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Abstract

In this paper, we propose a new susceptible–vaccinated–exposed–infected–

recovered with unaware–aware (SEIR/V‐UA) model to study the mutual effect

between the epidemic spreading and information diffusion. We investigate the

dynamic processes of the model with a Kinetic equation and derive the expression

for epidemic stability by the eigenvalues of the Jacobian matrix. Then, we validate

the model by the Monte Carlo method and numerical simulation on a two‐layer
scale‐free network. With the outbreak of COVID‐19, the spread of the epidemic in

China prompted drastic measures for transmission containment. We examine the

effects of these interventions based on modeling of the information‐epidemic and

the data of the COVID‐19 epidemic case. The results further demonstrate that the

epidemic spread can be affected by the effective transmission rate of awareness.
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1 | INTRODUCTION

Nowadays, the novel coronavirus disease (COVID‐19) as a major

health hazard is spreading around the world and has attracted

extremely wide public attention.1–3 There have been many mathe-

matical models proposed to describe the spread of the pandemic.

Jia et al.4 proposed an infectious disease dynamic extended

susceptible–infected–recovered (SIR) model to describe the spread

of COVID‐19 and used time‐series data of COVID‐19 to estimate the

epidemic trend and the basic reproductive number. Cooper et al.5

developed a SIR model that provided a theoretical framework to

investigate the spread of the COVID‐19, and used diverse significant

parameters to compare the impact of control measures and policies

various communities have taken. Liu et al.6 proposed a susceptible–

asymptomatic–infected–recovered (SAIR) model on the social net-

works to describe the spread of COVID‐19 and used the epidemic

data to explain why the number of the infected rose in the early

stage of the outbreak in Wuhan. Tang et al.7 studied a deterministic

susceptible–exposed–infected–removed (SEIR) compartmental model

to describe the spread of COVID‐19 and used the data of the

COVID‐19 epidemic case to estimate the basic reproduction number.

Carcione et al.8 implemented an SEIR model to calculate the number

of infected cases and casualties of the epidemic. Fang et al.9 studied

the parameterized SEIR model to simulate the spread dynamics of the

COVID‐19 outbreak and conducted a sensitivity analysis to assess

the impact of different control measures.

Some researchers further investigated the interaction between

epidemic spreading and awareness diffusion, where epidemic spreading

in one layer was affected by information propagation taking place in

another layer based on the framework of the multiplex networks.

Gao et al.10 combined the spread of information and diseases to

propose an unaware–aware–unaware with susceptible–infected–

susceptible (UAU‐SIS) model and presented a comprehensive analysis to

demonstrate a probabilistic description of intra‐layer and interlayer

dynamical processes by microscopic Markov chain approach (MMCA).

Ariful Kabi et al.11 established a two‐layer susceptible–vaccinated–

infected–recovered with unaware–aware (SIR/V‐UA) epidemic model to

study the effect of information spreading in the spatial structure of the
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vaccination game on epidemic dynamics. Wang et al.12 considered

an unaware–aware–unaware with susceptible–infected–recovered

(UAU‐SIR) model to investigate the multiple influences between

awareness diffusion and epidemic propagation, and used the MMAC

method to demonstrate that epidemic threshold was correlated with the

awareness diffusion as well as the topology of epidemic networks.

Existing studies indicate that outbreak of an epidemic through a physical

contact network can trigger the spreading of information awareness

through other different channels, such as online social networks and

mass media, which will, in turn, affect epidemic spreading.13–15

Considering that the COVID‐19 epidemic contains the char-

acteristics of the incubation period, a well‐mixed SEIR model can be

applied to describe the dynamics of the epidemic process based on

the epidemiological characteristics of individuals and clinical pro-

gression of COVID‐19,16–19 and the information awareness has a

great influence on preventing disease and alerting people toward

taking preventative measures against diseases. Therefore, we

introduce a coupled model of “SEIR/V‐UA” to study the interplay

between the COVID‐19 epidemic spreading and the diffusion of

awareness in multiplex networks.

