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Accurate and fast characterization of the subtype sequences of Avian influenza A virus
(AIAV) hemagglutinin (HA) and neuraminidase (NA) depends on expanding diagnostic
services and is embedded in molecular epidemiological studies. A new approach
for classifying the AIAV sequences of the HA and NA genes into subtypes using
DNA sequence data and physicochemical properties is proposed. This method simply
requires unaligned, full-length, or partial sequences of HA or NA DNA as input. It allows
for quick and highly accurate assignments of HA sequences to subtypes H1–H16 and
NA sequences to subtypes N1–N9. For feature extraction, k-gram, discrete wavelet
transformation, and multivariate mutual information were used, and different classifiers
were trained for prediction. Four different classifiers, Naïve Bayes, Support Vector
Machine (SVM), K nearest neighbor (KNN), and Decision Tree, were compared using
our feature selection method. This comparison is based on the 30% dataset separated
from the original dataset for testing purposes. Among the four classifiers, Decision Tree
was the best, and Precision, Recall, F1 score, and Accuracy were 0.9514, 0.9535,
0.9524, and 0.9571, respectively. Decision Tree had considerable improvements over
the other three classifiers using our method. Results show that the proposed feature
selection method, when trained with a Decision Tree classifier, gives the best results for
accurate prediction of the AIAV subtype.

Keywords: Avian influenza A Virus, k-gram, discrete wavelet transform, multivariate mutual information, decision
tree, K-nearest neighbor, Naïve Bayes, support vector machine
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INTRODUCTION

The influenza virus belongs to the family of Orthomyxoviridae,
comprising a viral envelope containing glycol protein forms with
a central nucleus. There is a viral genome and other proteins
in the main nucleus. Almost eleven proteins are encoded in
the viral genome by eight pieces of single-stranded negative-
sense RNA. There are three influenza virus forms: A, B, and
C (Kawaoka, 2006). Avian influenza A Virus (AIAV) remains
a significant threat to human and animal health (Guan et al.,
2010; Suarez, 2010). To track the distribution and examine
developmental patterns of AIAVs, expensive testing systems
and detailed molecular epidemiological studies are needed.
The better phylogenetic clustering and subtyping of AIAVs is
focused on the genetic and antigenic properties of the proteins
and genomes of the immune-dominant viral hemagglutinin
(HA) and neuraminidase (NA) in at least 16 HA and 9 NA
subtypes at present (Suarez, 2010). Events of re-assortment and
rapid HA gene mutation driven by immune-selective pressure
cause antigenic drift and antigenic shift of the affected viruses,
respectively (World Health Organization, 2011; Mak et al., 2012).
Furthermore, these processes result in a rapid progression of
phylogenetic diversification that questions the classification of
subtypes and clusters needed for molecular epidemiological
analysis (Altschul et al., 1990).

Hemagglutination-inhibition (HI) assay and neuraminidase-
inhibition (NI) assay are the standard ways of determining
the Avian Influenza virus subtype of HA and NA segments
capable of distinguishing antigenic variations even from the
same subtype. Nevertheless, as described in Pederson (2008),
the inventory of reference reagents must identify antigenically
distinct influenza viruses and antibody specificities from multiple
lines of a single hemagglutinin subtype. It requires extensive
laboratory assistance to produce and refine reagents while dealing
with uncharacterized viruses or antibody subtypes. It is much
cheaper and faster to use machine learning approaches to forecast
virus history, but it can usually still deliver high levels of accuracy
(Pederson, 2008).

A variety of machine learning methods classify biological
information relationships or connections, band similar genetic
components, and interpret and forecast diseases (Salzberg
et al., 1998; Yuan et al., 2003; Sami and Takahashi, 2005).
Machine learning includes the automated development of data
models and the use of these systems for automatic inference
and prediction (Langley, 1996). Since it is about classifying
viral strains, recognizing the role of specific positions, and
modeling them for future prediction, which addresses viral
influenza analysis, machine learning techniques have a lot to
offer. Biological evidence has many characteristics, complicated
relationships, and often lacks a clear explanation behind it.
Machine learning techniques work well with this information due
to their ability to tackle randomness, software noise volatility,
and generalizations.

