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Computational docking approaches aim to overcome the limited

availability of experimental structural data on protein–protein

interactions, which are key in biology. The field is rapidly moving

fromthe traditionaldocking methodologies for modelingofbinary

complexes to more integrative approaches using template-

based, data-driven modeling of multi-molecular assemblies. We

will review here the predictive capabilities of current docking

methods in blind conditions, based on the results from the most

recent community-wide blind experiments. Integration of

template-based and ab initio docking approaches is emerging as

the optimal strategy for modeling protein complexes and

multimolecular assemblies. We will also review the new

methodological advances on ab initio docking and integrative

modeling.

Addresses
1Barcelona Supercomputing Center (BSC), 08034 Barcelona, Spain
2 Instituto de Ciencias de la Vid y del Vino (ICVV), CSIC - Universidad de

La Rioja - Gobierno de La Rioja, 26007 Logroño, Spain

Corresponding author:

Fernández-Recio, Juan (juan.fernandezrecio@icvv.es)

Current Opinion in Structural Biology 2020, 64:59–65

This review comes from a themed issue on Biophysical and com-

putational methods

Edited by Nagasuma Chandra and Gautam I Menon

For a complete overview see the Issue and the Editorial

Available online 29th June 2020

https://doi.org/10.1016/j.sbi.2020.05.016

0959-440X/ã 2020 Elsevier Ltd. All rights reserved.

Introduction
Protein–protein interactions are key for the majority of

biological functions. Proteins can form highly specific

transient or permanent complexes that range from binary

pairs to multi-molecular assemblies, often involving other

biomolecules. A detailed structural knowledge of such

complexes at atomic level would improve our understand-

ing of biological processes and facilitate intervention for

biomedical and biotechnological purposes. For example,

recently reported structural data on the dynamic assembly

formed by the SARS-CoV-2 trimeric spike protein and

the cell receptor ACE2 are key to understand the

molecular mechanisms of the virus infectivity and can
www.sciencedirect.com 
be essential for the development of new vaccines and

therapeutic candidates against COVID-19 [1��,2��,3].
However, structural data is available for only a small

fraction of the protein interactome. For instance, the total

number of protein–protein interactions in human is esti-

mated to range from 130 000 [4] to 650 000 [5], but less

than 7000 of these interactions have available 3D struc-

ture (Interactome3D, 2019_1 version) [6]. In this context,

computational docking approaches aim to overcome the

limited availability of experimental structural data. Since

the first reported protein-protein docking algorithms in

the early 90’s, based on Fast Fourier Transform (FFT)

sampling [7], the methodological developments have

mostly focused on ab initio docking of binary complexes,

starting from the structure of the unbound components.

Some of the most popular methods are FTDock [8],

ZDOCK [9] or MolFit [10]. The method HEX [11]

and later FRODOCK [12] used polar Fourier correlations

to accelerate docking calculations. Other different

approaches using stochastic search based on global-

energy optimization are ICM-DISCO [13,14], Rosetta-

Dock [15], HADDOCK [16], or SwarmDock [17].

With the increasing availability of complex structures,

in recent years attention is focused on template-based

structural modeling of complexes, based the standard

principles of homology-based modeling. The term tem-

plate-based docking (as opposed to ab initio docking) is

specifically used when a model is built by superimposing

the structures (or models) of the unbound subunits onto

the corresponding subunits of a template complex struc-

ture [18]. One advantage is that template-based modeling

can be applied to multi-molecular complexes, not just to

binary complexes as ab initio docking. In addition, it has

been suggested that templates are available for the large

majority of cases in which interacting subunits have

structural information [19]. However, the general avail-

ability of good-quality templates that could be reliable

used for template-based predictions seems much lower

[20�]. Actually, for the majority of known interactions,

only templates with remote homology are available [4],

for which direct application of template-based methods

leads to poor predictions [21]. Modeling multi-molecular

assemblies implies additional challenges. For instance,

some of the interfaces might not have available templates,

in which case, we could model them by ab initio docking,

in combination with restraints from evolutionary data or

from available experimental information. Another chal-

lenge is to identify the relevant oligomerization state of

the assembly when is different from that in the template
Current Opinion in Structural Biology 2020, 64:59–65
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[22], in which case, alternative orientations provided by

ab initio docking can be very helpful. Modeling the

conformational variability of the assembly components

imposes an additional difficulty. Indeed, directly

taking the structure of a given subunit in another context

(e.g. unbound state, different assembly or alternative

oligomerization state) might lead to inaccurate models.

For this, it can be useful the application of protein-protein

docking and associated procedures, such as energy

scoring, minimization, or flexible refinement.

