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Abstract

Formation of centromeric heterochromatin in fission yeast requires the combined action of chromatin modifying enzymes
and small RNAs derived from centromeric transcripts. Positive feedback mechanisms that link the RNAi pathway and the
Clr4/Suv39h1 histone H3K9 methyltransferase complex (Clr-C) result in requirements for H3K9 methylation for full siRNA
production and for siRNA production to achieve full histone methylation. Nonetheless, it has been proposed that the
Argonaute protein, Ago1, is the key initial trigger for heterochromatin assembly via its association with Dicer-independent
‘‘priRNAs.’’ The RITS complex physically links Ago1 and the H3-K9me binding protein Chp1. Here we exploit an assay for
heterochromatin assembly in which loss of silencing by deletion of RNAi or Clr-C components can be reversed by re-
introduction of the deleted gene. We showed previously that a mutant version of the RITS complex (Tas3WG) that
biochemically separates Ago1 from Chp1 and Tas3 proteins permits maintenance of heterochromatin, but prevents its
formation when Clr4 is removed and re-introduced. Here we show that the block occurs with mutants in Clr-C, but not
mutants in the RNAi pathway. Thus, Clr-C components, but not RNAi factors, play a more critical role in assembly when the
integrity of RITS is disrupted. Consistent with previous reports, cells lacking Clr-C components completely lack H3K9me2 on
centromeric DNA repeats, whereas RNAi pathway mutants accumulate low levels of H3K9me2. Further supporting the
existence of RNAi–independent mechanisms for establishment of centromeric heterochromatin, overexpression of clr4+ in
clr4Dago1D cells results in some de novo H3K9me2 accumulation at centromeres. These findings and our observation that
ago1D and dcr1D mutants display indistinguishable low levels of H3K9me2 (in contrast to a previous report) challenge the
model that priRNAs trigger heterochromatin formation. Instead, our results indicate that RNAi cooperates with RNAi–
independent factors in the assembly of heterochromatin.
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Introduction

Eukaryotic genomes are characterized by domains of transcrip-

tionally permissive euchromatin and relatively transcriptionally

inert heterochromatin. In addition to its important role in

transcriptional regulation, heterochromatin plays a critical role

in the regulation of genomic stability. In fission yeast constitutive

heterochromatin assembles at the centromeres, telomeres and the

mating type locus. This heterochromatin is required for high

fidelity chromosome transmission, protecting chromosome ends

from fusion to form dicentric chromosomes, and preventing co-

expression of both sets of mating type information which could

lead to haploid meiosis and cell death.

A major hallmark of heterochromatin in most eukaryotes is the

presence of methyl groups on lysine 9 of histone H3. In fission

yeast (Schizosaccharomyces pombe), methylation of H3 K9 is carried

out by a single enzyme, Clr4 (the homolog of Suvar39 enzymes in

higher eukaryotes), which is responsible for mono, di and tri-

methylation of H3K9 [1]. This mark is in turn bound by proteins

bearing a chromodomain, including the HP1 homologs Swi6 and

Chp2, and importantly, Clr4 itself, leading to models for

perpetuation and spreading of heterochromatin [2–5]. A fourth

chromodomain protein, Chp1, has high affinity for binding the

methyl mark [6]. Chp1 is a component of the RITS complex

(RNA-induced initiation of transcriptional silencing complex),

which is critical for the accumulation of heterochromatin at

centromeres [7,8].

Heterochromatin assembly in several organisms also depends

upon the cellular RNA interference (RNAi) pathway [9]. RNAi is

triggered by double-stranded RNA (dsRNA), which is processed

by the RNAseIII-like activity of Dicer into short interfering (si)

RNAs. siRNAs are loaded into RNA –induced silencing

complexes (RISC), where they associate with Argonaute proteins,

and base-pair with and promote the sequence-dependent destruc-
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tion of RNA via cleavage mediated by Argonaute. In fission yeast,

the RNAi effector complex is called RITS, and consists of the sole

argonaute protein, Ago1, in complex with Tas3 which physically

links Ago1 to Chp1 [8,10]. Association of the RITS complex with

centromeres is co-dependent on the RNA dependent RNA

polymerase complex, RDRC [11]. RITS and RDRC physically

associate with the Clr4-containing Clr-C complex [5,12], and

trigger an RNAi-mediated positive feedback loop to enhance

H3K9me2 accumulation and heterochromatin assembly [13].