To follow evolutionary patterns and spreading paths, methods
for accurate identification of the individual clusters are essential.
The WHO H5N1 Evolution Working Group developed a
standardized nomenclature scheme based on the genetic

resemblance between the entire usable HA sequences. It was the
primary step toward the classification of highly pathogenic avian
influenza virus (HPAIV). This annotation offers the possibility
of separating HPAIV into different classes and lines. The
group recently defined 32 clades as a hierarchical tree based
on genetic resemblance (Pleschka, 2012). Sadly, this process
does not have a rapid generic procedure for assigning freshly
formed and uncategorized HA sequences. Common approaches
to the assignment of new sequences while computing lengthy
phylogenetic methods consist of a simple search for BLAST
(Edgar, 2004) against a collection of categorized HA sequences
or the development of a smaller phylogenetic tree of assigned and
unclassified sequences.

Nonetheless, such approaches are inhomogeneous and
cumbersome. There is no guideline for selecting the BLAST
reference list or the phylogenetic tree, nor a clear standard
for assigning sequences to a particular subtype or clade. The
“Highly Pathogenic H5N1 Clade Classification Tool” (CT) has
recently been introduced as a free web tool by the Influenza
Research Database (IRD1). The IRD web tool is based on
phylogeny but maintains the tree of sequences already classified
(Squires et al., 2012). Outside of the creation of the IRD, to
follow a different strategy, ClassyFlu was developed to focus on
Hidden Markov models with a discriminatively trained profile.
ClassyFlu’s assignment capacity is tested and contrasted to IRD-
CT and other methods of classification. ClassyFlu quickly assigns
HA and NA sequences to the related subtypes and also correctly
integrates H5 sequences, identical to IRD-CT, into the H5N1
clade scheme (Van der Auwera et al., 2014). These approaches
were used to predict the Influenza A virus affecting humans
and have some limitations. Previously, surveillance tools for
predicting the spread of avian influenza virus was developed
(Yousefinaghani et al., 2020). Furthermore, a machine learning
method was also devised to predict global reservoirs for low
pathogenic avian influenza virus using big data (Gulyaeva
et al., 2020) but there was no specific strategy to classify only
Avian Influenza A virus subtypes, so there was a need to
develop a method.

To suggest an efficient statistical approach for the prediction
of the Avian Influenza A virus subtype, we merged three
methods of extraction of features: k-gram, discrete wavelet
transformation (DWT), and multivariate mutual information
(MMI). The k-gram can get the frequency characteristics of an
item in a sequence and has been used related to computational
biology (Wong et al., 2013). The association details between two
nucleotides can be examined by MMI (Ding et al., 2016). The
frequency and location information can be captured by DWT
(Shen et al., 2017). We can train a classifier to achieve the
Avian Influenza Virus subtype’s best performance and accurate
prediction with these features. We also analyzed the significance
of each of these methods. The results of four different classifiers,
Decision Tree, Support Vector Machine (SVM), Naïve Bayes, and
K nearest neighbor (KNN), were compared using our feature
selection method. Decision Tree had significant improvements as
compared to the other three classifiers.

1http:/www.fludb.org
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MATERIALS AND METHODS

Hemagglutinin (HA) Subtypes
Our classification method’s parameter training requires the class
definition to which the later input sequences are assigned.
Sequences and their predefined identification from the NCBI
Influenza Virus Tool http:/www.ncbi.nlm.nih.gov/genomes/FLU
were used, although this could be achieved de novo in theory by
sequence clustering or using phylogenetic analysis. A maximum
of 16 categories was used, including H1–H16 subtypes of avian
influenza virus. The training data contains all HA gene sequences
that were at least 1,600 bp long and published through December
2019. In particular, 26,586 sequences were obtained for the
classifier. Data was distributed as 70% for training and 30% for
testing for the classifier (Supplementary Table 1).

Neuraminidase (NA) Subtypes
Based on all usable non-redundant NA sequences reported
in the NCBI Influenza Virus Tool http:/www.ncbi.nlm.nih.
gov/genomes/FLU by September 2019, we picked for training
collection. Short sequences and sequences comprising unclear
nucleotides were excluded. Based on sequence similarities, a
representative subset was chosen for each NA subtype N1–N9 of
avian influenza virus. In total, 20,690 sequences were selected for
the classifier, and the same criteria of distribution of 70% data
for training and 30% for testing were adopted. The training data
contains all NA gene sequences that were collected and were at
least l 1,300 bp long (Supplementary Table 2).

Physicochemical Properties
Nucleotides have 16 2-permutations, that is, AA, AT,..., AC.
According to an earlier research study, each permutation has six
physicochemical properties (Twist, Tilt, Turn, Move, Slip, and
Rise) linked to its physical structure. The unique values for the
six new structural physical properties revised by Goni et al. are
summarized in Table 1 (Goñi et al., 2007).

