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Abstract: Insulin-like growth factor 1 receptor (IGF1R) is an attractive drug target for 

cancer therapy and research on IGF1R inhibitors has had success in clinical trials. A 

particular challenge in the development of specific IGF1R inhibitors is interference from 

insulin receptor (IR), which has a nearly identical sequence. A few potent inhibitors that 

are selective for IGF1R have been discovered experimentally with the aid of computational 

methods. However, studies on the rapid identification of IGF1R-selective inhibitors  

using virtual screening and confidence-level inspections of ligands that show different 

interactions with IGF1R and IR in docking analysis are rare. In this study, we established 

virtual screening and binding-mode prediction workflows based on benchmark results of 

IGF1R and several kinase receptors with IGF1R-like structures. We used comprehensive 

analysis of the known complexes of IGF1R and IR with their binding ligands to screen 

specific IGF1R inhibitors. Using these workflows, 17 of 139,735 compounds in the NCI 

(National Cancer Institute) database were identified as potential specific inhibitors of 

IGF1R. Calculations of the potential of mean force (PMF) with GROMACS were further 
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conducted for three of the identified compounds to assess their binding affinity differences 

towards IGF1R and IR. 

Keywords: IGF1R; IR; virtual screening; binding mode prediction; selective inhibition  

 

1. Introduction 

Insulin-like growth factor 1 receptor (IGF1R) is a transmembrane tyrosine kinase that is widely 

found in many cell types and is essential for normal fetal and postnatal growth and development [1]. 

IGF1R is composed of two extracellular α-subunits bound to a transmembrane-spanning β-subunit 

through a disulfide bond. The cytoplasmic tyrosine kinase domain is located in the β-subunit. The 

kinase catalytic ability is activated through phosphorylation at specific Tyr residues [1] after structural 

rearrangements caused by the binding of IGF1 or IGF2 to the ectodomain of IGF1R. Phosphorylation 

leads to conformational changes that provide a binding site for diverse proteins that initiate signaling 

cascades. These signaling cascades are mainly involved in proliferation and protection from 

programmed death. Therefore, IGF1R is a regulator that is vital to growth, differentiation and 

apoptosis. Attention to IGF1R has been increasing since the end of the 1980s because of growing 

evidence that IGF1R-mediated signaling is crucial for the development and progression of multiple 

types of cancer. The antitumor activity of IGF1-IGF1R signaling inhibitors has been examined since 

2000. Small-molecule inhibitors and antagonistic monoclonal antibodies against IGF1R have shown 

results in clinical trials. By 2010, clinical research on several drug candidates reached Phase III [2]. 

Current potential IGF1R inhibitors can be grouped into three main types. The first group is  

ATP-competitive inhibitors, which block ATP binding to IGF1R, preventing kinase activation.  

This group includes tyrphostins [3], pyrrolopyrimidines and pyrazolopyrimidines [4],  

benzimidazole-pyridones [5], imidazopyrazines [6], and others. Some compounds in this first group 

show selectivity for IGF1R against other similar kinase receptors including insulin receptor (IR) [2]. 

The second group is ATP-noncompetitive inhibitors, including picropodophtllin [7], AG538 [8] and 

SBL02 [9]. The main inhibition mechanism of these ligands is competing with IGF1R substrates rather 

than competing with ATP binding. The third group contains inhibitors whose mechanism is unknown 

or that work indirectly. This group includes simvastatin [10] and inhibitors of heat shock protein 90 

(HSP 90) [11], whose inhibition decreases the number of IGF1R molecules in the plasma membrane.  

Although many small-molecule inhibitors of IGF1R have been discovered, key problems remain, 

including the identification of inhibitors specific to IGF1R rather than IR. The kinase protein IR shares 

high sequence similarity to IGF1R but has a different role in development. Thus, inhibition of IR by 

IGF1R inhibitors might lead to risks. Compounds that show selective inhibition of IGF1R over IR 

have been discovered through experimental methods such as identification of a novel class of  

pyrrole-5-carboxaldehyde compounds by Bell et al. in 2005 [12]. Computational methods have been 

introduced to solve the specificity problem. In 2010, a new class of IGF1R-selective inhibitors was 

discovered by Krug et al. through experimental methods that included computer-aided docking 

analysis [13]. Also in 2010, Liu et al. identified two thiazolidine-2,4-dione analogs as potent and 

selective IGF1R inhibitors with the aid of hierarchical virtual screening and SAR (structure-activity 
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relationship) analysis [14]. Jamakhani et al. generated three-dimensional structures of IGF1R using 

homology modeling and identified IGF1R inhibitors via molecular docking, drug-like filtering and 

virtual screening [15]. However, rapid identification of new lead compounds as potential selective 

IGF1R inhibitors through receptor structure-based virtual screening and inspection of differences in 

ligand interactions with IGF1R and IR through docking analysis are rare. Here, we designed and built 

computational workflows to solve these problems. In this study, a virtual screening workflow was 

established using benchmark results from docking software analysis of seven kinase proteins with 

structures highly similar to IGF1R. Experimentally proven inhibitors and decoy inhibitors were 

carefully extracted from the DUD database [16]. Effects of this workflow were further tested on 

IGF1R with another ligand set, and the results showed that known inhibitors of IGF1R were ranked by 

statistical significance ahead of randomly selected ligands. With the aid of this workflow, 90 of 

139,735 compounds in the NCI database were selected as potential inhibitors of IGF1R [17]. To 

further investigate the inhibition selectivity of these compounds, we created a binding-mode prediction 

workflow that correctly predicted the binding modes of the ligands for IGF1R and IR, based on 

comprehensive analysis of known complexes of IGF1R and IR with their binding ligands. With this 

workflow, we generated and inspected the binding modes of 90 previously selected compounds against 

IGF1R and IR. As a result, 17 compounds were identified as inhibitors specific to IGF1R and not IR. 

