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Endogenous small interfering RNAs (siRNAs) are substantial gene regulators in eukaryotes
and play key functions in plant development and stress tolerance. Among environmental
factors, heat is serious abiotic stress that severely influences the productivity and quality of
flowering Chinese cabbage (Brassica campestris L. ssp. chinensis var. utilis Tsen et Lee).
However, how siRNAs are involved in regulating gene expression during heat stress is not
fully understood in flowering Chinese cabbage. Combining bioinformatical and next-
generation sequencing approaches, we identified heat-responsive siRNAs in four small
RNA libraries of flowering Chinese cabbage using leaves collected at 0, 1, 6, and 12 h after
a 38°C heat-stress treatment; 536, 816, and 829 siRNAs exhibited substantial differential
expression at 1, 6, and 12 h, respectively. Seventy-five upregulated and 69 downregulated
differentially expressed siRNAs (DE-siRNAs) were common for the three time points of heat
stress. We identified 795 target genes of DE-siRNAs, including serine/threonine-protein
kinase SRK2I, CTR1-like, disease resistance protein RML1A-like, and RPP1, which may
play a role in regulating heat tolerance. Gene ontology showed that predictive targets of
DE-siRNAs may have key roles in the positive regulation of biological processes,
organismal processes, responses to temperature stimulus, signaling, and growth and
development. These novel results contribute to further understanding how siRNAs
modulate the expression of their target genes to control heat tolerance in flowering
Chinese cabbage.
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INTRODUCTION

Environmental stresses such as salinity, drought, and heat can impede crop productivity and even
cause plant death (Bita and Gerats, 2013). Flowering Chinese cabbage (Brassica campestris L. ssp.
chinensis var. utilis Tsen et Lee) generally grows throughout China to meet vegetable demands by
consumers (Chen et al., 2017). Nutritional value and leaf freshness are the two major criteria for
assessing the quality of fresh vegetables. Long-term yield records and comprehensive analyses of
environmental stresses show that high temperatures seriously affect the production and quality of
flowering Chinese cabbage. Recent studies have revealed that noncoding RNAs might have
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significant functions in modulating plant responses to
environmental factors (biotic and abiotic stresses) by
regulating gene expression during transcriptional and post-
transcriptional processes (Srivastava et al., 2017; Wang et al.,
2017; Ahmed et al., 2020b).

These molecules are classified into different types depending
on their function and synthesis: small interfering RNAs (siRNAs),
microRNAs (miRNAs), and long noncoding RNAs (Shukla et al.,
2008; Khraiwesh et al., 2012; Zhu et al., 2015). siRNAs and
miRNAs are usually 21–24 nt in length, highly conserved, and
involved in modulating gene expression in various plant species
(Khraiwesh et al., 2012; Yu et al., 2019), including vegetables. In
plants, siRNAs are classified into various groups: natural
antisense transcript-derived siRNAs, long siRNAs, trans-acting
siRNAs, heterochromatic siRNAs, secondary transitive siRNAs,
and repeat-associated siRNAs (Khraiwesh et al., 2012; Zhang
et al., 2012). siRNAs play an essential role in various biological
processes in plants, including abiotic and biotic stress responses
(Zhang et al., 2012; Zhong et al., 2013), gene silencing (Kasai et al.,
2013), and hybrid vigor (Barber et al., 2012). The Copia-type
retrotransposon ONSEN activated in response to heat stress in
siRNA biogenesis Arabidopsis mutants, indicating the possible
involvement of siRNAs in controlling plant responses to heat
stress (Ito et al., 2011). Further analysis revealed a regulation
mechanism of ONSEN via siRNAs in heat responses, suggesting
that ONSEN has conserved transcriptional activation facilitated
by environmental heat stress in some Brassicaceae species (Ito
et al., 2013). Transcript levels of HEAT-INDUCED TAS1
TARGET1 (HTT1) and HTT2 were significantly upregulated
under heat stress and targeted by TAS1-derived siRNAs in
Arabidopsis (Li et al., 2014).