TABLE 1 | Six physical structural properties and its values.

2-Nucleotide Twist Tilt Roll Shift Slide Rise

AA 0.026 0.038 0.020 1.69 2.26 7.65

AC 0.036 0.038 0.023 1.32 3.03 8.93

AG 0.031 0.037 0.019 1.46 2.03 7.08

AT 0.033 0.036 0.022 1.03 3.83 9.07

CA 0.016 0.025 0.017 1.07 1.78 6.38

CC 0.026 0.042 0.019 1.43 1.65 8.04

CG 0.014 0.026 0.016 1.08 2.00 6.23

CT 0.031 0.037 0.019 1.46 2.03 7.08

GA 0.025 0.038 0.020 1.32 1.93 8.56

GC 0.025 0.036 0.026 1.20 2.61 9.53

GG 0.026 0.042 0.019 1.43 1.65 8.04

GT 0.036 0.038 0.023 1.32 3.03 8.93

TA 0.017 0.018 0.016 0.72 1.20 6.23

TC 0.025 0.038 0.020 1.32 1.93 8.56

TG 0.016 0.025 0.017 1.07 1.78 6.38

TT 0.026 0.038 0.020 1.69 2.26 7.65

One length (l+ 1) nucleotide sequence L =
N1N2 . . . . NlNl+1 that are based on physical structural
properties can be transformed into one l × 6 matrix PC as
in Equation (1).

PC =



PM [N1N2, P1] PM [N1N2, P2] . . . PM [N1N2, P6]
PM [N2N3, P1] PM [N2N3, P2] . . . PM [N2N3, P6]

. . .

. . .

. . .

PM
[
NlNl+1, P1

]
PM

[
NlNl+1, P2

]
. . . PM

[
NlNl+1, P6

]


(1)

Where PM
[
NiNi+1, Pj

]
is the structural physical properties

seen in Table 1, NiNi + 1 shows one 2-permutation of
nucleotides positioned at sequence L, location i and i+ 1, and
one physicochemical element is denoted as Pj .

k-Gram
The k-gram (Wu et al., 1992; Nanni, 2005) contains a pair of
values (v, c), where v is an attribute and c is the number of
occurrences of this function. The v is described as a mixture of
several nucleotide units to evaluate the DNA sequence, and c is
the number of variations in the series. For example, v belongs
to the combined collection of 2 nucleotides to describe a DNA
sequence with 2-gram, and c is the number of occurrences of each
combination in the entire sequence.

k-gram is used to retrieve the features from the sequences,
and the list G of a combination of nucleotides can be represented
as follows.

G = G1 ∪ G2

= {Ni} ∪
{

NiNj
}

(2)

= {A, C, G, T, AA, AC, . . . , TT}

where G1 has 4 features with 1-gram, G2 has 16 features with 2-
gram, NiNj ∈ {A, C, G, T}.

Using k-gram to reflect DNA fragments (20 features), we
can use simple statistical methods to obtain clear and intuitive
sequence knowledge. When two segments are similar and have
an additional related function, they may be more compatible in
composition. The amount of each nucleotide in a section and
their combinations indicates its composition directly.

Multivariate Mutual Information
In many previous works (Cerf and Adami, 1998; Nanni and
Lumini, 2006; Cao and Xiong, 2014), multivariate mutual
information (MMI) was used to extract features from sequence
data. Thus, MMI can also represent the nucleotide sequence.
Inspired by previous research (Caragea et al., 2012; Ding
et al., 2016), we suggest an advanced procedure for collecting
nucleotide sequence features.

We first describe a set of 2-tuple nucleotide composition T2
and a set of 3-tuple nucleotide composition T3 to use multivariate
shared knowledge on a DNA sample.

T2 = {AA, AC, AG, AT, CC, CG, CT, GG, GT, TT} (3)
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T3 =

{
AAA, AAC, AAG, AAT, ACC, ACG, ACT, AGG, AGT, ATT,

CCC, CCG, CCT, CGG, CGT, CTT, GGG, GGT, GTT, TTT

}
(4)

Multivariate mutual information is not linked to nucleotide
order in a tuple, so if two tuples have different orders but the same
constant, they might have the same details and be classified as
one tuple type. By T2 and T3, we can see that there is no structure
with various order tuples, with 10 elements in T2 and 20 elements
in T3.

