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Abstract 

Background: Availability of next generation sequencing data, allows low‑frequency 
and rare variants to be studied through strategies other than the commonly used 
genome‑wide association studies (GWAS). Rare variants are important keys towards 
explaining the heritability for complex diseases that remains to be explained by com‑
mon variants due to their low effect sizes. However, analysis strategies struggle to keep 
up with the huge amount of data at disposal therefore creating a bottleneck. This study 
describes CLIN_SKAT, an R package, that provides users with an easily implemented 
analysis pipeline with the goal of (i) extracting clinically relevant variants (both rare and 
common), followed by (ii) gene‑based association analysis by grouping the selected 
variants.

Results: CLIN_SKAT offers four simple functions that can be used to obtain clinically 
relevant variants, map them to genes or gene sets, calculate weights from global 
healthy populations and conduct weighted case–control analysis. CLIN_SKAT intro‑
duces improvements by adding certain pre‑analysis steps and customizable features 
to make the SKAT results clinically more meaningful. Moreover, it offers several plot 
functions that can be availed towards obtaining visualizations for interpretation of the 
analyses results. CLIN_SKAT is available on Windows/Linux/MacOS and is operative for 
R version 4.0.4 or later. It can be freely downloaded from https:// github. com/ ShihC 
hingYu/ CLIN_ SKAT, installed through devtools::install_github("ShihChingYu/CLIN_
SKAT", force=T) and executed by loading the package into R using library(CLIN_SKAT). 
All outputs (tabular and graphical) can be downloaded in simple, publishable formats.

Conclusions: Statistical association analysis is often underpowered due to low 
sample sizes and high numbers of variants to be tested, limiting detection of causal 
ones. Therefore, retaining a subset of variants that are biologically meaningful seems 
to be a more effective strategy for identifying explainable associations while reducing 
the degrees of freedom. CLIN_SKAT offers users a one‑stop R package that identifies 
disease risk variants with improved power via a series of tailor‑made procedures that 
allows dimension reduction, by retaining functionally relevant variants, and incorpo‑
rating ethnicity based priors. Furthermore, it also eliminates the requirement for high 
computational resources and bioinformatics expertise.
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Background
Individual-level disease risk stratification is the foundation of personalized medicine [1]. 
It is largely dependent on genomics and allows characterization of the molecular dif-
ferences between individuals towards disease risk prediction. This enables the design of 
treatment regimens with the correct drug at the correct dose for the correct individual, 
which would ideally be prescribed [2]. With technologies getting cheaper, high-through-
put microarray and next-generation sequencing (NGS) data, including whole-genome 
and whole exome constituting of hundreds of thousands to millions of variants, are 
readily available. However, about 40% of all known variants are of uncertain signifi-
cance, therefore, challenging their clinical relevance [3]. Hence, the role of these variants 
with respect to a specific disease etiology needs to be identified and verified before the 
corresponding genes of interest can be further interrogated.

Genome-wide association studies (GWASs) mostly focus on variant-by-variant test-
ing for association of common variants (minor allele frequency (MAF) ≥ 0.05). Utiliz-
ing sequence data can potentially better evaluate the genetic burden of low frequency 
and rare (MAF < 0.05) variants on disease risk [4]. There exists precedence that the dis-
ease risk variants at a given locus might include novel, rare, low-frequency, and com-
mon genetic variants [5]. Hence, many methods have been proposed, which conduct 
group-wise association tests taking into account the disease burden of both rare and 
common variants [6]. Table 1 provides a snap shot of few of the many popular existing 
software, tools, webservers and databases that allow genetic association, functional and 
annotation analysis at variant, and gene levels [6–17]. A majority of group-based tests 
down-weigh common variants and up-weigh rare variants, the approach being poten-
tially error-prone, as the relative effect of common and rare variations on the burden 
of a disease is unknown prior to testing [18]. Therefore, to identify non-biased associ-
ations of genes that contain risk variants, irrespective of their rare or common status, 
an approach that takes into account the amalgamated effect of both rare and common 
variants is recommended [19]. Furthermore, the ratio of the number of study subjects 
to the total number of variants is quite skewed, leading to loss of power in association 
studies [20]. Increasing the study sample size and effect size leads to a better power. 
Some studies suggest that the power of an association study also depends on the single 
nucleotide polymorphisms (SNPs) selected for the analysis and that better power can 
be achieved by genotyping more individuals at fewer SNPs than by genotyping fewer 
individuals at more SNPs [21]. Another avenue to improve statistical power of identify-
ing associated SNPs is by using priori weights [22–25]. A number of studies already exist 
in the literature that has demonstrated this. As ethnic differences affect the underlying 
disease genetics, priori weights that may allow incorporation of ethnicity information 
could improve the statistical power, while controlling for the false-discovery rates. One 
of the major challenges of GWASs, the identification functionally relevant causal vari-
ants, arises mainly from the fact that the majority of significant SNPs are located in non-
coding or intergenic regions, and due to linkage disequilibrium the causality spreads 
out across multiple linked variants. Post-GWAS annotations are the usual approach for 
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addressing this challenge; however, they are time consuming [12]. Therefore, pre-select-
ing a set of clinically relevant candidate variants (both rare and common), before doing 
genetic association analysis, could be a time- and cost-efficient approach.