Among these, three showed the best inhibition potency, and the calculations of the potential of mean 

force (PMF) with GROMACS were further conducted to assess their binding affinity differences 

towards IGF1R and IR. Checking the compounds selected from NCI with our workflows with results 

published by the Developmental Therapeutics Program (DTP) [17], showed that most of the selected 

compounds had growth inhibition effects on many human tumor cell lines. The inhibitory activity of 

these identified ligands for IGF1R in vitro or in vivo requires further experimental verification.  

2. Results 

2.1. Virtual Screening Workflow  

Score functions in popular, free, academic software were chosen as candidate components for a 

virtual screening workflow to identify IGF1R inhibitors. The functions were forcefield-based grid 

scores in DOCK [18], empirical scores in Surflex [19] and FRED [20], and semi-empirical scores in 

Autodock [21] and Autodock Vina [22]. A virtual screening workflow was built after a series of tests 

and statistical analyses of docking results for seven kinase receptors with structures similar to IGF1R 

and their corresponding ligand sets from the DUD database [16] (Figure 1). The workflow was 

designed to have two rounds of screening. The first round decreased the size of the compound pool, 

and the second selected IGF1R inhibitors. Details about software setup in the workflow can be found 

in the experimental section. 
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Figure 1. The flow chart of the virtual screening workflow. 

 

A combination of both cgo and shapegauss score functions in FRED was used in the first round of 

virtual screening, because the two score functions were the fastest and had relatively consistent 

performance for the seven chosen receptors. As listed in Table 1, the average time for each molecule 

was calculated and the total time for 100,000 (close to the number of compounds in the NCI database) 

was predicted for each software tool. Table 1 shows that FRED performed much faster than the other 

tools. Performance comparisons for each score function are in Figure 2. We concluded that the FRED 

cgo score performed more stably and better than other docking packages for the seven kinase protein 

targets. This led to the highest average enrichment factor (EF) of 2.12 (calculation of EF is in section 3.1) 

and a low standard deviation (SD) of 0.78 (Figure 2a,b). Although the shapegauss score did not 

perform as well as the cgo score, yielding a lower average EF score of 1.68, it appeared out a 

complementary ability of enriching known active ligands with the cgo score. This was reflected most 

clearly by docking with EGFr, SRC, PDGFrb and VEGFr2. Therefore, we were confident that the 

combination of the cgo and shapegauss score functions would be a rapid and effective tool to reduce 

the size of a large compound pool. Through enrichment distribution analysis, we found that both of the 
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two score functions enriched known active ligands most densely within the top 1% of the rank. To 

insure that enough hits could be contained in the reduced compound pools, the top ranked 5% from 

both scores in practical applications were to combined, causing the size of molecular pool reduced to 

not more than one tenth. 

Table 1. Average screening time taken by chosen software (computing environment: Dell 

precision T7500 workstation with 12 core E5620 cpu and 8G RAM). The second column 

indicates the time taken for per molecule in average (unit: second), and the third column 

predicted total time for calculation of 100,000 molecules, as well as the fourth column 

transformed time unit from seconds to days for the third column. 

Software/time Per (s) Total (s) Days (d) 

Fred 0.415 41500 0.480 
Surflex 7.461 746100 8.635417 
Dock 8.474 847400 9.80787 

Autodock 94.787 9478700 109.7072 
Vina 33.497 3349700 38.76968 

Figure 2. Known-binding-ligands-enrichment ability of chosen software against seven 

kinase receptors. Statistic analysis was performed in top 20% of the rank. (a) enrichment 

factors (EFs) of ligands docking to seven kinase receptors by chosen softwares;  

(b) Average value and SD of software’s docking EFs (taking from Figure 2a) among seven 

kinase receptors. 

 

The reduced compound pool was used for the second round of virtual screening, which used the 

Surflex and Vina consensus scores. Both the Surflex and Vina score functions performed well in most 

cases and the highest number of consensus results was obtained using these two scores. Figure 2a 

shows that none of the chosen score functions effectively enriched known active ligands for the 

receptors. This was in accordance with current benchmarking studies showing that no score always 

performed well for every receptor [23]. Structural flexibility makes kinase receptors a challenging 

protein target for current docking software according to the DUD [16]. To solve difficulties in 

enriching potential inhibitors, we adopted the principle of choosing the consensus results of the  

top-ranked results from two reliable score functions as our final selection [23]. Figure 2b shows that 

AutoDock gave higher average EF values than Surflex, Vina or DOCK, but its SD was as high as 1.69, 

indicating an unstable performance. Figure 2a shows that Autodock provided good enrichment 
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capabilities against the kinase receptors EGFr and SRC. However, the results were relatively poor for 

other receptors (FGFr, P38, VEGFr2 and PDGFrb). The grid score from DOCK had the smallest SD, 

but did not give the best performance for any of the chosen receptors, resulting in the lowest average 

EF of 0.92. Comparing the four docking packages, Surflex gave the best enrichment capabilities for 

the receptors FGFr1 and CDK2, with modest enrichment of the receptors P38, SRC and VEGFr2 and 

poor enrichment of EGFr and PDGFrb. This led to an average EF of 1.73 and an acceptable average 

SD of 0.96. For Vina, low EFs were seen for the receptors FGFr1 and PDGFrb, but high, stable 

enrichment was seen for the five other receptors. This resulted in an average EF of 1.59 and an 

acceptable average SD of 0.86 (Figure 2a,b). Although Vina did not perform as well as Surflex, 

increasing the exhaustiveness parameter value improved its performance for a given receptor (data not 

shown). Both Vina and Surflex were fast (Table 1). Based on these results, we chose the Surflex and 

Vina consensus scores for the second round of virtual screening. Using each software package, 

distributions of enriched active ligands were calculated. Detailed results are shown in Figure S1 of 

Supplementary File.  

