).

9. Application of TENG in the Smart Skin Field

With the popularity of smart skin, TENG came into view due to its superior biocom-
patibility and portability. More and more research has been conducted on TENG in the
smart skin field [57,58]. As shown in Figure 8a, Cao et al. [59] demonstrated a TENG for
intelligent electronic skin using a fish bladder membrane as friction. This TENG has good
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biocompatibility and good sensitivity of about 446 nA·s2 m−1 and 50 nA%−1 RH, which
can monitor the position of charged objects within a range of 0–27 mm from the device.
Most TENG as smart skin, in the process of working with the increase of time, will produce
varying degrees of damage, affecting TENG performance. As presented in Figure 8b, Wu
et al. designed a TENG that can be fully self-healing under environmental conditions [60].
TENG with a transmissibility of 88% can be stretched to more than nine times its original
length and can be used as a self-powered active tactile electronic skin. TENG has high trans-
mittance (88%) and good elasticity (up to nine times its original length and can be used as a
self-powered active tactile electronic skin. The connection system of TENG and a dielectric
elastomer actuator (DEA) was the application prospect of triboelectric nanogenerator in
electronic skin and soft robots. Figure 8c shows that Wang et al. proposed a TENG-tunable
intelligent light modulator that can facilitate the practical research of TENG-DEA systems
in the field of microcomputer systems and human-computer interaction [61].

TENG, as a smart skin, has irreplaceable portability and comfort. A TENG-based
self-powered sensor has great potential in sign language interpretation. Park et al. [62]
presented a human skin-inspired, highly sensitive, sustainable, self-powered triboelectric
flex sensor (STFS) for sensing the human finger gestures and converting the correlated
sign language into voice and text. Lee et al. [63] showed a sign language recognition and
communication system comprising triboelectric sensor integrated gloves, AI block, and the
VR interaction interface.

In the insets of Figure 8d, Chen et al. demonstrated a TENG-based wearable sign
language translation system which can accurately translate American Sign Language
gestures into speech. The work indicated that the recognition rate was as high as 98.63%
and the recognition time was less than 1 s [64]. In the development process of the smart
skin field, various sensors are inevitably integrated with robots. Cao et al. demonstrated
a sensing friction skin-intelligent soft actuator which can be used to evaluate grasping,
sensing, and energy collection performance [65]. For smart skin, ultra-high sensitivity,
biocompatibility, and transparency are very important indicators. You et al. designed
TENG-based soft and stretchable smart skin. This smart skin can withstand up to 600%
pressure and light transmittance up to 62.5% [66]. The ability to provide sustainable energy
for personal electronic products provides an effective method for self-powered portable
electronic devices to achieve sustainable operation. Figure 8e details how the integration
of wireless technology and stretch electronics is critical for human–computer interaction,
and Wang et al. demonstrated a highly stretchable transparent wireless electronic device
consisting of silver nanofiber coils and functional electronics for power transmission
and information communication, further advancing TENG’s development in the field of
electronic skin [67]. As shown in Figure 8f, Wang et al. [68] demonstrated a TENG-based
tactile sensor that is highly stretchable and transparent and can detect objects made from
any common material. This TENG has great potential for tactile sensing and touchpad
technology applications.
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Figure 8. (a) Fish bladder film-based TENG used for smart electronic skin. (Reproduced with
permission [59]. Copyright 2020 American Chemical Society). (b) Self-healing and self-powered
electronic skin. (Reproduced with permission [60]. Copyright 2019 John Wiley and Sons). (c) The
optical modulator realized by TENG. (Reproduced with permission [61]. Copyright 2017 John Wiley
and Sons). (d) Intelligent sign language translation device. (Reproduced with permission [64].
Copyright 2020 Springer Nature). (e) Concept illustration of the fabrication process of Ag NFs
electrode with bioinspired net structure. (Reproduced with permission [67]. Copyright 2020 Springer
Nature). (f) Design of cross-type triboelectric sensor matrix for tactile imaging. (Reproduced with
permission [68]. Copyright 2018 John Wiley and Sons).

10. The Matching of Capacitance and Load in TENG Detection Systems and the Cost
of TENG Detectors

TENG, to study electrical output, is often regarded as a capacitance model. When
TENG is connected to external load storage, the power output can be low owing to system
mismatches or incomplete charge transfer. Standardization of TENG takes into account
environment-related life cycle assessment (LCA) and power equalization cost (LCOE),
including cost, labour, recovery process, and so on [69]. A lot of research results have been
obtained in the environmental life cycle evaluation of collection technologies. However,
there is little research on the LCA of TENG, while research on the LCA of other energy
collectors is ongoing. LCA focuses on environmental hotspots and global environmental
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impacts. Therefore, environmental profile and cost analysis for environmental life cycle
evaluation and technical-economic analysis (TEA) is of great importance. Assessing the
environmental status and carbon footprint of TENG will help reduce the cost of energy
production for TENG and provide indicators of whether TENG poses new challenges to
the environment.

11. Summary and Perspective

TENGs have attracted more and more attention as efficient low-frequency energy
collectors and sensors. In this paper, the TENG-based self-powered sensors, including
the triboelectrification effect, Maxwell’s displacement current, and quantitative analysis
method, were systematically introduced. We reviewed recent advances in self-powered
TENG-based sensors (such as sports, environment, medical, and other fields). We discussed
the factors of TENG-based sensor output: surface charge density σ, effective contact area S,
and energy conversion efficiency through equipment design. However, as a self-powered
sensor, how to further improve the sensitivity of TENG, how to solve the mechanical loss
of its friction, and how to improve its durability are also problems to be solved. We must
consider the TENG quantitative analysis method and the cost of the TENG detector during
its industrialization. We believe that TENG-based sensors will flourish in the future through
technical perfection. The TENG-based self-powered sensor is a feasible way to realize
sustainable self-sustaining micro/nanosystems in nanotechnology. It has great potential
for applications in sensing, medicine, infrastructure/environmental monitoring, defense
technology, and even personal electronics. Self-powered sensors can solve some of the
key problems facing the world’s sustainable development. This is the goal of TENG-based
self-powered sensors, now and in the future.
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