In this study we developed an R package, CLIN_SKAT, with the goal of (i) extracting 
clinically relevant variants (both rare and common), followed by (ii) gene-based asso-
ciation analysis by grouping the selected variants. Once the subset of relevant variants 
is selected, CLIN_SKAT allows simple functions that can be used to group variants, 
map them to genes or gene sets, and conduct weighted case–control analysis. The case–
control analysis steps are conducted using the already available SKAT package [6, 26]. 
SKAT is a popularly used R package that accounts for the contributions of both rare and 
common variants to the trait of interest while determining the overall test statistic. It 
allows analysis of combined GWAS and NGS data per individual. This study introduces 
improvements by adding certain pre-analysis steps and customizable features to make 
the SKAT results clinically more meaningful. CLIN_SKAT further allows users to con-
nect to available global control databases of multiple ethnicities for calculating variant 
weights in their case–control analysis. The overall aim of CLIN_SKAT is to offer users a 
one-stop R package that identifies disease risk variants with improved power via a series 
of tailor-made procedures that allows dimension reduction, by retaining functionally rel-
evant variants, and incorporating ethnicity based priors. CLIN_SKAT can be installed 
directly in the R environment and all outputs (tabular and graphical) can be downloaded 
in publishable formats.

Table 1 Software, popularly used to conduct SNP level and gene level association studies, 
annotation, functional analysis and eQTL analysis

No Tools Function Software type Year

1 GWASTools GWAS data cleaning and analysis, annotation R‑package 2012

2 HaploReg Annotations of the noncoding genome at variants on 
haplotype blocks, such as candidate regulatory SNPs 
at disease‑associated loci

Database 2012

3 SKAT SNP‑set level association test for rare or common vari‑
ants: dichotomous or quantitative phenotypes

R‑package 2013

4 BioBin Automating the binning of rare variants using pub‑
licly available biological knowledge

Linux based 2013

5 SNPsnap Identification and annotation of matched SNPs and 
SNP‑based enrichment analysis

Web‑based tool 2015

6 FREGAT Region‑based association analysis aimed at identifica‑
tion of rare genetic variants for family‑based, geneti‑
cally related or population samples

R‑ package 2016

7 FUMA GWAS Post‑GWAS Functional Mapping and Annotation Web‑based 2017

8 Metaxcan Predict gene‑expression variation (eQTL) from GWAS 
summary statistics

Linux based 2018

9 Ravages: Rare Variant 
Analysis and Genetic 
Simulations

Extension of SKAT to multi‑category phenotypes R‑package 2019

10 GAMBIT GWAS single‑variant summary statistics cross‑
referenced with variant‑ or region‑based functional 
annotations, TWAS

C +  + tool 2020

11 pathwayPCA Principal component analysis (PCA) based pathway 
analysis approaches

R‑package 2021

12 SCAN Analysis, visualization for managing single‑case data R‑package 2022
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Implementation
Overview of CLIN_SKAT

CLIN_SKAT conducts association tests on clinically significant genetic variants via a 
sequential series of analyses. Users can choose from a list of various clinical association 
methods by which to conduct analysis on user-provided genotype and phenotype data. 
The purpose is to provide users with a reduced set of SNPs that are significantly associ-
ated with the phenotype of interest, thereby reducing the dimensionality of the genotype 
data before conducting genome-wide analysis (case-only or case–control). An overview 
of CLIN_SKAT is illustrated in Fig. 1. CLIN_SKAT is operable on Windows, Linux, and 
MacOS operating systems within an R-interactive version or in the background for R 
4.0.4 or later. All source codes are freely available at GitHub (https:// github. com/ ShihC 
hingYu/ CLIN_ SKAT) and all related details are provided in Additional File 1: Table S1.

Package contents

Once installed successfully, CLIN_SKAT provides users with four functions to choose 
from, each of which can be independently executed at the user’s discretion. The func-
tions are based on four distinct steps which are described as follows.

Step 1: This step can be utilized to reduce the dimensionality of the genome-wide 
genotype data to retain only functionally relevant SNPs by conducting tests on a user-
uploaded dataset (Fig. 1; Functional analysis). The dataset may contain detailed clin-
ico-pathological phenotypes, case–control information, health outcomes-either binary 
or continuous, or survival (time to event) and follow up information data. For instance, 
if the purpose of the study is to compare allele frequency between two groups, as when 

Fig. 1 Overview of CLIN_SKAT. Workflow: displays the sequence of each working step for CLIN_SKAT. (Left) 
Functions: provides the list of R package functions that are executed at the back end for each step of the 
workflow. (Right) Descriptions: provides easy explanations for each step of the workflow

https://github.com/ShihChingYu/CLIN_SKAT
https://github.com/ShihChingYu/CLIN_SKAT
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querying the effect of ethnicity on the associative nature of a genetic variant, users 
can choose from statistical tests such as Fisher’s exact test, or Chi-square tests by first 
converting allele frequencies to allele counts. A Chi-square  test  is used for categorical 
variables but is inappropriate when the sample size is small (< 10) or in cases of highly 
unequal data distribution. In such scenarios, Fisher’s exact  test should be selected. 
T-tests are used to assess the difference between two groups when the variable is con-
tinuous. For phenotypes with binary outcomes (e.g., presence versus absence of a disease 
diagnosis), users can opt logistic regression analysis to test for each SNP (univariate) at 
a time or many SNPs (multivariate) together. Users are required to specify covariates 
from their uploaded phenotype datasets while running the regression function for con-
ducting adjusted regression models. Similarly, for continuous outcomes (e.g., height), 
linear regression can be conducted for univariate, multivariate, or multivariate adjusted 
models. Survival analysis functions such as Kaplan–Meier analysis and Cox propor-
tional hazards regression analysis, are offered. For all analyses, users can also specify the 
genetic model for the variants under study. CLIN_SKAT connects to PLINK [27] and 
conducts all tests using it.