Because IGF1R was not in the receptor target set of the DUD database, we constructed a test dataset 

for IGF1R to evaluate workflow performance. The test dataset had two parts: one for known IGF1R 

inhibitors and the other for random ligands. Score distributions from FRED (cgo and shapegauss), and 

Vina and Surflex were checked by virtual screening. Figure 3 shows percentages of known inhibitors 

and random ligands for each score interval of the score functions. The score distributions generated by 

cgo, shapegauss and Vina all fit to a normal distribution. Therefore, a student’s t-test was carried out 

for a confidence interval of 99%. The results confirmed that known inhibitors scored significantly 

better than random ligands when Vina, cgo and shapegauss were tested. To further inspect the 

enrichment capabilities of each score function, we studied the relationship between EFs and top 

fractions of the ranked compounds. Figure 3 shows that for the cgo score, EFs were maintained at 

higher than 6.0 in the range of 0.3%–4.69% of the top-ranked molecules. For the shapegauss score, 

EFs were higher than 5.0 in the range of 1.14%–11.32% of the top-ranked compounds. Therefore, both 

cgo and shapegauss scores worked well for the first round of virtual screening for IGF1R. Vina 

exhibited similar score distributions as shapegauss, with EFs at levels higher than 5.0 in the range of 

1.29%–10.55% of the top ranked molecules. For Surflex, score distributions of known inhibitors 

exhibited two peaks (Figure 3e–h), unlike the random ligands, which exhibited normal distributions. 

The EFs for known inhibitors in the first peak reached levels higher than 6.0. In summary, although the 

EFs in the top 10.18% of the ranked molecules were higher than 4.85 using Surflex (Figure 3h) and 

slightly lower than 5.0, enough potential IGF1R inhibitors were enriched into the top 10% by Vina and 

Surflex. Diversity set III [17], which was treated as the collection of random ligands, was a 

representation of pharmacophores of the entire NCI database we planned to screen. Therefore, the 

score distributions of the dataset of random ligands for each score function reflected the results from 

the NCI database to some degree. Overlaps in score distribution were seen between the known 

inhibitor set and the diversity set for each score function. This suggested a high chance that a number 

of potential IGF1R inhibitors were in the NCI database (Figure 3a,c,e,g). These results indicated that 

the assembled virtual screening workflow performed well in identifying potential IGF1R inhibitors. 
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Figure 3. Score distributions of known inhibitors and random ligands generated by (a–b) cgo, 

(c–d) shapegauss, (e–f) Vina and (g–h) Surflex. Results of known inhibitor collections 

were recorded as “igf” and that of random ligands or diversity set III were recorded as “div”.  

 

2.2. Binding Mode Predicting Workflow 

We collected nine nonredundant crystal structures of complexes of human IGF1R with binding 

ligands from the PDB database [24]. Superposition of the structures showed high flexibility in the 

ATP-binding site of IGF1R (Figure 4). Backbone movements upon binding of some ligands makes it 

difficult to predict ligand-binding positions compared to rigid active sites because docking software 

packages treat receptor backbones as rigid. Calculating and analyzing the physiochemical 
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characteristics of crystal structures of ligands in the nine complexes showed great variation in the 

molecular sizes and rotatable bond numbers of the binding ligands. This made predicting the binding 

position challenging. For this reason, we found few software programs that could predict ligand 

binding positions correctly. To gain more accuracy, we assembled a multisoftware docking workflow 

(Figure 5).  

Figure 4. Superimposition of nine PDB crystal structures of Insulin-like growth factor 1 

receptor (IGF1R). Picture was made by Pymol V0.99 [25]. The active site focused here is 

locating in the cave formed by lobes respectively near the N- and C-terminals. It can be 

seen from the picture that the regions near the focused active site are of high flexibility 

(indicated by a black arrow). 

 

Figure 5. The flow chart of the binding mode predicting workflow.  
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We clustered the nine ligands into four groups according to molecular weights (MW) and rotatable 

bond numbers (FLEX) of the binding ligands (Table 2). The first group contained ligands with  

MW ≤ 440 and FLEX ≤ 0.16 (calculation of MW and FLEX is in Section 3.3). This group is 

represented by the crystal structure of ligands 2OJ9, 2ZM3 and 3LVP. This type of ligand favors an 

extended position that is not deep in the active site. The small size of these ligands means the receptor 

does not need large alterations in conformation (Figure 6). The second type of ligand showed high 

flexibility and a small size with MW ≤ 470 and FLEX > 0.16. This type contained the crystal structure 

of ligands 4DCE, 3QQU and 3I81. This ligand type tended to bind shallowly in the active site in a 

folded position that did not occupy much of the active site (Figure 6). The third ligand type had a small 

MW (>440 and ≤470) and low FLEX (≤0.16), such as crystals structure of 3D94 and 3O23. For this 

type of ligand, a not-small size and rigid structure favored a large space in the active site and deep 

positioning with an extended structure (Figure 6). The fourth group contains ligands with MW > 470, 

represented by crystal ligands of 3F5P. This type of ligand possessed a high molecular weight and high 

flexibility, such as 3F5P with a FLEX value of 0.293. This type of flexible ligands appeared to be large 

enough that protein backbone movements might be required to accommodate the ligand, and molecular 

dynamics (MD) techniques might be needed to solve this type of flexible docking problem. Figure 5 

shows that for the first group, a rigid docking method was used to predict the binding mode. For the 

second group, during position-generating, the receptor was kept rigid. However, more positions were 

used for selection, flexibility was introduced into the receptor, and during calculations of DOCK 

AMBER, MD steps were increased. For ligands in the third group, high side-chain flexibility around 

the active-site residues was needed, even though the backbone rather than the side chains needed to be 

movable to change the active site conformation. Vina that allowed side chains around the active-site 

residues to move was used to generate possible positions for the third group of ligands. DOCK AMBER 

with more receptor flexibility was introduced to increase the chance that correct conformations would 

appear in the top ranking. Finally, we assumed that the last group of ligands would require more space 

in the active site, so their binding modes were predicted by a flexible mode of Vina with DOCK AMBER. 

The exhaustiveness parameter value was doubled for Vina to increase the likelihood to top-ranking 

reasonable poses of ligands with high flexibility that required additional optimization steps.  