Recent studies showed the involvement of siRNA in seed
development and demonstrated that siRNAs could move from
maternal seed coats into filial tissues to establish DNA
methylation in the next generation (Grover et al., 2020).
Besides this, endogenous activated siRNAs in virus-infected
Brassicaceae plants exhibit a shared host gene-silencing pattern
affecting the stress response and photosynthesis (Leonetti et al.,
2021). In cotton, four tas3-siRNAs potentially promote somatic
embryogenesis by targeting two ARF genes (Yang et al., 2013). In
citrus, 459 differentially expressed siRNAs (DE-siRNAs)
reportedly target genes involved in cell differentiation,
biological processes, and stress responses (Wu et al., 2015).
Only a few studies have revealed the functions of siRNAs in
heat stress responses in Brassica plants. Therefore, it is essential to
elucidate the expression pattern and function of siRNAs involved
in regulating heat tolerance in flowering Chinese cabbage to
increase its productivity.

In earlier studies, we identified express sequence tag-simple
sequence repeat (EST-SSR) markers (Chen et al., 2017) and novel
and conserved miRNAs in flowering Chinese cabbage genotype,
Youlv 501, after 0 (control), 1, 6, and 12 h of heat stress (Ahmed
et al., 2019), and compared miRNAs in flowering Chinese
cabbage genotypes, Sijiu-19 and Liuye 50, under heat stress
(Ahmed et al., 2020a). In the current study, we constructed
four sRNA libraries from leaf samples collected under heat-
treated and normal temperature (control) experiments to

identify novel siRNAs, compare their expression patterns, and
identify their possible functions in monitoring heat tolerance in
flowering Chinese cabbage.

MATERIALS AND METHODS

Plant Material and Growth Conditions
Seeds of flowering Chinese cabbage genotype 3T-6, kindly
provided by the Guangzhou Academy of Agricultural Sciences
(Guangzhou, China), were used in this study. B. campestris plants
were grown at 28/22°C for 14/10 h (day/night) in a greenhouse at
Guangzhou University. Plants at the five-leaf stage were
transferred to a growth chamber for heat treatment at 38/29°C
(14/10 h). Fully expanded leaves were collected at four time
points after 0, 1, 6, and 12 h of heat treatment, then
immediately frozen in liquid nitrogen and stored at –80°C
until RNA extraction.

Total RNA Extraction, and sRNA Library
Construction and Sequencing
Total RNA was isolated from three biological replicates using
TRIzol reagent (Invitrogen, Life Technologies) following the
manufacturer’s recommendations. An equal amount of RNA
from three replicates for each time point was pooled for
library construction using Illumina TruSeq Small RNA
Preparation Kit according to the manufacturer’s instructions.
In brief, RNA 5′- and 3′-adapters were ligated to total RNA,
reverse transcription was performed of complementary DNA
(cDNA) constructs, and then 6% denaturing polyacrylamide
gel electrophoresis was used to isolate fragments of different
lengths. The Beijing Genomics Institute (Shenzhen, China)
processed the four cDNA libraries using an Illumina HiSeq
sequencer following the standard protocol. Raw sequence
reads were analyzed using Illumina’s analysis software.

Identification of Small Interfering RNAs
After removing low-quality reads, oversized insertion tags, and
adapter sequences, the remaining small RNA reads were mapped
to the Brassica database (http://brassicadb.org/brad/); reads with
exact matches were used in further analyses after removing
miRNAs, small nuclear RNA, small nucleolar RNA, ribosomal
RNA, and transfer RNA sequences. siRNAs were predicted in the
sample based on the following criteria: i) match sequences had
more than five reads per sample, and ii) the sequences had two
overhanging bases that were complemented.

Analysis of Differentially Expressed Small
Interfering RNAs
The siRNA expression of the heat-treated and control samples
was compared to determine the siRNA differential expression.
DE-siRNAs were identified as described elsewhere (Ge et al.,
2017). Briefly, read numbers were normalized as transcripts per
million in each library to reflect the siRNA expression. siRNAs
with an absolute value of log2 ratio ≥ 1 and p < 0.05 were
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considered DE-siRNAs between the treatments. DE-siRNAs were
subjected to hierarchical cluster analysis using the Mfuzz package
in R 4.0.5 (Kumar and Futschik, 2007).

Predicting the Targets of Differentially
Expressed Small Interfering RNAs
To identify the target genes of DE-siRNAs, TargetFinder (Xie
et al., 2012) and psRobot (Wu et al., 2012) were used as described
previously (Ge et al., 2017). Only binding sites commonly
predicted by both tools were selected for further analysis to
verify the findings and increase the confidence interval.