Step 2: This step consists of  annotating the clinically associated SNPs from step 1 by 
mapping them to corresponding genes (Fig. 1; Map SNP to genes). CLIN_SKAT accesses 
functional characteristics of both coding and non-coding genetic sequences through the 
‘ClusterProfiler’ function [28] and provides users with gene annotations (Ensembl IDs) 
from the BioMart database [29]. It further accesses the Molecular Signatures database 
(MSigDB) [30] to provide information on all related disease pathways for the selected 
SNPs and corresponding genes (Fig. 1; Pathway Analysis).

Step 3: This step allows users to upload their genotype data with the outcome as either 
binary or continuous (if it is different from that in step 1). The rare variants are more 
likely to be causal and have large effect sizes than common variants, and therefore SKAT 
[6] has a built-in weighting scheme by which it allows calculation of linear kernel or 
logistic collapsing weights (Fig. 1; Calculate logistic weights) using the user uploaded 
genetic data. This may introduce selection bias, and thereby type I error. In order to 
avoid such selection bias for rare variants, CLIN_SKAT introduces an alternative 
approach where users can access global healthy populations such as GnomAD [31], Tai-
wan Biobank (TWB) [32], and 1000 Genomes phase III [33], and also their ethnicity of 
interest, to calculate collapsing weights for rare variants using MAF. These weights will 
later be used to conduct association analysis in SKAT (at the user’s discretion). Towards 
this end, CLIN_SKAT further links to the R package TransAT [34] and accesses the 
MAFs of variants from user-chosen global populations such as TWB, 1000 Genomes, or 
GnomAD that can be used to calculate weights to be used for SKAT analysis.

Step 4: Finally, this step uses the annotated genes from step 2 along with the weights 
calculated from step 3 to conduct SKAT analysis (Fig.  1; Genome-Wide Association 
Analysis). SKAT utilizes different regression models to identify variants (common and 
rare) from genetic regions (genes) associated with the phenotype of interest. It further 
takes into consideration covariates (for adjustment), direction of association (positive or 
negative), and the magnitude of effects of the variants (along with no effect). SKAT elim-
inates selection thresholds. It utilizes a variance-component score test in a mixed-model 
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framework to account for rare variants. It provides P values and test statistics for corre-
sponding genetic units.

Package construction and functions

(i) Function 1: functional_analysis

CLIN_SKAT allows users to begin their analysis with this step. This allows dimension-
ality reduction and prioritizing functionally relevant SNPs to be used for further analysis 
(Fig. 1; Functional analysis). Two different input files are required for running the func-
tional_analysis function, (a) a phenotype file in.csv format (Table 2A), listing individual 
IDs in each row and phenotypic information in each column, and (b) a set of PLINK 
binary format files (.bed, .bim, and .fam) containing the genotype data for the study indi-
viduals (Table 2B). The individual IDs are required to be identical in both the input data-
sets. The clinical outcomes or phenotypes are required to be defined by the user (binary 
or categorical. CLIN_SKAT starts by pre-processing the input datasets and creates an 
appropriate input PLINK binary format file by merging clinical information (outcome/
case–control) with corresponding SNP genotype data to conduct functional analysis 
(Table 2C). Function functional_analysis offers users a variety of tests and regressions 
to choose from. CLIN_SKAT accesses PLINK using R to conduct all association analy-
ses. Users can type in the function (Code 1) and opt for the appropriate analysis method 
from a list of "fisher", "chisq", “lm”, “glm", "survfit", and "coxph" to conduct Fisher’s exact 
test, a Chi-square test, logistic regression, linear regression, Cochran Armitage trend 
test, Kaplan Meier analysis, and Cox proportional hazards regression, respectively, based 
on their requirements. Users may further specify the genetic model as either “dom”, “rec”, 
or “add”, depicting dominant, recessive, and additive models, respectively, for the minor 
allele of the SNPs. The function will provide a complete list of SNPs with P values, and 
users are at liberty to choose an appropriate threshold for selecting significant SNPs. The 
complete list of SNPs can be downloaded by the user in.csv format. Some representative 
output from function 1 is shown in Table 2D.

Code 1
functional_analysis(data, method = c("fisher", "chisq", “glm", "survfit", "coxph"), 

formula)
Users can further obtain Manhattan plots, Quantile–Quantile (Q-Q) plots and 

linkage disequilibrium (LD) plots by using simple plot functions. Function clin_
manhattan(gwas, sig_val = 3, geno_val = 5), provides Manhattan plot where users are 
required to specify the data name (gwas), significant line value (sig_val) and the value 
for the genome-wide significant line (geno_val). Function clin_qq(gwas) can be used to 
plot q-q plot and function clin_ld(gwas, p_val = 0.001, geno = Brs_sample.bed), can 
be utilized to plot LD plots where gwas is the name of the data, user chosen P value 
threshold (p_val) and.bed file of the original genotype data (geno),

 (ii) Function 2: relate2GeneDisease

To continue with the prioritization process, the SNPs from step 1 are mapped to 
corresponding genetic regions, automatically, to provide users with complete genetic 
annotation using the function relate2GeneDisease (Code 2) (Fig.  1; Map SNP to 
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Table 2 Input and output file formats for function, functional_analysis in CLIN_SKAT