Table 2. Values of molecular weight and fractions of rotatable bonds of the nine crystal 

ligands and characteristics of four ligand types after clustering. In-place root-mean-square 

deviation (RMSD) values of re-docked ligands were listed in the last column. “Mismatch” 

indicates that there is no suitable predicting poses available. 

PDB.ID Molecular weight Fraction of rotatable bonds RMSD value (ångstroms) 

2OJ9 380 0.147 1.104 
2ZM3 406 0.133 1.250 
3LVP 329 0.111 0.218 
3QQU 404 0.167 1.866 
3I81 438 0.179 3.836 

4DCE 459 0.256 4.071 
3D94 460 0.093 1.512 
3O23 448 0.111 Mismatch 
3F5P 524 0.293 Mismatch 
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Figure 6. Comparisons of crystal and predicted poses of ligands from seven IGF1R 

complexes. Pictures were made by Pymol V0.99 [25]. Atoms were colored according to 

their type. Cyan lines represents protein residues of IGF1R, cyan sticks represents crystal 

poses of ligands, and green sticks represents predicted pose of ligands. 

 

Crystal structures of ligands were extracted and re-docked to IGF1R using our workflow. In-place 

RMSD (root-mean-square deviation) was calculated to evaluate atom distances between the crystal 

structure conformation and the predicted conformation for each ligand. Rigid docking yielded 

sufficiently informative results for the first ligand group, with RMSD values between re-docked 

ligands and crystals that were all less that 1.3 ångstroms (Table 2). In the second group of ligands, for 

3QQU, the RMSD value was less than 2.0 ångstroms, indicating a correctly predicted binding position 

for the entire ligand. RMSD values for 4DCE and 3I81 were 4.071 ångstroms and 3.836 ångstroms, 

considered failed dockings. However, we accepted these ligands because we found that the dockings 

for most parts of the ligands were positioned correctly. Visual inspection showed that the orientations 

of the key pharmacophoric interactions were also correctly placed. Furthermore, for these two ligands, 

high RMSD values resulted from side fragments extending in an incorrect direction rather than a 

mismatch of the entire structure (Figure 6). These situations have been encountered in other studies 

that accepted these types of dockings as roughly correct [26]. For 3D94, in the third group, whose 

FLEX was less than 0.1, the correct binding position had an RMSD value of 1.512 ångstroms (Table 2). 

For 3O23, also in the third group, correct structures were generated by Vina, but were not identified by 

DOCK AMBER. A correct binding model could not be generated for the only ligand in the fourth group.  

We collected four additional crystal structures of ligands that complexed with IR from the PDB 

database and re-docked them into the ATP-binding site of IR to evaluate the trained binding-predicton 

workflow (Figure 7). In-place RMSD between the crystal structure conformation and the re-docked 
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conformation for each ligand was calculated as in Table 3. Three of the four ligands were predicted 

correctly with in-place RMSD values less than 4.10. These results indicated the workflow worked well 

for predicting binding modes to IR.  

Figure 7. Comparisons of crystal and predicted poses of ligands from three 1R complexes. 

Pictures were made by Pymol V0.99 [25]. Atoms were colored according to their type. 

Cyan lines represents protein residues of 1R, cyan sticks represents crystal poses of 

ligands, and green sticks represents predicted pose of ligands. 

 

Table 3. Values of molecular weight and fractions of rotatable bonds of the four insulin 

receptor (IR)-crystal ligands and characteristics of ligand types after clustering. In-place 

RMSD values of re-docked ligands were listed in the last column. “Mismatch” indicates 

that there is no suitable predicting poses available. 

PDB.ID Molecular weight Fraction of rotatable bonds RMSD value (ångstroms) 

3EKN 443 0.190 1.207 
3ETA 499 0.200 3.693 
3EKK 504 0.233 4.065 
2Z8C 358 0.233 Mismatch 

In summary, our binding mode-predicting workflow effectively predicted ligand positioning in the 

ATP-binding sites of IGF1R and IR. Using this workflow, we examined the characteristics of the 

interactions between each ligand and IGF1R/IR, such as interacting atoms and binding affinities.  

Thus, this workflow was used to analyze potential specific inhibitors of IGF1R by comparing  

ligand-IGF1R/IR interactions in detail. 

2.3. Screening Potential Specific Inhibitors of IGF1R from the NCI Database  

The NCI/DTP Open Chemical Repository [17] contains synthetic compounds and pure natural 

products. The repository, maintained by DTP, supplies samples for nonclinical investigations. For the 

139,735 compounds in the NCI database, 11,504 compounds were detected in the first round of virtual 

screening. After the second round of virtual screening, 90 compounds were identified for the binding 

mode-predicting workflow for specific inhibitors of IGF1R. Scores of the selected ligands were 

calculated for each step. Ligand scores selected by cgo were −476 to −310; by shapegauss were −785 

to −503; by Surflex were 12 to 8.24; and by Vina were −12 to −9.6. These results were similar to the 

scores of known inhibitors of IGF1R (Figure 3).  
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Although IGF1R and IR share almost 100% sequence identity in the ATP-binding site, the receptors 

have differences, probably in local conformation [27]. To explore the selective inhibition mechanisms, 

we simulated the binding modes of five published selective inhibitors of IGF1R, using the binding 

mode-prediction workflow (Figure 8). The first two inhibitors, AG1024 and AG1034 which belong to 

Tyrphostins, had been reported to show significant inhibition selectivity on IGF1R against IR [28]. 

The docking results showed two possible binding modes that seemed equally reasonable (Figure 9a,c). 