We will review here the predictive capabilities of current

protein-protein docking methods in blind conditions,

based on the results from the most recent CASP [23��]
and CAPRI [24�] experiments. These tests show that

combination of template-based and ab initio docking

approaches is emerging as the optimal strategy for model-

ing protein complexes and multimolecular assemblies.

We will also review the most recent methodological

novelties on ab initio docking, and new approaches for

the inclusion of experimental information and integrative

modeling.

Predictive capabilities of computational
docking: the state-of-the-art
Ab initio computational docking can provide acceptable

models within the top 10 predictions in up to 40% of the

cases, according to reported evaluation studies of differ-

ent methodologies in current protein–protein docking

benchmark version 5.0 [20�,25,26].

Traditionally CASP has been focused on the prediction of

the structure of individual proteins. However, very often

proteins are found as oligomeric assemblies, which adds

complexity to the modeling effort. To evaluate the

applicability of docking methodologies for the prediction

of protein oligomeric assemblies, the last three CASP

editions included a CASP-CAPRI joint experiment

focused on multimeric assemblies, which are indepen-

dently evaluated by CASP and CAPRI communities. The

recent CASP13-CAPRI challenge comprised a total of

20 protein oligomeric assemblies, including 14 homo-

complexes and 6 hetero-complexes, which could be

classified into 15 dimers and 5 multimeric assemblies

[23��]. In the 9 ‘easy’ targets, there were good structural

templates for the (partial or full) assembly, while for some

of the remaining 11 ‘difficult’ targets, it was possible to

find remote templates for part of the assembly. The

availability of templates in each case is critical to explain

the predictive success of the groups. Focusing on the

results for the top 10 predictions (to facilitate comparison

with the reported performances of different docking

methods in the literature), the best-performing group

submitted acceptable (or better) models for 13 targets

(65% of the cases) (Figure 1). In the ‘easy’ targets, the

best-performing group submitted acceptable models

for all these cases, while in the ‘difficult’ targets, the
Current Opinion in Structural Biology 2020, 64:59–65 
best-performing group submitted acceptable models for

only 4 of such targets (36% of the cases). Regarding

the quality of the models, high-quality models [23��]
were submitted by any group in 78% of the ‘easy’ targets

(with template), but only in 9% of the ‘difficult’ targets

(no template).

On the other side, the recent 7th CAPRI edition showed

more heterogeneity in its targets, comprising 8 protein-

protein, 3 protein-peptide, and 5 protein-oligosaccharide

complexes, all hetero-oligomers (except for a homo-

decamer), which could be classified in 10 dimers and

6 multimeric assemblies [24�]. The actual number of

evaluated targets was 19, because some of the interfaces

in these multimeric assemblies were considered as

independent targets. There were structural templates

for a total of 13 target interfaces (6 protein–protein,

2 protein–peptide, and 5 protein–saccharide). This was

determinant for the overall predictive success of the

groups as well as for the quality of the predicted models.

Overall, the maximum number of target interfaces

successfully predicted by a single group was 13 (i.e.

success in 68% of the cases) (Figure 1). But in cases with

no available template, the best-performing groups sub-

mitted acceptable models for only 2 target interfaces (i.e.

success in 33% of the cases). Regarding the quality of the

models, high-quality models [24�] were submitted by any

group in 31% of the ‘easy’ targets (with template) and in

17% of the ‘difficult’ targets (no template). The 7th

CAPRI edition showed that ab initio docking in cases

for which there is no available template is still highly

challenging, and progress is actually coming from

the efficient procedures to combine template-based

modeling and other docking methodologies.

Combination of template-based and ab initio
docking
The CASP and CAPRI experiments show that template-

based modeling approaches are clearly the tools of choice

when one can use templates of sufficient quality.

However, very often only remote templates are available,

which might not be good enough to provide reliable

models, as above discussed [21]. In unclear situations, a

relevant question is which method to choose, or how to

efficiently combine these protein-protein docking

approaches depending on each specific case [20�]. This

is even more relevant when modeling multimeric com-

plexes, in which some interfaces might be modelled

based on homologous structures, while others would need

ab initio docking, as above mentioned. An updated

version of the InterEvDock2 server [27��] can perform

template-based docking or ab initio docking with

evolutionary constraints, depending on the case. But

the question is still open about how to efficiently combine

template-based and ab initio docking when reliability of

the template is unclear. We can obtain some hints from

the recent CASP and CAPRI experiments.
www.sciencedirect.com
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Figure 1
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Predictive success rates of state-of-the-art docking approaches on different benchmark sets. ClusPro performance on Protein–Protein Docking