This paper is organized as follows: In Section 2, we introduce

the model, describe the dynamical process evolution, and derive the

expression for epidemic stability. In Section 3, we analyze the

rationality of the model by the COVID‐19 epidemic case. Finally,

conclusions and discussions are presented in Section 4.

2 | THE COUPLED EPIDEMIC ‐
INFORMATION MODEL

In this study, we introduce the SEIR/V‐UA model into a coupled

network, which includes two layers, one is a physical layer re-

presenting the epidemic spreading with the coefficient of infection

rate β, the coefficient of migration rate of latency γ, the rate of

recovery µ, the coefficient of vaccinated rate p, the other is the

information layer where the diffusion of the awareness evolves with

a diffusion rate α . Moreover, there is a one‐to‐one correspondence

between the nodes of networks in the upper and lower layer, which

means that the same node sets will be participated in epidemic

spreading and information diffusion in the model, as shown in

Figure 1. We will analyze several coupling relations next in our paper.

As the possible changes of state of the nodes and their probabilities

at every time step can be represented by dynamic transition diagram,

we can get the differential equations20–22 which describes the dynamical

process by using a dynamic transition diagram, as shown in Figure 2.

We separate the N individuals into five classes in the epidemic

layer. At time t, each individuality i can be one of the five statuses:

Susceptible (S), exposed (E), infected (I), recovered (R), and vaccinated

(V). There are two possible states for each individual in the informa-

tion layer: Unaware (U) or aware (A). When an individual accepts the

information of the epidemic from social networks and then transforms

the status from unaware to aware in the information layer, these

individuals will have a certain probability of being vaccinated.

We summarize the definitions of key parameters of the dynamic

equation in Table 1.

As shown in Figure 2, equations for the nodes change of each

warehouse can be established as the following system:
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2.1 | Equilibrium analysis

There are three disease‐free equilibrium in the following

system (2.1):

(i) The disease‐free equilibrium E1 = (N 0 0 0 0 N).

F IGURE 1 Instruction of the coupled I‐E model. Information is
diffusing on the upper layer, and the individuals have two possible
states: Unaware (U) or aware (A). The epidemic is propagating on the
lower layer, where the individuals have five possible states:
Susceptible (S), exposed (E), infected (I), recovered (R), and
vaccinated (V)

F IGURE 2 Dynamics of the epidemic based on the
susceptible–vaccinated–exposed–infected–recovered model and
information propagating unaware–aware model
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(ii) The endemic equilibrium E2 = (Nμ

β
−Nμ

βγ

p −N
β

p Nβγ γ μ

βγ

‐ +p p 0 N).

(iii) The disease‐free equilibrium E3 = (0 0 0 N 0 N).

The Jacobian matrix of the system (2.1) is:
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The Jacobian of the system (2.1) at E1 is:
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TABLE 1 The definitions of key parameters

Parameter Description

α Probability of becoming aware

β The coefficient of infection rate

γ The coefficient of migration rate of latency

μ Probability of recovery

p The coefficient of vaccinated rate

F IGURE 3 ρI and ρA as functions for different values of α. The values of other fixed parameters are β = .3, γ = 0.15, μ = 0.4, p = .6. Epidemic
layer is a Barabási–Albert network with 5000 nodes (average degree <k> = 4), the information layer is the same network

F IGURE 4 ρI and ρA as functions for different values of β. The values of other fixed parameters are α = .3, γ = 0.15, μ = 0.4, and p = .6.
Epidemic layer is a Barabási–Albert network with 5000 nodes (average degree <k> = 4), the information layer is the same network
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F IGURE 5 ρIand ρA as functions for different values of μ. The values of other fixed parameters are α = .3, β = .3, γ = 0.15, and p = .6. Epidemic
layer is a Barabási–Albert network with 5000 nodes (average degree <k> = 4), the information layers are the same network

F IGURE 6 The government takes measures
based on information to control the spread of
COVID‐19
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The eigenvalues of this matrix are:
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where e1 is eigenvalues of the above Jacobian matrix at the point E1.