For AG1024, a single H-bond was formed between a Br atom and the NH group of the Met100 

residue, while another H-bond was formed between the N atom of the CN group and the Lys51’ NH3 

group (Figure 9a). A different possibility was seen for AG1034 in which the N atom of the CN group 

formed H-bonds with residues Met100 and Glu98, which are located in the connecting section of the 

N- and C-terminal lobes. In addition, the O atom of the OH group formed an H-bond with Lys51 in the 

N-terminal lobe (Figure 9c). Although these inhibitors had two different binding possibilities, we still 

detected common characteristics of their binding modes. We concluded that H-bonds between polar 

atoms of the ligands and Met100 and Lys51 were crucial for stabilizing the complex structure. These 

types of key ligand-receptor interactions have been seen previously. H-bonds between Glu98/Met100 

of IGF1R and ligands have been discovered not only in the ATP-IGF1R complex but also for about 10 

other inhibitors [29–35]. H-bonds between Lys51 of IGF1R and ligands have not been extensively 

investigated but could still be important [12]. In docking with IR, we found that ligands could  

not be reasonably positioned for formation of these H-bonds (Figure 9b,d). Two other inhibitors,  

NVP-ADW742 and NVP-AEW541, showed >16-fold and 27-fold greater inhibition of IGF1R than  

IR [2], with comparable agreement in binding modes by our docking models (Figure 9e,g). N and NH2 

groups on the purine base of each ligand formed three H-bonds with Glu98 and Met100, and the  

O-atom formed an H-bond with Lys51. Moreover, we observed hydrophobic interaction between the 

phenyl group of NCP-AEW541 and the side chains of Phe65/Phe28 within the C-lobe. The same kind 

of interactions was seen for NVP-ADW742. Hydrophobic interactions have been reported in the 

crystal structure of complex of IGF1R and the inhibitor PQIP [33]. Therefore, we concluded that 

hydrophobic interactions between Phe65/Phe28 side chains and nonpolar groups of ligands are also 

important for stabilizing the receptor-ligand binding state. However, when docked to IR, these  

NVP-ADW742 and NVP-AEW541 showed incorrect positioning for the formation of these 

interactions (Figure 9f,h). Another inhibitor, PQIP, is reported to have 14-fold more selective 

inhibition of IGF1R than IR, and the crystal structure of the complex of PQIP and IGF1R is published 

(Figure 9i) [33]. However, we obtained a mode of PQIP binding to IR that was very similar, with the 

only difference in the deep part of the IR active site. The three Phe residues did not form a clear 

hydrophobic interaction with the nonpolar groups of PQIP, while IGF1R did (Figure 9j) [33]. 

Therefore, the cause of the selective inhibition of this type of ligand was still unknown. Based on our 

results, we concluded that H-bonds between ligands and the NH3 group of Lys51 and residues in the 

lobe-connecting sections such as Met100 and Glu98 were important to the high affinity of the IGF1R 

inhibitors. Hydrophobic environments around Phe65 and Phe28 were also important for containing the 

lipophilic groups of ligands and stabilizing the complex structure. However, the conformation of the 

entire kinase domain of IR might make proper interaction with some of the compounds difficult.  

These were the compounds that exhibited highly selective inhibition against IGF1R rather than IR. 
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Figure 8. 2-D structures of reported five IGF1R specific inhibitors.  

 

Figure 9. Comparisons of binding poses of reported selective inhibitors against IGF1R and 

IR. As shown in (a–j), atoms were colored according to their type. Protein residues were 

represented by lines and ligands were represented by sticks. Green lines and sticks exhibit 

ligands’ binding poses in IGF1R active site, while cyan ones exhibit ligands’ binding poses in 

IR active site. Yellow dash lines indicate H-bonds automatically exhibited by Pymol while 

the one with a number on it indicate H-bond that was not identified by Pymol V0.99 [25]. 
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Based on our observations, we identified compounds as potential selective inhibitors of IGF1R if 

they formed at least one H-bond with Lys51 or Glu98/Met100 of IGF1R and had a ring structure near 

residues 98–100, while showing none of the these interactions with IR. Compounds that formed  

H-bonds with Lys51 and Glu98/Met100 in parallel should be considered strong potential inhibitors of 

IGF1R. Compounds that exhibit hydrophobic interactions with Phe65/Phe28 as well as H-bonds with 

Lys51 and Glu98/Met100 should also be considered as powerful IGF1R inhibitors. According to these 

rules, 17 of 90 compounds were selected as potential specific inhibitors of IGF1R (Figure 10). Among 

these, three compounds (351570, 660826 and 649812) were considered as very powerful inhibitors  

of IGF1R. 

Figure 10. 2-D structures of 17 identified potential IGF1R specific inhibitors. N atoms 

were colored blue and O atoms were colored red. C atoms were kept in black. 

 

Tens of thousands of compounds have been analyzed by the DTP Human Tumor Cell Line Screen 

for growth inhibition of human cancer cell lines [17]. Using NCI data, we confirmed that 29 of the 90 

potential inhibitors of IGF1R and 12 of the 17 specific inhibitors of IGF1R showed growth inhibition 

effects on many human tumor cell lines. The predicted binding modes against IGF1R and IR for the 17 

compounds are in Figure S2 in Supplementary File. 

2.4. Binding Affinity Comparisons for Ligands of IGF1R and IR with PMF Calculations 

In MD simulations of a ligand-receptor system, the PMF curve approach can be constructed as a 

ligand is pulled from the binding site to bulk water. This estimates the free energy change from the 

bound to the unbound state [36]. We selected three potent compounds (351570, 660826 and 649812) 

for MD simulations to explore binding affinity differences to IGF1R and IR. Center of mass pulling 

was employed to calculate receptor-ligand binding free energies ΔGbind. During MD simulations, 

pulling directions were carefully controlled to make sure that disassociation paths were similar enough 

to each other [37].  
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Figure 11. The potential of mean force (PMF) curves of the three compounds complexing 

with IGF1R and IR and the known ligand of IGF1R (2OJ9).  