Gene Ontology Prediction of Small
Interfering RNA-Related Regulatory
Pathways
The gene ontology (GO) functional analysis database (http://
www.geneontology.org/) was used to predict the key
regulatory pathways using a threshold derived from a
hypergeometric test with a corrected p-value of ≤0.05. GO
allocated and classified the query read sequences into
different functional groups.

Verification of Next-Generation Sequencing
Results Using RT-qPCR
To verify the siRNA expression data derived from next-
generation sequencing, quantitative real-time RT-PCR (RT-
qPCR) was performed. We randomly selected 18 siRNAs
whose expression was either unchanged, upregulated, or
downregulated after heat treatments for RT-qPCR as
described earlier (Guo et al., 2007; Guo et al., 2009). The
same RNA samples at 0, 1, 6, and 12 h after heat treatments
used for sequencing were also used to confirm the expression of
DE-siRNAs with RT-qPCR. Briefly, 1 µg of total RNA was
reversely transcribed into cDNA using HiScript II 1st Strand
cDNA Synthesis Kit (Vazyme Biotech). qRT-PCR was
conducted using ChamQ SYBR qPCR master mix (Vazyme,
Nanjing, China) in a CFX96 qPCR machine (BioRad,

United States) following the manufacturer’s instructions.
Specific primers used for RT-qPCR are listed in
Supplementary Table 6. 5S rRNA was used as the internal
control, and 2−ΔΔCT method was used to determine the siRNAs
relative expression level at each time point (Livak and
Schmittgen, 2001).

RESULTS

Classification of sRNA Sequences
Sequencing analysis of the constructed RNA libraries generated
28,294,247, 29,924,277, 27,763,656, and 28,729,621 reads after 0,
1, 6 and 12 h of heat stress, respectively. The sequence data were
deposited into the National Center for Biotechnology
Information Sequence Read Archive database under accession
number PRJNA758034. Removal of short valid length, invalid
adapter and low-quality reads resulted in 25,939,459, 28,119,719,
25,039,056, and 25,882,948 reads after 0, 1, 6 and 12 h of heat
stress, respectively. Detailed information on the reads in each
RNA sequence is in Supplementary Table 1. The siRNA length
distribution ranged from 20 to 24 nucleotides (nt), with 21 nt as
the most common, followed by 24, 22, and 23 nt. Most of the
22–24-nt small RNAs started with C. The highest proportion of

FIGURE 1 | Length distribution of predicted siRNAs in flowering Chinese
cabbage. Statistics of first base of all kinds of predicted siRNAs is shown.
X-axis is length of siRNA in bp; numbers on top are mean numbers of
predicted siRNAs.

FIGURE 2 | Abundantly expressed siRNAs in flowering Chinese
cabbage. siRNA expression is shown in transcripts per million (TPM).
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nucleotides in the sequence of endogenous small RNAs was
occupied by C and A (Figure 1).

Expressed Small Interfering RNA in
Response to Heat Stress
To examine if siRNA is involved in heat tolerance of flowering
Chinese cabbage, normalized sequence reads with read counts
<30 were excluded from further analysis. Thirty siRNAs showed
the high expression in the flowering Chinese cabbage after 0, 1, 6,
and 12 h of heat treatments (Supplementary Table 2), of which
the novel_sir20760, novel_sir19688, novel_sir8169,
novel_sir15201, novel_sir3323, novel_sir13493, and
novel_sir5492 showed expression levels of >10,000 followed by
novel_sir7062, novel_sir2978, novel_sir14120, novel_sir11514,
novel_sir10409, novel_sir10413, novel_sir3194, novel_sir8063,
and novel_sir8495 (Figure 2).