Benchmark 5.0 (BM5) is taken from Ref. [20�]. Performance of other docking methods on BM5 is taken from Ref. [26]. The rest of results are taken

from CASP13-CAPRI and 7th CAPRI blind experiments. Sampling and scoring strategies included, but were not limited to: FFT-based sampling

(ZDOCK, FTDock, ClusPro, Weng, Kozakov/Vajda, Shueler-Furman, Venclovas, pyDock, Fernandez-Recio, HDOCK, MDockPP, Zou, Shen, Seok),

geometric hashing (Kihara, LZerD), particle swarm optimization (Bates), NMA-based sampling (Shen, Bates), information-driven sampling (Bonvin),

energy-based scoring ( pyDock, Fernandez-Recio), machine learning-based scoring (IRaPPA, Shen), statistical potentials (Kihara, MDockPP, Zou),

evolutionary-based scoring (Andreani/Guerois), Voronoi-based scoring (Venclovas), shape-based scoring (HDOCK), docking-based contact

consensus and residue propensities (Oliva, Carbone), and flexible refinement (Shueler-Furman, Seok).
In the recent CASP13-CAPRI joint assembly prediction

experiment, one of the most efficient approaches was that

of Fernández-Recio, based on a combination of template-

based and ab initio docking followed by pyDock scoring

[23��], which ranked 2nd and 1st among all the CAPRI

predictors and scorers groups, respectively. Models for

the subunits were built by CASP-hosted servers. Then, ab
initio docking was applied in all cases, using appropriate

symmetry constraints or interface restraints from litera-

ture. Additionally, when reliable templates were found,

template-based models were built by superimposing all

possible models of the monomers onto them. After sorting

all built models by pyDock scoring, the proportion of

template-based and ab initio docking models in the final

set of submitted models depended on the reliability of the

templates (Figure 2). The difference with other method-

ologies was more evident on the ‘difficult’ cases for which

no clear template was available. For instance, in T154 ab
initio docking by pyDock produced the only acceptable

models among all participants. In T157, pyDock also

produced some of the few successful models of all groups.
www.sciencedirect.com 
For scorers, pyDock was used to evaluate all the proposed

models, and in case of reliable templates, consistency

between energy-based scoring and template-based data

was sought.

In 7th CAPRI, predictions using template information

were in general successful. Indeed, failing to use available

templates, as Fernández-Recio did in T122, T125 inter-

face 1/4, and T133 targets, led to much worse predictions

(although interestingly, this group was successful in the

latter target, using only ab initio docking). This shows that

it is critical to choose the optimal docking approach for

each case, depending on the template availability. In the

rest of targets, templates were used indirectly. In the two

protein-peptide targets with good templates (T134,

T135), ab initio docking with pyDock with restraints from

the available templates was successful. In the six protein-

saccharide targets (T126-130), ab initio docking on the

cavity identified from the available templates was

also successful. These represent alternative strategies

to combine ab initio docking with template information.
Current Opinion in Structural Biology 2020, 64:59–65
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Figure 2
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An example of the combination of template-based, ab initio docking and external data for integrative modeling of complexes. The scheme is

based on the strategy followed by our group (Fernandez-Recio) as predictors in the recent CASP13-CAPRI and 7th CAPRI experiments.
Finally, in the scorers experiment, pyDock got the best

performance when considering top 10 predictions, which

shows its capabilities to evaluate complex models derived

from combined approaches (template-based, ab initio,
refinement) [24�] (Figure 1).

Novel methodological developments in
protein docking
The most successful approach as predictor in CASP13-

CAPRI was that of Venclovas group. They basically used

template-based models when reliable templates were

found, and free docking with HEX [11] otherwise. One

of the reasons of their success could be the use of

VoroMQA [28] for the evaluation and selection of the

final models. However, they were less efficient in the

scorers experiment (rank 7th), which might indicate that

this function seems mostly optimized for their own

pipeline for template-based and docking generation,

while its application to models generated by other sources

represents a challenge to be solved. Other successful
Current Opinion in Structural Biology 2020, 64:59–65 
approach was the use of CONSRANK [29,30] for the

ranking of docking models. CONSRANK is based on the

most frequent inter-residue contacts in the ensemble

of decoys, and has been updated to Clust-CONSRANK

with the addition of a recently developed clustering

procedure [31]. The best-performing server in

CASP13-CAPRI was HDOCK [32], from Huang’s group,

who developed a new pairwise shape-based scoring

function (LSC) for protein–protein docking to take into

account long-range interactions between protein

atoms [33�].