 

Figure 11 shows that for compound 351570, the PMF curve of the ligand-IGF1R complex  

increased as the ligand disassociated shortly after the equilibrating procedure. The curve flattened at  

16.5 kCal mol−1 when disassociation was completed. For the ligand-IR complex, the PMF curve rose 

less steeply than for IGF1R, indicating a less stable binding state between IR and compound 351570 

than between 351570 and IGF1R. Table 4 shows that compound 351570 showed much higher binding 

to IGF1R, with a ΔGbind of −13.5 kCal mol−1, than to IR with a ΔGbind of −7.2 kCal mol−1. Similarly, 

compound 649812 showed much higher binding to IGF1R, with a ΔGbind of −5.92 kCal mol−1, than to 

IR with a ΔGbind of −0.60 kCal mol−1. However, compound 660826 exhibited much higher binding to 

IR, with a ΔGbind of −5.39 kCal mol−1, than to IGF1R with a ΔGbind of −3.09 kCal mol−1. Further, 

the MD simulation was performed on the crystal IGF1R complex (PDB ID: 2OJ9). The binding free 

energy (ΔGbind) of known ligand of IGF1R was −4.38 kCal mol−1. Based on these results, we 

estimated that compound 649812 may be an ideal, potential specific IGF1R inhibitor, for the ΔGbind 

of IGF1R-649812 complex is lower than that of crystal IGF1R complex, while the ΔGbind of  
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IR-649812 complex is obviously higher than that of the crystal IGF1R complex. Although compounds 

351570 showed much higher binding to IGF1R than IR, the binding free energy of the IR-351570 

complex was a little lower than that of the crystal IGF1R complex. Compound 351570 may also stably 

bind into the active site of IR. In addition, according to DTP results, compounds 660826 and 649812 

were tested for ability to inhibit the human cancer cell growth, including non-small cell lung, colon, 

breast, ovarian, melanoma, leukemia, renal, prostate and central nervous system cells. Inhibition 

activity of compound 351570 towards various cancer cells has not yet been reported. The in vitro or  

in vivo inhibitory activity of these compounds to IGF1R requires experimental verification. 

Table4. The binding energies of the three compounds to IGF1R and IR and the known 

ligand to IGF1R (2OJ9). 

Receptor name Compound ID ΔG bind (kCal mol−1) 

IGF1R 351570 −13.5 
660826 −3.09 
649812 −5.92 
2OJ9 −4.38 

IR 351570 −7.2 
660826 −5.39 
649812 −0.60 

3. Experimental Section  

3.1. Experimental Data Set for Virtual Screening Benchmarking 

All protein targets and corresponding ligand sets for virtual screening benchmarking were from the 

DUD database [16]. DUD offers 40 protein targets with 9 belonging to the group of kinase receptors. 

We visually examined three-dimensional structures and chose seven proteins whose structures 

resembled IGF1R. The receptors and PDB IDs were CDK2 (1ckp), EGFr (1m17), FGFr1 (1agw), 

P38_MAP (1kv2), PDGFrb (model), SRC (2src), and VEGFr2 (1vr2). Ligand and decoy sets 

established by DUD for each target were adopted in our benchmarking. All ligands and decoys from 

DUD are prepared through the ZINC database [16,38], so no further preparations were needed for our 

work. All protein targets from DUD are in PDB format, and water molecules and ions were deleted. 

Informal residues far from the binding site were ignored, and proton states of certain residues were 

inspected and adjusted according to Park [39]. AMBER charge were assigned and random H atoms 

added, followed by a 1000-step dynamic simulation to move only H atoms to more reasonable 

positions while other parts of the receptors were frozen. This dynamic procedure was performed by 

GROMACS software [40]. Neither solvent molecules nor ions were added and AMBER03 force field 

was used.  

Known inhibitors of IGF1R were collected from the Binding Database [41,42], and the entire 

diversity set III was chosen as the random ligand set. Ligands in two-dimensional format in the random 

ligand set were delivered to QUACPAC of OpenEye [43] to calculate possible proton states for pH 

values from 5.8 to 8.2. Tautomers of each ligand were also predicted, and gasteiger partial atom 

charges were added for each generated structure. Finally, structures were transformed from two- to 
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three-dimensional using OMEGA of OpenEye and saved in mol2 format. For known inhibitors, 

tautomers were not generated, and proton states were conserved, while atom partial charges were 

displaced by gasteiger. Preparations of receptor files were as for DUD protein targets.  

For each receptor, the EF was calculated as below:  

EF = (a/n)/(A/N) (1)

Where a is the number of known binding ligands in the top-ranked ligands; n is the number of the 

whole ligands (including known binding ligands and decoys) in the top-ranked ligands; A is the 

number of known binding ligands in the whole tested library; and N is the number of the whole ligands 

in the tested library. 

3.2. Software for Virtual Screening Benchmarking 

3.2.1. Surflex-Dock v2.5.1 

For each of the seven receptors, the protocol was generated by the location of the crystal structure 

of the ligand. Docking parameters were: additional starting conformations per molecule and search 

density were increased to 4; search grid was expanded by 5 ångstroms; conformations per fragment were 

set to 20 or lower; and the number of rotatable bonds per molecule was 100 or fewer. In addition, the 

activated spin alignment method was chosen to orient the ligand, with a search density of 4 and number of 

spins set to 12. For IGF-1R, the starting conformations per molecule and the search density were increased 

to 6. Scores of known inhibitors and random ligands were abstracted and analyzed by student’s t-test. 

3.2.2. Autodock v4.2.3 

Original structures and partial charges were conserved when generating pdgqt-format files for 

receptors and ligands. However, for receptors, nonpolar H-atoms were deleted and their partial charges 

transferred to the attaching atoms. Software default settings were used. The grid box of the active site 

was centered on the crystal structure of the ligand in the original pdb file, sizing 65 points in all three 

directions with the grid space set to 0.375 ångstroms. Docking procedures were carried out in parallel, 

as described by Park [39].  

3.2.3. Autodock Vina v1.1.2 

The grid box was centered as for Autodock v4.2.3, sizing 26 ångstroms in all three directions, 

which was almost the same as Autodock v4.2.3. The exhaustiveness parameter was increased to 11 

from default 8, to emphasize accuracy over time spent. Other settings were the default. For IGF-1R, 

scores of known inhibitors and random ligands were abstracted and analyzed by student’s t-test. 

3.2.4. FRED v2.2.5 

For each receptor target, ligands were delivered to OMEGA [44] to generate conformations, 

adopting default parameters. The file with conformations was sent to FRED for docking. The receptor 

active site was defined based on co-crystallized ligands instead of grid box, and default docking 

parameters were used.  
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3.2.5. DOCK v6.5 

Receptor surface files were generated using DMS [45] with radius set to 1.4 ångstroms.  