(A) Clinical file for input in CLIN_SKAT by users. Gi and Agei are gender and age, respectively for  ith individual (Indiv i). The 
variables Indiv i, Gi and Agei have been used for the purpose of deidentiying the participants in the Brugada Syndrome 
dataset. (B) Genotype File format (PLINK binary format) for input in CLIN_SKAT by users, (C) Merged input file created by 
CLIN_SKAT for running functional_analysis, (D) Output of the function functional_analysis, chromosome number (CHR), 
rsID (SNP), physical position (BP), minor allele (A1), genetic model used (additive (ADD), dominant (DOM) or recessive (REC)) 
(TEST), the number of missing values (NMISS), the estimated odds ratio of the test (OR), the test statistic (STAT), and the 
asymptotic P value (P)

Indiv ID Gender Age Symptoms
(Severe; 
Non-
severe)

(A)

Indiv 1 G1 Age1 1

Indiv 2 G2 Age2 0

Indiv 3 G3 Age3 1

Indiv 4 G4 Age4 1

Indiv 5 G5 Age5 0

Indiv 6 G6 Age6 0

Indiv 7 G7 Age7 1

Indiv 8 G8 Age8 0

Indiv 9 G9 Age9 0

Indiv 10 G10 Age10 0

File # File format

(B)

File 1 geno.bed

File 2 geno.bim

File 3 geno.fam

Indiv ID Gender Age Symptoms
(Severe; 
Non-severe)

1:161298236A>G 1:182554473A>G 1:182555524G>T

(C)

Indiv 1 G1 Age1 1 0 0 0

Indiv 2 G2 Age2 0 0 1 0

Indiv 3 G3 Age3 1 0 0 0

Indiv 4 G4 Age4 1 0 2 0

Indiv 5 G5 Age5 0 0 0 0

Indiv 6 G6 Age6 0 0 0 0

Indiv 7 G7 Age7 1 0 1 0

Indiv 8 G8 Age8 0 0 0 0

Indiv 9 G9 Age9 0 0 2 0

Indiv 10 G10 Age10 0 0 0 1

CHR SNP BP A1 TEST NMISS OR STAT P

(D)

1 rs1887284 1487059 A ADD 82 0.3776 − 2.579 0.009922

1 rs80309618 3995644 T ADD 82 0.2421 − 2.578 0.009929

1 rs12044809 9466803 G ADD 82 0.2116 − 3.587 0.000335

1 rs6677649 9746248 G ADD 82 11.37 3.075 0.002107

1 rs4075033 11811234 G ADD 82 2.761 3.044 0.002331

1 rs580233 12486792 A ADD 82 16.31 2.621 0.008777

1 rs9430736 12600010 A ADD 82 2.413 2.673 0.007509

1 rs6684199 13880522 G ADD 82 3.628 2.743 0.006089

1 rs34482377 18216603 C ADD 82 0.3639 − 2.616 0.008885
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Table 3 Input and output formats for function relate2GeneDisease, for CLIN_SKAT

(A) The format of the input file for the function relate2GeneDisease. The chromosome number (chromosome), starting 
position of the variant in the genome (start) and ending position of the variant in the genome (end) for each variant. (B) 
example of the output of the function relate2GeneDisease. SNP id or rs ID for each variant (SNP), chromosome number 
(Chr), genomic position (Position), reference allele (Ref ), alternate allele (Alt), gene name (Gene); (C) Example output of the 
pathway analysis; pathway (ID), Ratio of the unique gene ids to that of the total unique gene ids in a gene set (GeneRatio), 
ratio of the size of the geneset that are annotated to the node of interest to the total number of genes in the background 
distribution (BgRatio), P values (pvalue), q-values (qvalue), gene-Ids of the unique genes (geneID), total unique genes 
(count).

Chr Start End

(A)

2 115200373 115200373

2 115822361 115822361

2 115822443 115822443

5 175992416 175992416

5 175996080 175996080

5 176002168 176002168

15 70352908 70352908

15 70358610 70358610

15 70386949 70386949

19 40412197 40412197

19 40419596 40419596

19 40419633 40419633

20 32246363 32246363

20 32247226 32247226

20 32247297 32247297

SNP Chr Position Ref Alt Gene

(B)

SNP16745 2 115200373 T C DPP10

SNP16746 2 115822361 T A DPP10

SNP16747 2 115822443 G T DPP10

SNP37472 5 175992416 T C CDHR2

SNP37473 5 175996080 T C CDHR2

SNP37474 5 176002168 T C CDHR2

SNP86503 15 70352908 T C NRXN3

SNP86504 15 70358610 A G NRXN3

SNP86505 15 70386949 CAC AGG A C NRXN3

SNP110106 19 40412197 A G LBP

SNP110107 19 40419596 T C LBP

SNP110108 19 40419633 T C LBP

SNP115315 20 32246363 A G GTPBP3

SNP115316 20 32247226 G A GTPBP3

SNP115317 20 32247297 A G GTPBP3

ID GeneRatio BgRatio pvalue p.adjust qvalue geneID Count

(C)

DESCARTES_FETAL_
HEART_SATB2_
LRRC7_POSITIVE_
CELLS

22/942 116/18801 6.09E−08 1.42E−06 1.16E−06 1600/114784/6585/
120114/50863/2904
/55885/2567/14737
2/53353/57628/572
82/100506421/8550
8/1002/491/407738
/102546226/4482/6
4478/9568/5789

22



Page 9 of 19Chattopadhyay et al. BMC Bioinformatics          (2022) 23:441  

genes, Pathway Analysis)). Users are required to import a.csv file (Table  3A). In 
addition to humans (Homo sapiens), variants from model organism Mus musculus 
(mouse) can be annotated. Users are allowed to further choose from a set of anno-
tated gene sets (Additional File 1: Table  S2) as provided in the MSigDb database 
(https:// www. gsea- msigdb. org/ gsea/ msigdb/ index. jsp) and then conduct pathway 
analysis. The goal is to provide users with in-depth functional analysis for the cho-
sen subset of clinically associated SNPs. All functional annotation outputs are easily 
downloadable in.csv format (Table 3B).