Identification of Differentially Expressed
Small Interfering RNAs
The expression levels of siRNAs at each time point were
compared with the control to identify DE-siRNAs that play an
essential role in the response of flowering Chinese cabbage to heat

stress. An UpSetR plot showed 536, 816, and 829 siRNAs
exhibited differential expression in the libraries of flowering
Chinese cabbage after 1, 6, and 12 h of heat treatments,
respectively (Figure 3A, Supplementary Table 3). Among
them, 245, 192, and 472 siRNAs were upregulated after 1, 6,
and 12 h of heat treatments, respectively (Figure 3B). After
comparing the siRNA expression profiles at the three time
points, 144 DE-siRNAs were identified across all three time
points, of which 75 were upregulated and 69 were
downregulated in flowering Chinese cabbage across all three
time points (Figure 3C). Among the upregulated siRNAs,
novel_sir10102, novel_sir17115, novel_sir19717,
novel_sir18193, novel_sir5840, and novel_sir9841 had the
highest levels of differential expression, whereas novel_sir7562,
novel_sir21032, novel_sir16370, novel_sir6523, and
novel_sir8892 were highly downregulated, suggesting the
possible role of siRNAs in heat tolerance of flowering Chinese
cabbage (Supplementary Table 3).

Furthermore, cluster analysis separated the DE-siRNAs
into four clusters (Figure 4). Cluster 1 consists of 28
upregulated DE-siRNAs at 1, 6, and 12 h of heat
treatments, with the maximum expression changes at 6
and 12 h of heat treatments. Cluster 2 has 19 DE-siRNAs
that were progressively downregulated at 1 and 6 h and

FIGURE 3 | Heat-stress responsive DE-siRNAs in flowering Chinese cabbage. UpSetR plots represent DE-siRNAs after 1, 6, and 12 h of heat stress, relative to
control (0 h). Black vertical bars highlight common DE-siRNAs at all three time points, blue vertical bars represent common DE-siRNAs at two time points (e.g., 1 and
6 h), and red vertical bars represent DE-siRNAs at one time point. Horizontal black bars indicate total number of DE-siRNAs at individual time points. (A) Total number of
DE-siRNAs, (B) upregulated DE-siRNAs, and (C) downregulated DE-siRNAs in flowering Chinese cabbage after 1, 6, and 12 h of heat stress.
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upregulated at 12 h of heat treatments. Cluster 3 contains
31 DE-siRNAs that were upregulated at 1, 6, and 12 h of heat
treatments. There are 66 DE-siRNAs in cluster 4 that were
downregulated at 1, 6, and 12 h of heat treatments.

Target Genes of the Differentially Expressed
Small Interfering RNAs
To investigate the involvement of siRNAs in heat tolerance of
flowering Chinese cabbage, we identified 1,415, 1,784, and 1,986
putative target genes of DE-siRNAs for 1, 6, and 12 h of heat
treatments, respectively, using psRobot and targetFinder. Among
them, 327 target genes were common in the 1 and 6-h heat
treatments, 137 target genes were common for 1 and 12 h, 349
target genes were common for 6 and 12 h, and 795 target genes were
common for all three time points (Figure 5, Supplementary
Table 4). Among targets of DE-siRNAs, 683 (79 upregulated and
604 downregulated), 932 (525 upregulated and 407 downregulated),
and 1,077 (721 upregulated and 356 downregulated) were
differentially expressed for 1, 6, and 12 h of heat treatments,
respectively. Among the heat-induced common target genes of
DE-siRNAs, 351 (195 upregulated and 156 downregulated) were
differentially expressed in flowering Chinese cabbage. A correlation
(r2 � 0.90) was observed between DE-siRNAs and differentially

expressed target genes of DE-siRNAs (Supplementary Table 4),
confirming that the DE-siRNAs identified by next-generation
sequencing are real. The target genes include these to encode a
disease resistance protein RPS6-like, a putative disease resistance
protein At5g66900, a putative LRR receptor-like serine/threonine-
protein kinase At1g51860, a disease resistance protein RML1A-like
isoform X2, a transcription factor SCREAM2-like protein, a putative
disease resistance protein RPP1 isoform X1, a serine/threonine-
protein kinase SRK2I, a disease resistance protein TAO1-like
isoform X2, a disease resistance protein TAO1-like isoform X4,
an RRP12-like protein, a serine/threonine-protein kinase CTR1-like,
and a receptor-like protein 12 (Table 1).