SPHGEN [46] was employed to generate spheres to aid in placing ligand atoms, with sphere radii 

restricted to 0 to 4.0. Spheres within 10.0 ångstroms for any atom of the co-crystallized ligand were 

used to define the active site, while other spheres were deleted after a visual inspection using 

CHIMERA graphic software [47]. The grid box was generated using SHOWBOX [48], with 6.5 or 7 

ångstroms from the selected spheres enclosed in all six directions. The grid box was set as large as 

possible to completely cover the open active site formed by two domains, for each of the chosen kinase 

proteins. “Soft docking” [23] was adopted based on the high flexibility of the active sites, with the 

repulsive radius set to 9 and bump_overlap set to 0.7 when grids were calculated. Grid scores were 

employed as the primary score. For additional accuracy, max_orientations, pruning_max_orients and 

pruning_clustering_cutoff were enlarged to 1000, 150 and 150, respectively. The number of anchors 

was restricted to 3, while the minimum number of atoms in an anchor was set to 5. Electronic 

interaction exponents were set as high as 1.8 to establish the polar interaction between the ligands and 

the kinase receptors. 

3.3. Ligand-Binding Mode Prediction 

3.3.1. Ligand Preparation and Clustering Analysis  

Ligands used to establish the binding mode-predicting workflow were extracted from the IGF1R 

crystal structure complexes collected from the PDB database. Bond orders were assigned, H-atom and 

gasteiger-atom partial charges were added for extracted ligands, and data were saved in a mol2 file. 

Main physicochemical properties were calculated using ChemMine Tools [49], and molecular weight 

and fraction of rotatable bonds were chosen as the criteria for clustering after theorizing and testing. 

Crystal structures of IR complexes were also collected from the PDB database, choosing only those 

that contained nonprotein compound ligands without phosphate groups. Ligands were extracted from 

these complexes, and prepared and clustered as for IGF1R.  

3.3.2. Binding Mode Predictions  

3.3.2.1. Ligands with small MW (MW ≤ 440) and low FLEX (FLEX ≤ 0.16)  

These ligands were processed by surflex to generate possible binding conformations. Additional 

starting conformations for each molecule and search density were set to 6. The search grid was 

expanded to 6 ångstroms, and the conformations per fragment were set to 20 or lower. In addition, the 

number of rotatable bonds per molecule was set to 100 or fewer. The activated spin alignment method 

was used to orient the ligand, with the search density set to 6 and number of spins set to 12. For each 

ligand, the top-ranked five conformations were saved with a minimum RMSD of 1.0 between any two 

consecutive conformations. The saved data were re-ranked by DOCK AMBER [50]. In DOCK 

AMBER, only ligands were allowed to move while receptors were frozen. For other parameters, default 

settings were adopted [51]. Finally, the top-ranked conformation was selected as the most probable.  
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3.3.2.2. Ligands with small MW (MW ≤ 470) and high FLEX (FLEX > 0.16) 

The re-docking workflow for this type of ligand was mainly the same as that of the former type, 

with some differences: by Surflex calculation, the search density and number of spins were increased 

to 9 and H-atoms of receptor active sites were allowed to move. For each ligand, the top-ranked 10 

conformations were saved with a minimum RMSD of 1.0 between any two consecutive conformations. 

In DOCK AMBER, ligands and residues within 4.0 ångstroms of user-customized “match spheres” 

were allowed to move. The number of conjugate gradient minimization cycles performed before or 

after MD were increased to 150, and the number of MD steps was increased to 3500. The definition of 

“match spheres” was carefully checked to ensure that residues with low flexibility were not identified 

as movable in the MD procedure. The top-ranked conformation was selected as the most probable.  

3.3.2.3. Ligands with small MW (440 < MW ≤ 470) and low FLEX (FLEX < 0.16)  

This type of ligand was processed by Vina to generate possible binding conformations. 

Superimposition of available receptor crystal structures and the b-factor distribution of receptor atoms 

were inspected carefully to identify residues with side chains that were allowed to move. The grid box 

was adjusted to reduce the size to 22.5 ångstroms in each direction, and the exhaustiveness was 

increased to 24. Energy differences between the best and worst mode were set to 4. The top-ranked 

five binding modes were re-ranked by DOCK AMBER. In the MD procedure, ligands and residues 

within 5.0 ångstroms of user-customized “match spheres” were allowed to move. The top-ranked 

conformation was selected as the most probable.  

3.3.2.4. Ligands with large MW (MW > 470) 

For this type of ligand, Vina was employed to generate a set of 20 possible conformations, and 

DOCK AMBER was used to select the best one. Most settings were as described for ligands with large 

M.W. and low Flex, except that in Vina, the exhaustiveness was increased to 48, and the top 20 modes 

were processed by DOCK AMBER. MD steps were increased to 3500 and energy minimizations were 

increased to 150.  

For each pair of re-docked and crystal structure ligands, the RMSD between their original positions was 

calculated to evaluate the degree of superimposition. ProFit [52] was employed to complete calculations.  

3.4. Virtual Screening of NCI Database  

3.4.1. Preparations of Protein Receptors and Dockable Ligand Database  

The PDB database contains many crystal structures of IGF1R with different conformations near the 

active site, as this is a high flexibility region in kinases. We chose PDB ID 2OJ9 because of its high 

resolution. 2OJ9 also provides an appropriate size of the active site to accommodate most known 

inhibitors. Preparation of the 2OJ9 protein was as in section 3.1. Similarly, the IR complex structure PDB 

ID 3BU3 was used for comparison of specific IGF1R inhibitors. Preparation of IR was as for IGF1R. 