Code 2
relate2GeneDisease(SNPdata, species = c("Homo sapiens", "Mus musculus"), 

category = c("H", "C1", "C2", "C3", "C4", "C5", "C6", "C7", "C8"))

 (iii) Function 3: Get_Logistic_Weights_MAF_POP

This function is especially designed for the scenario where users may want to use 
global healthy populations such as 1000 Genomes, GnomAD, or TWB to calculate 
weights for conducting analysis using SKAT. Weights will be used as prior informa-
tion for SNPs to incorporate the population structure of various ethnicities [23]. 
SKAT has a built-in option to assign weights for each SNP from the uploaded data, 
and CLIN_SKAT further incorporates this function (Code 3) to calculate weights 
for SNPs from the above-mentioned control populations using MAFs, as shown in 
Formula 1. This feature is optional and depends on the user’s requirements. Logis-
tic weights confer equal weights for rare variants whereas zero weight to common 
variants. In Code 3, data “dat” is the list of filtered SNPs obtained from step1 and 
is required to be in the format shown in Table 4A, with chromosome number (chr), 
genomic position (pos), reference allele (ref ), and alternate allele (alt). Again, this 
function can be independently run by the user on data imported to CLIN_SKAT by 
the user. The user can choose the reference population by keying in the name of the 
population (default: op = "db_gnomAD_exome_freq") from the list shown in Addi-
tional file 1: Table S3. Output from this step is downloadable in.csv format (Table 4B).

weights [dat] is the weights of the list of variants in the data dat, calculated by the func-
tion. W1 is the numeric value of the first parameter of the logistic weight (default= 
0.07), W2 a numeric value of the second parameter of the logistic weight (default= 150). 
Var_maf_table (dat) is the MAFs of the vector of variants in the gene unit dat extracted 
from the population chosen by the user.

Code 3
Get_Logistic_Weights_MAF_POP < -function(dat, op = "db_gnomAD_exome_

freq", W1 = 0.07, W2 = 150)

 (iv) Function 4: Skat_assoc

In the final step, users can conduct GWAS by executing the Skat_assoc function via 
Code 4. CLIN_SKAT accesses SKAT and allows users to conduct association analysis 
for either continuous or binary outcomes for both rare and common variants. Users 

(1)
weights[dat] = exp(−x1)/(1+ exp(−x1)); where x1 = (var_maf_table[dat] − W1)∗W2

https://www.gsea-msigdb.org/gsea/msigdb/index.jsp
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Table 4 Input and output formats for Function Get_Logistic_Weights_MAF_POP, for CLIN_SKAT

(A) Input format for the function Get_Logistic_Weights_MAF_POP, chromosome (chr), position (pos), reference allele (ref ), 
alternate allele (alt), (B) example output of the function Get_Logistic_Weights_MAF_POP, chromosome (chr), position (pos), 
reference allele (ref ), variant weights calculated using next generation sequencing data of Taiwan Biobank (TWB_NGS_
weights)

chr pos ref alt

(A)

4 77616748 G A

17 57979872 G A

3 167632232 A G

19 17452898 T C

18 59868630 T C

3 76687808 A T

2 236970362 C G

2 236970210 C T

5 175779181 A C

3 148553164 C T

chr pos ref alt TWB_NGS_weights

(B)

4 77616748 G A 0.692078

17 57979872 G A 0.689964

3 167632232 A G 0.621672

19 17452898 T C 0.475831

18 59868630 T C 0.152058

3 76687808 A T 0.053219

2 236970362 C G 0.04092

2 236970210 C T 0.024381

5 175779181 A C 0.020695

3 148553164 C T 0.007716

Table 5 Association analysis results using function 4 (Skat_assoc) of CLIN_SKAT

(A) Genotype data input using PLINK format for function Skat_assoc. (B) example output of the function Skat_assoc, 
geneset ID (SetID), association P value (P.value), total variants tested in the gene (N.Marker.All), total variants used for the 
test (N.Marker.Test)

File # File format

(A) Input data format

File 1 geno.bed

File 2 geno.bim

File 3 geno.fam

SetID P.value N.Marker.All N.
Marker.
Test

(B) Output data format

NRXN3 0.0000005 2 2

LBP 0.0000013 1 1

GTPBP3 0.0000013 1 1

DPP10 0.0000013 1 1

CDHR2 0.0000018 1 1



Page 11 of 19Chattopadhyay et al. BMC Bioinformatics          (2022) 23:441  

are required to upload their genotype data (geno_file in Code 4) for the filtered vari-
ants list (obtained via Function 1) in either VCF format or as PLINK binary format 
files (Table 5A); CLIN_SKAT is compatible for both. The command outputfile = "out-
putfile" is required as part of Code 4 for specifying the name of the output file by 
the users. They are further required to upload a file specifying set IDs defining the 
genetic units obtained via Function 2 along with the PLINK genotype files. This is not 
required for a VCF file. To opt for a logistic regression model, users are required to 
use the out_type = C option, while for linear regression models, out_type = D is the 
option. Furthermore, SNP_weights obtained from Function 3 are used in code 4 by 
default unless otherwise specified by the user ( parameter = NULL). After the analysis 
runs, users are provided with a complete list of SNPs and their P values to download 
in simple.csv format (Table 5B).