It is obvious that J (E1) has a positive root. Therefore, the disease‐free
equilibrium E1 is an unstable saddle point.23,24

The Jacobian of the system (2.1) at E2 is:
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It is obvious that negative numbers ℵ1 = 0, and ℵ2 = 0 are ei-

genvalues of J (E2), thus, we only need to consider the roots of

ℵB4
4+ ℵB3

3+ ℵB2
2+ ℵB1 +B0 = 0, where

β= >B 0,4

TABLE 2 Different government control measures and corresponding β values

No. Date Government measures β References

1 December 29, 2019–January 22, 2020 (1) Early detection of the COVID‐19 .64 [9]

(2) Preliminary control [30]

2 January 23–29, 2020 (1) Public health level 1 response of 31 provinces .46 [9]

(2) Strict exit screening [30]

(3) Medical support from other regions of China

(4) Cancellation of mass gatherings

(5) Methodological improvement on the diagnosis and treatment strategy

3 January 30–February 11, 2020 (1) Public health level 1 response of 31 provinces .21 [9]

(2) Strict exit screening [30]

(3) Domestic and international medical support

(4) The larger scale of cancellation of mass gatherings

(5) Further methodological improvement on the diagnosis and treatment strategy

(6) Spontaneous household quarantine by citizens

(7) Two newly built hospitals' put into use

(8) A clinical trial of perspective medicines

4 February 12–20, 2020 (1) Public health level 1 response of 31 provinces .09 [9]

(2) Strict exit screening [30]

(3) Further medical support from home and abroad

(4) Massive online teaching in a postponed semester

(5) Orderly resumption of back to work

(6) Addition of new diagnosis method—clinically diagnosis in Hubei province

(7) Interagency mechanism

(8) Further exploration of effective therapeutic strategy

Note: The data of COVID‐19 in the study were mainly obtained from the National Health Commission of the People's Republic of China, Chinese Center

for Disease Control and Prevention, World Health Organization, and various websites of Chinese government agencies, official media, as well as some

previous studies as of February 29, 2020.

TABLE 3 The rate of key parameters

Parameter Rate References

γ 1/7 [9]

μ 1/17.8 [9]
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γβ αβ μβ= + + >B 0,3
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By a direct calculation, we have that <B 01 and <B 00 . Then by

the theorem of Routh–Hurwitz,25,26 it follows that the epidemic

equilibrium E2 is an unstable saddle point.

The Jacobian of the system (2.1) at E3 is:
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The eigenvalues of this matrix are:

α γ μ= ‐ − − −e p(00   ),3

F IGURE 7 S value simulation curve of the
susceptible population

F IGURE 8 I value simulation curve of the
susceptible population
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where e3 is eigenvalues of the above Jacobian matrix at the point E3.

It is obvious that E3 has six negative roots. Therefore, the disease‐
free equilibrium E3 is asymptotically stable.

2.2 | Numerical simulations

We perform extensive Monte Carlo numerical simulations27,28 for

the model by running 1000 times and obtain the ρA and ρI. As shown

in Figure 3, we consider the upper layer and lower layer as both

scale‐free networks with the same average degree <k> = 4. Then we

draw the density of infected individuals with a different information

transmission rate α on coupled networks. At the beginning of

the outbreak, epidemic spreading and awareness propagation are

synchronized and an individual at the epidemic layer is randomly

selected as the source of infection. Once an individual in the

epidemic layer is infected, the corresponding individual in the in-

formation layer will become self‐aware and take some protective

measures to avoid being infected. Therefore, the probability that an

individual with self‐awareness is infected by others will be reduced

to some extent.