For the elements in T2, we describe 2-tuple mutual
information as follows:

I (N1N2) = f (N1, N2) ln
f (N1, N2)

f (N1) f (N2)
(5)

For the elements in T3, we describe 3-tuple mutual information
as follows:

I (N1N2N3) = f (N1, N2) ln
f (N1, N2)

f (N1) f (N2)
+

f (N1, N3)

f (N3)
ln

f (N1, N3)

f (N3)

−
f (N1, N2, N3)

f (N2) f (N3)
ln

f (N1, N2, N3)

f (N2) f (N3)
(6)

For a specific section, f (Ni) is the occurrence of nucleotide
Ni in this section, as f (Ni, Nj) and f

(
Ni, Nj, Nl

)
are the

occurrences of 2-tuple and 3-tuple, correspondingly. M was used
to represent the feature sets obtained from multivariate mutual
information (30 features) and is defined as follows:

M = {I(AA), I(AC), . . . , I(TT), I(AAA), I(AAC), . . . , I(TTT)}
(7)

Discrete Wavelet Transform
Discrete Wavelet Transformation (DWT) is a transformation
process where there are discreetly sampled wavelets that can
collect both the details on information and frequency about
location. This transition is a signal projection onto the function
of a wavelet (Shensa, 1992). A rational and reliable model was
recently built using wavelet packet decomposition and machine
learning methods to predict the interspecies transmission of
avian influenza virus from avian to human (Qiang and Kou,
2019). Once applied to DNA sequence review, DWT will degrade
the nucleotide sequence’s physicochemical properties into a
collection of coefficients at multiple resolutions. Furthermore,
it also extracts the noise details from the high-passage profiles
(Shen et al., 2017; Wang et al., 2017). Figure 1 is a 1-level
separate transformation of the wavelet. Where PC stands for
physiochemical properties, in total, there are six physicochemical
properties. The details can be divided into a high-frequency
band with noisier information and a low-frequency band with
more reliable signals at each level and should be converted
at the next stage.

Both high and low-frequency band signals are separated at
each point of DWT. They measure each band’s average, mean,
and standard deviation values. The first five components
contain more critical information in the compact low-
frequency band to reflect the series. Then we can get

FIGURE 1 | The discrete wavelet transform process.

4 + 4 + 5 features from each DWT stage, and the entire
transformation process has 13 features. Within the physical
property matrix PC, using a 1-level DWT method, we can
extract 13 features. These six physicochemical characteristics
can have 78 features. To denote this vector of the DWT
function, we use the symbol D. Mean, Standard deviation,
and average log of all six physicochemical characteristics are
also taken separately as features adding 18 features. Figure 2
illustrates the flow chart of the methodology followed in this
study. A combination of three feature selection methods,
k-gram, Multivariate Mutual Information, and discrete wavelet
transformation, were used to convert sequence information into
feature vectors.

Model Definitions
For the classification of Avian Influenza A virus subtype, we
implemented several ML models for comparison. For the ML
models, we applied Decision Tree, K Nearest Neighbor (kNN),
Support Vector Machine, and Naïve Bayes for classification; the
Naive Bayes classifier (John and Langley, 1995; Mitchell, 1997;
Yu, 2001) is particularly suited to high-dimensional datasets
based on the so-called Bayesian theorem. Given its apparent
simplicity, this approach can also outperform more sophisticated
classification systems (Huang et al., 2003). A decision tree is a

Frontiers in Genetics | www.frontiersin.org 4 January 2021 | Volume 12 | Article 599321

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-599321 January 28, 2021 Time: 12:4 # 5

Humayun et al. Classification of Avian Influenza A Virus

FIGURE 2 | Flow chart of the methodology followed in this study.

method used to solve both classification and regression tasks
for supervised automated learning. It derives rules from a list
of objects defined in a class by a set of attributes. It is easy
to grasp the derived laws since they can be visualized as a
tree-like network (Kamiński et al., 2017). The kNN method
(Cover and Hart, 1967) for supervised learning classification
is one of the simplest instance-based learning algorithms. The
classification is based on the consensus between the classes of
the unknown entity’s closest k neighbors. The SVM classifier is
statistically reliant on the Vapnik-Chervonenkis (VC) dimension
(Haykin, 2009; Vapnik, 2013) and supports the soft margin
hypothesis. It uses sequential minimal optimization (SMO) to
solve the optimization problem. The issue is divided by SMO
into a set of as minimal as possible sub-problems, which are
then analytically solved. The aim is to differentiate groups
from hyperplanes.