Code 4
Skat_assoc(geno_file, outputfile = "outputfile", formula, out_type = ("C", “D”), 

SNP_weight = NULL)
Users may further obtain a bar plot, depicting the − log10(P values) of each of the 

significant genes by utilizing the function skat_gene_bar(asso_result, pval = 0.0001, 
width = 0.5, space = 1), where users are required to use the results from step 4 (asso_
result), and the P value threshold of significance (pval). They may further customize the 
plots by modifying the width of each bar and the space between each bars.

Results
Program installation

CLIN_SKAT is an open-source R package that is freely available at the R Archive Net-
work (http:// CRAN.R- proje ct. org/). CLIN_SKAT can be downloaded and installed 
through devtools::install_github("ShihChingYu/CLIN_SKAT", force = T) on the R exe-
cution page. All functions thereafter can be executed by loading the package into R with 
library(CLIN_SKAT).

Example: Brugada syndrome (binary outcome)

Brugada syndrome (BrS) is a rare cardiac arrhythmia that is sometimes heritable. 
Patients with BrS are prone to high risk of sudden cardiac death due to ventricular fibril-
lation [35]. It is predominant in younger males with structurally normal hearts and 
accounts for 4% of all cardiac deaths worldwide, with a higher prevalence in the south-
east Asian population [36]. The first reported causal mutations were in SCN5A, which 
encodes the α-subunit of the cardiac sodium channel, and since then more than 100 
SCN5A mutations have been reported in BrS [37, 38]. Continued research into the com-
plex underlying genetics using GWASs has led to identification of other associated genes 
and mutations, including SCN5A-SCN10A and HEY2, but in total these explain < 24% of 
the heritability [39]. Studies over the years have led to the hypothesis that many genetic 
variants with diverse allele frequencies and effect sizes may potentially contribute to the 
genetic heritability of BrS, and therefore conducting studies on low-frequency and rare 
variants would provide improved insight into disease risk and trait variability [40].

To display the workability of CLIN_SKAT, we present here an analysis to check 
whether functionally relevant SNPs that are associated with severe clinical symptoms as 

http://CRAN.R-project.org/
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opposed to non-severe symptoms among BrS patients truly attained genome-wide sig-
nificance. The genetics underlying BrS are known to be highly associated with its clini-
cal severity [41]. Clinical data and corresponding genome-wide SNP array data from 82 
BrS patients of Taiwanese origin, 40 of whom demonstrated severe symptoms while the 
rest demonstrated non-severe symptoms, were imported into CLIN_SKAT in.csv and 
PLINK format, respectively [36, 42]. The binary clinical outcome was defined as severe 
(1) or non-severe (0) based on the symptoms’ representation. A patient was considered 
severe if they presented syncope or near syncope or sudden death, and non-severe if 
they demonstrated chest discomfort, palpitation, dyspnea, seizures, or no symptoms. 
Corresponding array-based whole-genome data of all patients were imported into 
CLIN_SKAT to conduct clinical association analysis.

Step 1: Clinical association analysis (functional_analysis)
One clinical file in.csv format, with each row depicting an individual/patient and each 

column demonstrating clinico-pathological characteristics (Table 2A), and another file 
in PLINK binary format (.bed,.bim, and.fam) (Table  2B), consisting of corresponding 
genotype data for each individual, were imported. Functional analysis of the binary clini-
cal outcome (severe, non-severe) was conducted using logistic regression (glm) in Code 
1. Table 2D represents a part of the output of the clinical analysis to demonstrate signifi-
cantly associated SNPs (P ≤ 0.05). In total, 1,845 SNPs were found to be significant with 
a P value < 0.05. This step ensures a huge dimensionality reduction based on the clinical 
scope of the study. The significant findings are visually presented in a Manhattan plot 
as displayed in Fig. 2a. For comparison purposes the example data was utilized to run a 
genome-wide association analysis utilizing Linux based Plink1.9, and the correspond-
ing Manhattan plot with significant thresholds are demonstrated in Fig.  2b. It can be 
observed that SNP rs7318227 was obtained as significant with a P value of 7.87 ×  10–6 
using CLIN_SKAT functional analysis step, however was omitted via GWAS analysis 
where none of the SNPs from the example data were obtained with P <  10–5. This implies 
that disease relevant variants have a higher chance of getting retained by CLIN_SKAT 
to be later used in the burden test. All 1,845 SNPs with P value < 0.05 were used for fur-
ther analysis in CLIN_SKAT. The Q-Q plots and LD plots were checked to ensure the 
feasibility of selecting P < 0.05 as the threshold for significance. Q-Q plots (Fig. 2c) with 
lambda value (0.99) and LD plots (Fig.  2d) further provided evidence supporting the 
selection of the P value threshold as 0.05.

Step 2: Mapping of filtered variants to genes (relate2GeneDisease)
To obtain a meaningful interpretation of significant findings from step 1, proper anno-

tation is necessary. Code 2 was used to annotate the filtered variants from step 1 by map-
ping them onto their corresponding genes. Furthermore, pathway analysis results were 
also provided in this step. Table 3B shows a part of the output of the mapped gene names 
corresponding to the significant SNPs. Five genes from this table, DPP10, CDHR2, 
NRXN3, LBP, and GTPBP3, were used to demonstrate rest of the steps of CLINSKAT. 
Table 3C shows the pathway analysis report.