Other recent new developments in protein docking are

RosettaDock 4.0, which shows improved predictions for

flexible cases [34�], LightDock, using glowworm swarm

optimization with NMA-based flexible search [35], or

CIPS, a new scoring procedure [36�] based on interface

propensities from docking calculations. Docking interface

propensities have interesting applications, such as inter-

face prediction [37], and more recently, characterization
www.sciencedirect.com
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of multi-protein complexes in combination with other

evolutionary and physico-chemical properties [38].

Use of external information for integrative
docking
The identification of correct docking poses often fails due

to intrinsic errors in current scoring functions, incorrect

consideration of oligomerization states, or because of

multiple interfaces that are not usually included in docking

calculations. For all these reasons, the use of external

information on a given complex is often critical for success-

ful docking predictions. The pioneering HADDOCK [16],

as well as other protein–protein docking methods, such

as pyDock [39], ZDOCK [40] or LightDock [41] have

developed procedures to include distance restraints to

improve the docking calculations. In this line, evolutionary

information can be a relevant source of information for

docking [42]. Indeed, the most successful docking

approach in the recent 7th CAPRI edition was that of

the Andreani and Guerois group. The challenging cases

of this CAPRI edition encouraged them to go beyond their

traditional rigid-body and InterEvScore approach, so they

applied different strategies for the inclusion of evolutionary

constraints, such as template-based modeling with Roset-

taCM-based protocol [43], identification of conserved

anchoring interface motifs when only remote homologs

were available, and covariation-based modeling of

interacting subunits in cases in which traditional homol-

ogy-based modeling would fail [44��].

In a broader sense, integrative computational approaches

that aim to efficiently use experimental structural data and

additional information from a variety of sources for

the structural modeling of complexes are becoming

increasingly popular [45]. One example is the integration

of Small-Angle X-ray Scattering (SAXS) experimental data

in ab initio docking methods such as pyDock [46–48],

HADDOCK [49], PatchDock [50,51], ATTRACT [52]

or ClusPro [53]. And chemical cross-linking data has also

been integrated in protein docking methods such as

ZDOCK [54]. In the 7th CAPRI experiment, the use of

integrative modeling approaches was blindly evaluated.

Targets T150 and T151 were the same complex as

T149, a challenging multi-domain dimer, for which SAXS

and chemical cross-linking data were provided,

respectively. Interestingly, the inclusion of restraints from

SAXS data improved the models submitted by pyDock

for the original target (with few successful groups),

and the cross-linking data further improved pyDock

submissions [55].

Conclusions
The most recent community-wide blind tests on the

structural prediction of multi-molecular assemblies and

heteromeric protein complexes (including interaction

with peptides and saccharides) clearly showed that tem-

plate availability, as well as any additional information on
www.sciencedirect.com 
the complex, are critical for the modeling success. Several

groups are focusing their efforts on developing new

procedures for efficient integration of template-based

and evolutionary information with ab initio docking

methods, which are producing more accurate and realistic

models. Additional methodological developments on pro-

tein docking include improvement of scoring functions,

and better treatment of conformational flexibility during

docking search, but the field is clearly moving towards an

integrative analysis and modeling of protein complexes.
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Garcı́a B, Dı́az L, Fernández-Recio J: Integrative modeling of
protein-protein interactions with pyDock for the new docking
challenges. Proteins 2019. (in press).
Current Opinion in Structural Biology 2020, 64:59–65