RESULTS

Evaluation Criteria
To test the accuracy in classification of Avian Influenza A Virus,
four statistical measurements were used to define its efficiency
and performance as follows:

Accuracy =

∑l
i=1

TPi+TNi
TPi+TNi+FPiFNi

l

Precision =
∑l

i=1 TPi∑l
i=1 TPi + FPi

Recall =
∑l

i=1 TPi∑l
i=1 TPi + FNi

F1 score = 2
P × R
P + R

where true positive (TP) and true negative (TN) are total
sequences that were predicted correctly as per their respective
influenza A virus classes. While false positive (FP) and false
negative (FN) are the numbers of mispredicted sequences
according to respective influenza A virus classes. A total number
of classes are denoted by l.

Performance of Different Classifiers
Using Our Method
The results of four different classifiers, Naïve Bayes, Decision
Tree, K nearest neighbor (KNN), and Support Vector Machine
(SVM), were compared using our method of feature selection.
Our method involves the combination of three feature selection
methods, i.e., N-gram, Multivariate Mutual Information, and
Discrete Wavelet Transformation. This comparison is based
on the 30% dataset separated from the original dataset
for testing purposes. The results are listed in Table 2.
Among the four classifiers, Decision Tree was the best,
and Precision, Recall, F1 score, and Accuracy were 0.9514,
0.9535, 0.9524, and 0.9571, respectively. Decision Tree had
the greatest accuracy over the other three classifiers using
our method.

The Precision of the Decision Tree is 0.9514, which is slightly
lower than that of KNN. The recall of the Decision Tree is
0.9535, which is better than the other classifiers. The F1 score
of Decision Tree is 0.9524, which is also slightly lower than
KNN, which is 0.9562. Still, the Decision Tree’s overall accuracy
at 0.9571 is more significant than all other classifiers, while
Naive Bayes, SVM, and KNN have 0.7438, 0.8671, and 0.9485
accuracies, respectively. Through these findings, we can see that
our approach has greater accuracy and has produced more
precise results.

As there is very little difference between Decision Tree and
KNN we further used log loss function to find out the best

TABLE 2 | Performance of classifiers.

Classifier Precision Recall F1 score Accuracy

Naïve Bayes 0.7355 0.7662 0.7366 0.7438

Decision Tree 0.9514 0.9535 0.9524 0.9571

SVM 0.9256 0.8694 0.8928 0.8671

KNN 0.9595 0.9534 0.9562 0.9485

Bold digits are greatest values of each evaluation criteria.
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TABLE 3 | Log loss function values of decision tree and KNN.

CLASSIFIER LOG LOSS

Decision Tree 0.51

KNN 0.94

Bold digits are greatest values of each evaluation criteria.

classifier. The log loss function measures the efficiency of a
classification model with a probability value varying from 0 to
1. If the expected value diverges from the real mark, the value of
the log loss function increases. As shown in Table 3, Decision tree
has a log loss value of 0.51 and KNN has 0.94, which shows that
decision tree has performed better.

Feature Analysis
The involvement of every feature of the classifier is not similar.
We performed tests using various combinations of features to
assess each feature’s value and tested the qualified classifier.
We used the Decision Tree because it was the best amongst
other classifiers. The same dataset used for testing purposes was
selected to perform this experiment.

The results of the experiments are given in Table 4. Initially,
each feature set was used to train the classifier separately and
use the testing data for evaluation. The k-gram records the
presence and combination of a nucleotide. It could have 20
features. The simplest way to represent a nucleotide sequence
is through these features. The classifier achieved 0.9161 on
Precision using this 20-D element, 0.9175 on Recall, 0.9165 on
F1 score, and 0.9114 on Accuracy. The MMI was able to obtain
30 features. They replicate the shared information in sequence.
This form of representation is somewhat more composite than

TABLE 4 | The performance of our method by using different features.

Features Precision Recall F1 score Accuracy

k-gram 0.9161 0.9175 0.9165 0.9114

MMI 0.9437 0.9410 0.9421 0.9380

Combination 1 0.9469 0.9446 0.9455 0.9466

DWT 0.9149 0.9159 0.9152 0.9071

Combination 2 0.9452 0.9457 0.9466 0.9445

Combination 3 0.9342 0.9395 0.9366 0.9438

Combination 1 are features of 50-D, including k-Gram and MMI. Combination 2
are features of 126-D, including MMI and DWT. Combination 3 are features of 116-
D, including N-Gram and DWT. Bold digits are greatest values of each evaluation
criteria.

the k-gram, and it contains more important information. The
classifier provided more substantial results with this 30-D feature
than k-gram, with a gain of 0.9380 in accuracy.