Then, as awareness rate α increases, the fraction of infected

individuals shows a decreasing tendency from an overall perspective

in Figure 3. The phenomenon demonstrates that the rate of aware-

ness individuals in the population will affect the prevalence of epi-

demic, and it once again shows that awareness plays an important

role in the process of epidemic spreading.

And then, as shown in Figure 4, we can observe that the in-

fectious diseases rate β has a greater impact on the prevalence of

awareness, and the greater infectious diseases rate β will lead to the

higher prevalence of awareness.

Finally, the parameter μ has a minimal influence on the density

of the number of individuals infected, as shown in Figure 5. On the

first layer, the decline of the parameter μ indicates that infected

individuals are less likely to forget information about the epidemic,

causing no apparent influence on the density of disease.

Therefore, in the matter of the value of α, it is a very effective

way to control the epidemic spread by improving the transmission

F IGURE 9 Daily number of new
confirmed cases in China

F IGURE 10 Data fitting of the infected population
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rate of information awareness because the individuals who are

aware of the epidemic can take effective protection measures.

3 | COVID ‐19 EPIDEMIC ANALYSIS

With the outbreak of the COVID‐19, individuals interact with each

other through their social relationships to get information about the

epidemic (e.g., friendships on Facebook and follower relationships on

Twitter).29 In such a structured host population (i.e., represented by a

social network), when the awareness about COVID‐19 can spread

from person to person as shown in Figure 6, they will take effective

measures to protect themselves.

The spread of COVID‐19 in China prompted four stages of strict

measures for transmission containment. We examine the effects of

these interventions based on modeling of the unfolding epidemic

and obtain the corresponding rate of key parameters as shown in

Tables 2 and 3.

Data fitting is the process of fitting models to data and analyzing

the accuracy of the curve, which is performed by Matlab in this study.

The S value curve of the susceptible population and the I value curve

of the infected population can be simulated as shown in Figures 7

and 8. It's clear that the greater the impact of government control

policies, the smaller the value of β , the slower the slope of the decline

of S value, and the lower the distribution of the I value. The data in

Figure 9 shows many of the newly confirmed cases on February 12,

due to the adoption of new diagnostic methods. Subsequently, the

number of newly confirmed cases per day drop rapidly. Figure 10

shows the data fitting curve of the number of infected individuals,

indicating that with the strengthening of prevention and control

measures, the number of people infected is gradually decreasing.

4 | CONCLUSION

In this paper, we propose a SEIR/V‐UA model to describe the in-

terplay between epidemic spreading in physical networks and

awareness diffusion in information networks.

Then, we conduct theoretical analysis and describe the dynamic

process of the coupled network in the form of a Kinetic equation. The

expression for epidemic stability is also derived by the eigenvalues of

the Jacobian matrix, and all the theoretical calculations are in good

agreement with extensive simulation. Therefore, the Kinetic equation

plays an important role in analyzing the process of epidemic spreading

on a two‐layer network.
We research the effect of the three parameters α, β, and μ on the

dynamic propagation process. The parameter α stands for the rate of

diffusion of information about the epidemic, whereas the parameters

β and μ represent the Infection and recovery rates. The simulation

results show that information can affect behavior changes and

further affect the dynamic propagation process of the epidemic layer.

The parameter α affects not only the spread of the epidemic but also

the diffusion of information on the other layer. The parameter β can

also affect the information layer. However, the parameter μ has little

influence on the density of the infected individuals, but it can influ-

ence the information propagation. This phenomenon indicates that

to control the spread of infectious diseases, it is necessary to

strengthen self‐protection, improve individual immunity and expand

information dissemination.

We examine the effects of drastic measures prompted by the

Chinese government. Through simulation and data fitting, the model

shows the existing peaks and has sufficient goodness of fit. The declines

in the dynamic trend of the infected individuals highlight the effective-

ness of the four‐phase stringent measures the Chinese government has

taken.
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