The ligand database was established based on a pool of 139,735 compounds in SD format from 

DTP [17]. Compounds were filtered by FILTER of OpenEye, using “blockbuster” solution with 
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several parameters altered to relax restrictions. Qualified compounds were sent to QUACPAC to 

calculate possible proton states from pH 5.8 to 8.2 and tautomers. Gasteiger-Marsili partial charges 

were added. A mol2 file containing the produced structures was processed by OMEGA for sample 

conformations for each ligand. 

3.4.2. Identification of Potential Specific Inhibitors of IGF1R 

The virtual screening workflow was used to screen the NCI database to identify potential IGF1R 

inhibitors. Selected compounds were used in the binding mode-predicting workflow to predict modes of 

binding in the ATP-binding site of IGF1R and IR. For each ligand, the binding modes for IGF1R and IR 

were compared. Potential specific IGF1R inhibitors were identified according to the rules in Section 2.3.  

3.5. PMF Calculations with GROMACS 

MD simulations used GROMACS software [40]. VMD software was used for system constructions 

and results analysis [53]. Proteins were prepared in the amber03 force-field, and ligands were prepared 

using Amber Tools [54]. The struture of each receptor-ligand complex was solved in the TIP3P water 

model, and Na+ or Cl− ions were added to ensure an overall system charge of 0. Periodic boundary 

conditions were added to all MD simulations. Solved complexes were subjected to a 50,000-step 

energy minimization using a steep decent algorithm, followed by a 500 ps equilibration in an NPT  

(N: number of moles, P: pressure, T: temperature) ensemble. The time step was set to 2 fs for all 

simulations. Pressure was maintained at 1.0 bar using the Berendsen method and temperature was kept 

at 310 K using the Berendsen integrating method. Electronic interactions were computed with the 

particle-mesh Ewald (PME) algorithm. The cutoff for nonbonded interactions and the distance for 

Lennard-Jones interactions was 14 ångstroms. Trajectory data were written for each 1 ps. Positions of 

complex atoms were restrained by a force constant of 1000 kJ/nm2·mol in x, y and z directions. After 

NPT equilibration, the ligand was steered out of its receptor binding site using harmonica force with a 

spring constant of 800 kJ/nm2·mol, and the pulling rate was set to 0.8 nm/ns. Along the reaction axis, 

umbrella sampling windows were set at intervals of roughly 0.1 nm. For each umbrella sampling 

window, an NPT equilibration was performed followed by umbrella sampling production, with either 

procedure lasting for 500 ps. The PMF was calculated from the umbrella sampling [55] results using 

the weighted histogram analysis method (WHAM) [56,57].  

4. Discussion 

Flexible docking, especially involving conformational flexibility of a protein backbone, is a 

challenge because of the large conformational space to be sampled [16]. Existing software has only 

partially solved this problem. In this study, because of the high flexibility of the active site of IGF1R, 

we established a virtual screening workflow for identifying IGF1R inhibitors through the best use of 

optional functions for flexible docking in existing software. For example, in Surflex, turning on the 

“protein flexibility” switch allowed receptor H-atoms to move. The latest versions of Autodock and 

Vina allow side chains of chosen residues to move to simulate a flexible binding site. In DOCK, 

allowing more atom clashes between ligand and receptor might partially solve problems of flexible 
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docking. However, problems still exist. For Autodock, only 32 or fewer torsions are allowed, so 

having movable side chains on about 10 residues could lead to errors. Although Vina has no 

restrictions on torsion number, stable results were rare when the exhaustiveness was increased from a 

default of 9 to 24 or 48. Our virtual screening workflow was created mainly based on benchmark 

results of several popular open/free docking packages. More extensive benchmark testing on other 

open/free and commercial software is still needed. 

Ligands with many rotatable bonds could be a challenge to docking software because of the 

increased difficulty in predicting correct ligand binding positions [58]. This motivated us to create the 

binding mode-predicting workflow that accounted for the physiochemical characteristics of ligands. 

MD is a good method for studying molecular interactions, including the analysis of ligand-receptor 

binding conformations. MD has been implanted into docking packages such as the AMBER score in 

UCSF DOCK. However, because of the heavy calculation burden of AMBER scoring during MD 

simulation, using the AMBER score for virtual screening of a large ligand database is impractical. In 

our workflow, we adopted different docking strategies to predict binding modes of ligands, according 

to ligand clustering. In particular, the AMBER score was introduced for ligands with high molecular 

weight and high flexibility. Because of the limited number of available ligands, our clustering analysis 

was mainly dependent on molecular weight and fraction of rotatable bonds. This simple method might 

not be appropriate for all ligands and receptors. Further improvements are needed, such as finding 

additional characteristics for grouping ligands correctly.  

Another challenge for IGF1R is the discovery of lead compounds that can inhibit IGF1R but not IR. 

Reported compounds with high selectivity for inhibition of IGF1R over IR were found by 

experimental approaches, and the mechanism of their selective inhibition was thought to be 

conformational differences. Based on our comprehensive analysis of those specific IGF1R inhibitors, 

we proposed several stringent rules for identifying specific IGF1R inhibitors from the potential 

compound set obtained by the two workflows. Moreover, we performed steered molecular dynamics 

simulations to calculate the PMF with GROMACS for the most potent compounds. The simulation 

results confirmed the effectiveness of our approaches. The binding affinities of the identified ligands to 

IGF1R will be determined by experimental verification.  

5. Conclusions 

This study established a receptor-based virtual screening workflow and a binding mode-predicting 

workflow for the identification of specific ATP-competitive inhibitors of IGF1R that are not specific to 

IR. Both workflows used free academic software so they are widely transferable and can be developed 

by other users. Although the two workflows were built for virtual screening of IGF1R inhibitors, 

virtual screening of other receptors with highly flexible active sites should be possible by adjusting 

software parameters and workflow components according to benchmark results. Using the two 

workflows, 17 potential lead compounds were identified as specific inhibitors of IGF1R from about 

140,000 candidates in the NCI database. Among the 17 compounds, 351570, 660826 and 649812 were 

considered powerful specific IGF1R inhibitors. Screening results were tested by PMF calculations, and 

351570 and 649812 were confirmed to show higher binding affinity on IGF1R than on IR.  
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