Step 3: Weights from global populations (Get_Logistic_Weights_MAF_POP)
The filtered list of variants obtained from step 1 was used in this step as the input 

file along with their genomic positions (Table 4A). Each row represented a variant. The 
columns specified chromosome number (chr), genomic position (pos) according to the 
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GRCh37 reference genome, reference allele (ref ), and alternate allele (alt) for each var-
iant. Code 3 was executed with the population of choice as whole-genome NGS data 
from TWB (db_TWB_NGS_freq) to obtain logistic weights that could be used to col-
lapse rare variants in the final step. The output table (Table 4B) consists of weights cor-
responding to each variant.

Step 4: Final association analysis (Skat_assoc)
The final step was conducted again for the list of filtered variants from step 1 uploaded 

as a.vcf. Code 4 was executed to conduct SKAT analysis using logistic regression 
(out_type = “D") by including gene sets from step 2 and weights calculated from step 4 
(SNP_weight = SNP_weight). The analysis results are displayed in Table 5B for the top 
significant genes. DPP10 has been reported to be associated with heritable fatal severe 
pediatric J-wave syndromes such as BrS and early repolarization syndrome [43]. CDHR2 
is observed to be down-regulated in BrS, induced by chemical lesions of the sinoarte-
rial (SA) node. SA dysfunction leads to sick sinus syndrome, creating heart arrhyth-
mias [44, 45]. NRXN3 has been reported in prior studies to be a variant associated with 

Fig. 2 Visualization of functional analysis results from step‑1 of CLIN_SKAT. Figures plotted using functions: 
a Manhattan Plot (function: clin_manhattan()): The chromosomal position of each SNP is shown on the 
x‑axis, and the y‑axis shows the −  log10P values and thresholds that are considered statistically significant. The 
purple horizontal line depicts the suggestive significant threshold and the red line depicts the genome‑wide 
significant threshold. All threshold points are customizable using the function’s parameters. SNP rs7318227 
was obtained as significant with a P value of 7.87 ×  10–6. A total of 69 SNPs were found with a P value <  10–4 
and 1845 SNPs with a P value < 0.05. b Manhattan plot plotted using GWAS results obtained using Linux 
based PLINK1.9. The chromosomal position of each SNP is shown on the x‑axis, and the y‑axis shows the 
−  log10P values and thresholds that are considered statistically significant. The purple horizontal line depicts 
the suggestive significant threshold and the red line depicts the genome‑wide significant threshold. No SNPs 
were found significant with P value <  10–5 and 50 SNPs were found with P value <  10–4. c quantile–quantile 
(Q‑Q) plot (function: clin_qq()); the Q‑Q plot was constructed using all 1845 SNPs. The blue arrow points 
to the significantly enriched region and the red arrow points towards the confidence interval. (d) linkage 
disequilibrium plots (function: clin_ld()) using the significant SNPs, a portion of the LD plot is demonstrated 
in the figure
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Tpeak-to-Tend (Tpe) recovery in females. An abnormally long Tpe interval observed on 
electrocardiogram is known to be a risk factor for ventricular arrhythmic mortality and 
all-cause mortality [46]. LBP encodes a lipopolysaccharide binding protein, and higher 
levels of serum LBP have been reported to be associated with enhanced risk of cardi-
ovascular diseases [47]. Mutations in GTPBP3 cause mitochondrial translation defects 
that are associated with hypertrophic cardiomyopathy [48]. Additional file 1: Figure S1 
displays a graphical output (bar plot) from step 4 depicting the top significant genes 
via CLIN_SKAT function skat_gene_bar(). A further comparison bar plot demonstrat-
ing the P values of the top-significant genes by CLIN_SKAT and SKAT is demonstrated 
through Fig. 3. It is evident that the associated genes are observed with higher signifi-
cance via CLIN_SKAT pipeline as opposed to SKAT.

Discussion
Advancement in high-throughput technologies has led to the availability of NGS data, 
allowing low-frequency and rare variants to be studied through strategies other than the 
commonly used GWAS [49]. Rare variants are important keys towards explaining the 
heritability for complex diseases that remains to be explained by common variants due to 
their low effect sizes [50]. However, analyzing such huge volumes of data requires high-
performance data analysis tools. Analysis strategies struggle to keep up with the huge 
amount of data at our disposal. This creates a bottleneck hindering appropriate under-
standing and interpretation [51]. A sample size with sufficient statistical power is critical 
to the success of genetic association studies to detect causal genes of human complex 
diseases. GWAS require much larger sample sizes to achieve an adequate statistical 
power for identification of genotype–phenotype associations [52]. This is not always fea-
sible. For instance, the total sample size for a rare disease like Brugada syndrome was 
only 84 whereas the whole genome data contained ~ 600,000 SNPs. Moreover, most of 
the times, GWAS ends up implicating the complete genome to have an association with 
diseases among which majority of them are spurious with no direct biological relevance 
to disease [53]. Last but not the least, GWAS findings explain only a fraction of the her-
itability of complex traits. Usually, SNP-trait associations requires additional functional 
information, post GWAS, from several resources and repositories which requires lot 
of time and lacks integrated visualizations for data interpretation [12]. Studies have 

Fig. 3 Comparison of P value for common genes reported by CLIN_SKAT and SKAT. Y‑axis: − log10(P values), 
x‑axis‑ significant genes that were reported by both SKAT and CLIN_SKAT. Blue: CLIN_SKAT; Green: SKAT
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suggested to select SNPs with known functions as this could be one of the strategies to 
identify causal SNPs, with lesser testing and increased power [54]. This study describes 
CLIN_SKAT, an R package that provides an easy to use pipeline that users may avail, 
towards obtaining biologically meaningful genetic associations, with improved statisti-
cal power, without the necessity of a large sample size, eliminating the requirement for 
high computational resources. It is a one stop tool, which allows, dimension reduction, 
retains functionally relevant variants, and allows detection of associations with better 
significance (Fig. 3) and improved power (Additional File 1: Figure S2), not to mention 
visualizations, aiding users to decide the course of analysis for getting the best results.