Functional Annotation of Small Interfering
RNA Target Genes
GO analysis further classified predicted target genes into three
categories based on their functions: biological process, molecular
function, and cellular component (Figure 6; Supplementary
Table 5). In the biological process category, enriched GO
terms included a response to temperature stimulus, positive
regulation of the biological process, biological regulation,
signaling, developmental process, single organism process,
multicellular organismal process, and growth. In the cellular

FIGURE 4 | Cluster analysis of DE-siRNAs. Lines reflect expression changes for each DE-siRNA at 1, 6, and 12 h. Black lines are mean changes in expression of
siRNAs in each cluster.
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component group, the most enriched GO terms included
macromolecular complex, membrane, cell, extracellular region,
cell junction, organelle, and organelle part. In the molecular
function category, most GO terms included protein binding
transcription factor activity, structural molecular activity and
transporting activity, binding, enzyme regulator activity, and
catalytic activity.

Quantitative Analysis Verified
Next-Generation Sequencing Results
To validate the differential expression of the siRNAs identified by
next-generation sequencing, the expression levels of 18 siRNAs,
representing unchanged, upregulated, or downregulated
expression, were measured by RT-qPCR. A high correlation
(r2 � 0.892) was observed between sequencing data and RT-

qPCR (Figure 7), confirming that the DE-siRNAs identified by
next-generation sequencing are real.

DISCUSSION

Plants have established robust and sophisticated mechanisms to
cope with biotic and abiotic stresses for adaptive growth
responses, such as reestablishing and restoring cellular
homeostasis (Wang et al., 2004; Mittler, 2006). Vegetable
plants respond to external stimuli through well-defined
reprogramming and specific orchestration of gene expression
regulation of transcriptional activities to minimize the stimuli’s
effect on their physiological states (Dresselhaus and
Hückelhoven, 2018). However, despite these regulatory
mechanisms, environmental factors play key roles in
regulating plant growth, survival, and yield. Heat stress
tolerance is a quantitative trait, and its expression can involve
the fine regulation of stress-related genes in plants (Golldack
et al., 2014; Suzuki et al., 2014). Recent advances in next-
generation sequencing have identified and functionally
characterized many genes involved in responses to
environmental stresses, signifying their functions in the
maintenance of stress tolerance (Ahmed et al., 2020b). siRNAs
are involved in regulating abiotic stress responses in plants, but
limited information is available on their function in response to
heat stress. In the present study, we identified DE-siRNAs and
potential target genes that might play key roles in regulating heat
tolerance in the flowering Chinese cabbage 3T-6 genotype. Most
of the identified siRNAs ranged from 20 to 24 nt, with 291, 624,
and 357 downregulated and 245, 192, and 472 upregulated after 1,
6, and 12 h of heat treatment, respectively. Likewise, Ge et al.
(2017) identified the same sized siRNAs associated with maize
embryonic callus formation. Yao et al. (2010) revealed three
siRNAs in wheat with significantly upregulated expression
levels under cold stress and significantly downregulated levels
under heat stress. ONSEN, a copia-type retrotransposon, was
transcriptionally active under heat stress in Arabidopsis seedlings
(Ito et al., 2011). High accumulation of ONSEN transcripts was
detected in the progeny of heat-stressed plants deficient in
siRNAs, suggesting that ONSEN activation is controlled by
cell-specific regulatory mechanisms (Matsunaga et al., 2012).
Phylogenetic analysis of the ONSEN transposon family across

FIGURE 5 | Potential target genes of DE-siRNAs in flowering Chinese
cabbage under heat stress.

TABLE 1 | Potential target genes of differentially expressed novel siRNAs in flowering Chinese cabbage under heat stress.

miRNA Target name Target id Putative function of target

novel_sir9784 BraA03g010330.3C XP_009131879.1 putative fatty acyl-CoA reductase 7 isoform X2
novel_sir1979 BraA03g004600.3C XP_018512591.1 probable disease resistance protein RPP1
novel_sir6288 BraA09g039380.3C XP_009115492.1 serine/arginine-rich splicing factor RSZ21 isoform X1
novel_sir5666 BraA08g021430.3C XP_009109360.2 Disease resistance protein TAO1-like isoform X2
novel_sir7548 BraA03g009600.3C XP_009131792.1 Disease resistance protein TAO1-like isoform X1
novel_sir733 BraA09g015010.3C XP_013661567.1 Disease resistance protein RML1A-like
novel_sir6315 BraA08g023800.3C XP_009109657.1 GDSL esterase/lipase At1g29660
novel_sir4946 BraA02g013230.3C XP_009126995.1 Pectinesterase QRT1-like
novel_sir5161 BraA03g040130.3C XP_009135779.1 Phospholipase D gamma 1-like
novel_sir9463 BraA05g021940.3C XP_009102824.1 probable LRR receptor-like serine/threonine-protein kinase At1g29720 isoform X3
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species of Brassicaceae revealed that conservation of ONSEN
sequences is closely related and together comprise a clade, an
important finding for understanding evolutionary adaptation to

thermal environmental stress (Ito et al., 2013). The conserved
preferential insertion and heat activation near genic regions
among species of Brassicaceae indicate that ONSEN could alter
gene regulatory networks following heat stress (Ito et al., 2013).