http://refhub.elsevier.com/S0959-440X(20)30087-7/sbref0170
http://refhub.elsevier.com/S0959-440X(20)30087-7/sbref0170
http://refhub.elsevier.com/S0959-440X(20)30087-7/sbref0170
http://refhub.elsevier.com/S0959-440X(20)30087-7/sbref0175
http://refhub.elsevier.com/S0959-440X(20)30087-7/sbref0175
http://refhub.elsevier.com/S0959-440X(20)30087-7/sbref0175
http://refhub.elsevier.com/S0959-440X(20)30087-7/sbref0175
http://refhub.elsevier.com/S0959-440X(20)30087-7/sbref0180
http://refhub.elsevier.com/S0959-440X(20)30087-7/sbref0180
http://refhub.elsevier.com/S0959-440X(20)30087-7/sbref0180
http://refhub.elsevier.com/S0959-440X(20)30087-7/sbref0185
http://refhub.elsevier.com/S0959-440X(20)30087-7/sbref0185
http://refhub.elsevier.com/S0959-440X(20)30087-7/sbref0185
http://refhub.elsevier.com/S0959-440X(20)30087-7/sbref0190
http://refhub.elsevier.com/S0959-440X(20)30087-7/sbref0190
http://refhub.elsevier.com/S0959-440X(20)30087-7/sbref0190
http://refhub.elsevier.com/S0959-440X(20)30087-7/sbref0195
http://refhub.elsevier.com/S0959-440X(20)30087-7/sbref0195
http://refhub.elsevier.com/S0959-440X(20)30087-7/sbref0195
http://refhub.elsevier.com/S0959-440X(20)30087-7/sbref0195
http://refhub.elsevier.com/S0959-440X(20)30087-7/sbref0200
http://refhub.elsevier.com/S0959-440X(20)30087-7/sbref0200
http://refhub.elsevier.com/S0959-440X(20)30087-7/sbref0200
http://refhub.elsevier.com/S0959-440X(20)30087-7/sbref0205
http://refhub.elsevier.com/S0959-440X(20)30087-7/sbref0205
http://refhub.elsevier.com/S0959-440X(20)30087-7/sbref0210
http://refhub.elsevier.com/S0959-440X(20)30087-7/sbref0210
http://refhub.elsevier.com/S0959-440X(20)30087-7/sbref0210
http://refhub.elsevier.com/S0959-440X(20)30087-7/sbref0210
http://refhub.elsevier.com/S0959-440X(20)30087-7/sbref0215
http://refhub.elsevier.com/S0959-440X(20)30087-7/sbref0215
http://refhub.elsevier.com/S0959-440X(20)30087-7/sbref0215
http://refhub.elsevier.com/S0959-440X(20)30087-7/sbref0220
http://refhub.elsevier.com/S0959-440X(20)30087-7/sbref0220
http://refhub.elsevier.com/S0959-440X(20)30087-7/sbref0220
http://refhub.elsevier.com/S0959-440X(20)30087-7/sbref0220
http://refhub.elsevier.com/S0959-440X(20)30087-7/sbref0225
http://refhub.elsevier.com/S0959-440X(20)30087-7/sbref0225
http://refhub.elsevier.com/S0959-440X(20)30087-7/sbref0230
http://refhub.elsevier.com/S0959-440X(20)30087-7/sbref0230
http://refhub.elsevier.com/S0959-440X(20)30087-7/sbref0230
http://refhub.elsevier.com/S0959-440X(20)30087-7/sbref0230
http://refhub.elsevier.com/S0959-440X(20)30087-7/sbref0235
http://refhub.elsevier.com/S0959-440X(20)30087-7/sbref0235
http://refhub.elsevier.com/S0959-440X(20)30087-7/sbref0235
http://refhub.elsevier.com/S0959-440X(20)30087-7/sbref0240
http://refhub.elsevier.com/S0959-440X(20)30087-7/sbref0240
http://refhub.elsevier.com/S0959-440X(20)30087-7/sbref0240
http://refhub.elsevier.com/S0959-440X(20)30087-7/sbref0245
http://refhub.elsevier.com/S0959-440X(20)30087-7/sbref0245
http://refhub.elsevier.com/S0959-440X(20)30087-7/sbref0245
http://refhub.elsevier.com/S0959-440X(20)30087-7/sbref0250
http://refhub.elsevier.com/S0959-440X(20)30087-7/sbref0250
http://refhub.elsevier.com/S0959-440X(20)30087-7/sbref0250
http://refhub.elsevier.com/S0959-440X(20)30087-7/sbref0255
http://refhub.elsevier.com/S0959-440X(20)30087-7/sbref0255
http://refhub.elsevier.com/S0959-440X(20)30087-7/sbref0255
http://refhub.elsevier.com/S0959-440X(20)30087-7/sbref0260
http://refhub.elsevier.com/S0959-440X(20)30087-7/sbref0260
http://refhub.elsevier.com/S0959-440X(20)30087-7/sbref0260
http://refhub.elsevier.com/S0959-440X(20)30087-7/sbref0265
http://refhub.elsevier.com/S0959-440X(20)30087-7/sbref0265
http://refhub.elsevier.com/S0959-440X(20)30087-7/sbref0265
http://refhub.elsevier.com/S0959-440X(20)30087-7/sbref0270
http://refhub.elsevier.com/S0959-440X(20)30087-7/sbref0270
http://refhub.elsevier.com/S0959-440X(20)30087-7/sbref0270
http://refhub.elsevier.com/S0959-440X(20)30087-7/sbref0270
http://refhub.elsevier.com/S0959-440X(20)30087-7/sbref0275
http://refhub.elsevier.com/S0959-440X(20)30087-7/sbref0275
http://refhub.elsevier.com/S0959-440X(20)30087-7/sbref0275
http://refhub.elsevier.com/S0959-440X(20)30087-7/sbref0275