SNP association studies using weights as prior information improves statistical power 
and controls false discovery rates [22–25]. Studies that used linkage based weights [24], 
and expression quantitative trait loci (eQTL) based weights, demonstrated an improve-
ment of statistical power of the tests [25]. Other studies have further demonstrated 
improvement of statistical power using functional weights for gene-based associa-
tions [55], knowledge based weights [56], and pathway and gene-based weights [57] for 
GWAS studies. Weights from external reference panels, as priors for genome-wide SNPs 
has been used for inferring inference [23]. This allows leveraging the ancestry specific 
information in to the association study thereby allowing avoidance of multiple analysis. 
With the accumulation of biobanks, it is now increasingly possible to derive weights for 
each subpopulation. Lack of replication of disease associations, from one ethnic based 
population, in subsequent studies on populations with a different ethnicity has been 
demonstrated time and again [36]. CLIN_SKAT, therefore allows users to incorporate 
weights from large ethnic based population data that would allow information due to 
population diversity therefore highlighting the population specific information into the 
analysis results.

SKAT, an enormously popular method for conducting rare variant association analy-
sis, resorts to binning or collapsing multiple rare variants as a way to overcome their 
rarity and low effect size [6]. Prior methodologies designed to handle rare variants have 
worked with pre-defined candidate regions; however, CLIN_SKAT utilizes SKAT and 
takes it a step further by working with a selected group of variants, genome-wide, that 
are biologically informative. Moreover, CLIN_SKAT, includes other features such as 
pathway analysis, which can provide users with a complete understanding of the variants 
under study. Not only that, CLINSKAT has additionally incorporated the variant to gene 
mapping step, which usually has to be conducted by users as a pre-processing step when 
using SKAT. CLIN_SKAT ensures that users can submit all input files for each step of 
the pipeline in standard formats and that they are exempted from performing any pre-
processing steps (data formatting, obtaining genetic units using third party tools) before 
implementing the pipeline. CLIN_SKAT strings together all processes with the aim of 
making this analysis pipeline simple to use for users with no bioinformatics expertise.

One tool that focus on working with functionally relevant genetic regions, similar to 
CLIN_SKAT is BioBin [58], which is a novel bioinformatics tool that allows automated 
multi-level binning of rare variants using a biological knowledge-driven (genes, path-
ways, evolutionarily conserved regions, protein families, regulatory regions) framework 
by accessing the Library of Knowledge Integration (LOKI) database [59]. However, it is 
Linux-based, so users must first download and configure the software based on their 



Page 16 of 19Chattopadhyay et al. BMC Bioinformatics          (2022) 23:441 

system using system-specific options and are required to conduct all pre-processing of 
their input data before running command lines. Moreover, the LOKI database is not 
equipped with the BioBin code, so users are required to compile the LOKI database by 
downloading the data from other sources before execution. Additionally, binning meth-
ods using weights calculated from disease population data create a selection which 
becomes inflated in proportion to the size of the bin, thereby introducing a spurious cor-
relation that may confound the reported findings. CLIN_SKAT makes available to the 
users the unique feature of accessing global populations of various ethnicities to calcu-
late variant weights, thus eliminating such selection biases.

One of the issues with the pipeline could be the occurrence of false negatives, due to 
the reduced set of functionally relevant variants that will be analyzed in the consecutive 
steps of the proposed pipeline of CLIN_SKAT. Therefore, there exists the risk of missing 
out some potentially significant genes. Hence, in order to minimize this proportion of 
potential false negatives, if any, users are suggested to set a relaxed P value threshold for 
SNP-significance in step 1 (P = 0.05 or 0.01) to maximize inclusion of significant vari-
ants. Another option could be to try multiple runs, with a range of P value thresholds 
in step 1 and confirm the final list of significant genes (step 4) through comparisons. 
CLIN_SKAT is primarily designed keeping in mind high dimensional GWAS data analy-
sis. However, users can take advantage of CLIN_SKAT for next-generation sequencing 
data as well, provided the data coverage is high enough to obtain large dimensional vari-
ant data. Finally, identification of true causal variants remains a difficult task despite of 
the large number of tools and databases that has emerged over the years, as different 
tools may infer the same variant, differently. Hence, it is of utmost importance to fathom 
the accuracies and limitations of different methods to understand the true significance 
or consequences of the causal conclusions and minimize false negatives utilizing mul-
tiple levels of evidence  i.e. variant-level, gene-level and case-level along with bench-
marking the findings through popular databases such as ClinVar listing functionally or 
medically important variants and phenotypes [60, 61].

Conclusion
Researchers and medical practitioners with large amounts of genetic data are the pri-
mary target users of CLIN_SKAT. They can process their data quickly by performing 
four simple functions without the need for any technical knowledge, programming 
skills, or high-performance computing resources. We believe this could be an important 
contribution towards alleviating the data bottleneck, leading to better interpretability of 
the underlying genetics of complex diseases.

Availability and requirements
Project name: CLIN_SKAT.

Project home page: https:// github. com/ ShihC hingYu/ CLIN_ SKAT.
Operating system(s): Platform independent.
Programming language: R.
Other requirements: R version 4.0.4 or higher.
License: GPL-2.
Any restrictions to use by non-academics: None.
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