A high correlation coefficient (r2 � 0.892) between RT-qPCR
and next-generation sequencing data indicated the consistent
differential expression profiles (up/downregulation) between RT-
qPCR and next-generation sequencing data, which agrees with
previous studies (Xia et al., 2014; Yao et al., 2016). Likewise, in a
previous study, 778, 1,075, and 652 siRNAs and 326, 172, and
1,832 siRNAs were significantly downregulated and upregulated
between stages I and II, stages I and III, and stages II and III,
respectively, indicating that these siRNAsmight have vital roles in
inducing immature embryonic calli (Ge et al., 2017).
Furthermore, in rice, several siRNAs (P86-H10, P91-A10, P88-
A8, and P8-E2) were ubiquitously expressed, whereas others
(P65-B7, P94-H11, P104-G7, P108-D3, and P103-B2) were
preferentially expressed in the inflorescence, suggesting that
endogenous siRNAs are differentially expressed in
developmental stages and different tissues (Sunkar et al.,
2005). Deep sequencing of siRNAs in flower tissues of WT
and nrpd1a and nrpd1b mutants of Arabidopsis identified
more than 4,200 loci that produced siRNAs in a PolIV-
dependent manner, with PolIVb reinforcing siRNA production
by PolIVa (Mosher et al., 2008). Sunkar et al. (2005) identified 284
unique putative siRNA sequences corresponding to 942 genomic
loci in a tissue-specific or the developmental-stage-specific
manner in Arabidopsis. These identified targets established
evidence for both cis-silencing and trans-silencing of the target
messenger RNAs by siRNA-guided cleavage, with most of these

FIGURE 6 | Gene ontology analysis of predicted target genes of heat-stress responsive siRNAs in flowering Chinese cabbage libraries.

FIGURE 7 | Validation of DE-siRNAs using RT-qPCR. RNA-seq data
(Y-axis) were plotted against RT-qPCR log2-fold change values (X-axis).
Letters A to R represent siRNAs, being novel_sir966, novel_sir5526,
novel_sir6288, novel_sir7548, novel_sir4946, novel_sir6523,
novel_sir7091, novel_sir5666, novel_sir6315, novel_sir9784, novel_sir6347,
novel_sir4575, novel_sir9463, novel_sir5161, novel_sir733, novel_sir8591,
novel_sir3609, and novel_sir1979, respectively.
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siRNAs (225 of 284) involved in developmental processes and/or
active meristematic/cell division. In the current study, DE-
siRNAs were clustered into four clusters based on their
expression patterns. Likewise, the role of siRNAs was
characterized under drought stress in rice, siRNAs that exhibit
up/downregulated expression are highly conserved and clustered,
indicating that siRNAs are mainly responsible for drought-
related damage to plants as the drought stress continues and
their functional roles are related to well-known drought-related
pathways (Jung et al., 2016).

In maize, 576 potential target genes of DE-siRNAs that
regulated embryonic callus formation were identified, and
most could play key roles in anion channel activity, binding,
protein dimerization activity, chaperone binding, and gated
channel activities (Ge et al., 2017). We identified 795 target
genes of DE-siRNAs that might play a key role in heat stress
responses. In addition, most of the predictive target genes could
regulate responses to temperature stimulus, developmental
processes, single organism processes, protein binding
transcription factor activity, and the macromolecular complex
(Supplementary Table 4).

In conclusion, this study identified a comprehensive
dataset of heat-responsive siRNAs for B. campestris L. ssp.
chinensis var. utilis Tsen et Lee under heat stress. The siRNA
information, their differential expression, and identified
messenger RNA targets will be useful for the adaptation of
flowering Chinese cabbage and close species to future stress
encounters, thus enhancing yield stability and crop resilience
when breeding this important vegetable crop.
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