Among the three individual feature sets, MMI’s 30-D feature
trained the best classifier with precision reaching 0.9437, and
the Recall, F1 score, and Accuracy were 0.9410, 0.9421, and
0.9380, respectively. DWT has not performed well individually
as compared to the other classifiers. The combination of k-gram
and MMI with 50-D features was the best combination of
Precision methods at 0.9469, Recall 0.9446, F1 score 0.9455, and
Accuracy 0.9466.

Figure 3 shows the effect of all items of a single function.
There are overall 146 bars in this chart. The index of every feature
is represented on the x-axis. The score of feature importance
calculated using different feature selection methods implemented
on the Decision Tree classifier is represented on the y-axis. It was
seen that they were of varying significances to the classifier, and
clearly, MMI had the most significant effect (the green color bars).

FIGURE 3 | The importance score of each feature.
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TABLE 5 | Running time of all feature extraction methods.

K-GRAM MMI DWT COMBINE

Running Time(s) 2.00 8.06 45.23 59.70

DISCUSSION

Avian influenza A Virus is major concern for both human
and animal health (Guan et al., 2010; Suarez, 2010). The
re-assortment and frequent HA gene mutations cause antigenic
shift and drift of affected viruses, respectively (World Health
Organization, 2011; Mak et al., 2012). Moreover, these events
cause the rapid development of phylogenetic diversification that
requires the subtyping and cluster classification for molecular
epidemiological analysis (Altschul et al., 1990). Previously, no
specific analysis was performed only on Avian influenza Viruses.
It was seen through experimental results that our approach
successfully extracts useful information from the DNA sequence
and physical structure, particularly the combination of three
feature extraction methods presented in this paper. The method
proposed can utilize the benefit of the Avian Influenza Virus
sequence’s original structure. The high precision of our approach’s
predictive results indicates that the sequence of virus subtypes
around the candidate site is necessary for prediction. After
analyzing the feature performance experiment, it was found that
DWT had more input to the classifier than k-gram and MMI
methods. They are generating features from physicochemical
properties. So, whether or not the physical structure around it
affects an HPAIV in a very significant way.

A method’s running time on large data sets is a significant
feature in assessing its feasibility. In order to get an intuitive
grasp of our method’s computational complexity, it was applied
via Python script and was executed on a P700 computer from
Think Station. This machine contains two Intel R Xeon RE5
CPUs with 12 core and 320 G RAM. The CPU rate of the clock
was 2.40 GHz. This software explicitly used one core and fewer
than 10 G ram. We approximately calculated the runtime of each
method of feature extraction, as described in Table 5. From these
results, we can see that the k-gram algorithm was the shortest, and
the cycle time is 2.00 s. The DWT method was more complicated
because it took more than 45.23 s for execution. This shows that
k-gram was far less complicated. MMI was strong compared with
DWT, and its runtime was 8.06. The total execution time of our
method was 59.70.

Using our method, the Decision Tree algorithm could learn
550 sequences per second when training the classifier. This is
very fast. This means our method could complete the training
process in 10 min for a dataset size of one million dataset. This
low difficulty makes our approach ideal for functional purposes.

CONCLUSION

A novel method was proposed in this paper for predicting
subtypes of Avian Influenza Virus. We developed and
implemented a combination of three methods for extracting

sequence and physical structure features from HA and NA
subtype sequences. K-gram, discrete wavelet transformation,
and multivariate mutual information were the three methods
of extraction of features. We also analyzed the significance of
each of these methods. The results of four different classifiers,
Decision Tree, Support Vector Machine (SVM), Naïve Bayes,
and K nearest neighbor (KNN), were compared using our
feature selection method. This comparison is based on the
30% dataset separated from the original dataset for testing
purposes. Among the four classifiers, Decision Tree was the
best, and Precision, Recall, F1 score, and Accuracy were 0.9514,
0.9535, 0.9524, and 0.9571, respectively. Decision Tree had
significant improvements as compared to the other three
classifiers using our method. Our method effectively predicted
the Avian influenza Virus subtype, based on the evaluation
value and comparison.
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