Accumulation of H3K9me2 allows recruitment of heterochroma-

tin- binding proteins such as Swi6 (the fission yeast homolog of

HP1) and cohesin to centromeric repeats, and is required for

efficient chromosome segregation (reviewed in [14]). Clearly, the

mechanism by which RITS and RDRC are initially recruited to

centromeres to promote RNAi-dependent accumulation of

H3K9me2 is critical to our understanding of heterochromatin

assembly.

Somewhat paradoxically, the outer repeats of the centromere

are transcribed by RNA polymerase II, and this transcription

correlates with heterochromatin assembly [15–18]. Recently, two

models have been proposed for how centromeric transcripts may

initiate recruitment of RITS/RDRC. The first proposes that

single stranded centromeric transcripts fold into hairpin structures

to provide dsRNA template for the activity of dicer (Dcr1) to

generate centromeric siRNAs to target RITS to homologous

centromeric sequences [19]. Alternatively, RNA degradation

products (priRNAs) associate with Ago1, and if derived from

centromeric transcripts, target Ago1 to centromeres [20]. Ago1

slices transcripts that are homologous to priRNAs, recruiting

RDRC which promotes dsRNA synthesis. dsRNAs are cleaved by

Dcr1 to form centromeric siRNAs that recruit RITS to

centromeres [8]. In both models, centromeric RITS/RDRC then

promotes Clr-C association, and H3K9 methylation facilitating

binding of Chp1 to chromatin.

These models infer that small RNAs and the RNAi pathway act

as the priming signal for heterochromatin assembly, with Dcr1 or

Ago1 playing the initiating role respectively. However, RITS

possesses two potential centromeric targeting motifs: Ago1 which

binds siRNAs and can target centromeric transcripts and Chp1

which has high affinity for binding H3K9me2 [6,7]. We

questioned whether indeed RNAi is the upstream event for

heterochromatin assembly, or whether Clr4 functions upstream of

RNAi to generate H3K9me2 to recruit RITS.

Dissection of the requirements for the initial assembly of

centromeric heterochromatin is greatly hampered by the inter-

relatedness of the RNAi and chromatin modifying pathways and

the positive feedback loops involved in full heterochromatin

assembly. Deletion of genes required for assembly of heterochro-

matin ablates heterochromatin, complicating analysis of whether

the gene contributes to the establishment or maintenance of

heterochromatin. To define the contribution of siRNAs and

H3K9me to targeting RITS to centromeres, we have generated

mutants that separate Ago1 from the RITS complex [10], that

remove Chp1 from the RITS complex [21], and mutations within

the chromodomain of Chp1 [6,22] that weaken the high affinity of

Chp1’s chromodomain for binding H3K9me2/3. Data accumu-

lated from analysis of these mutants strongly supports that

centromeric targeting of RITS critically depends on Chp1 and

in particular, Chp1 chromodomain’s high affinity for binding

H3K9me2/3.

The tas3WG mutant separates Ago1 from Tas3-Chp1 [10]. This

mutant bears a two amino acid alanine substitution of residues

W265 and G266 within the conserved WG/GW Ago ‘‘hook’’ (or

interaction domain) of Tas3 [10,23], that renders the Chp1-Tas3

subcomplex incapable of associating with Ago1. Surprisingly,

tas3WG cells can maintain preassembled heterochromatin, most

likely via retention of the subcomplexes of RITS at centromeres

because of Chp1-Tas3 association with H3K9me2 and Ago1’s

association with centromeric siRNAs [10]. Interestingly, following

removal of all H3K9me2 and loss of heterochromatin –dependent

siRNAs (in clr4D backgrounds), tas3WG cells fail to generate de-

novo heterochromatin on reintegration of clr4+ [10]. We reasoned

that genes that are particularly important for the establishment of

heterochromatin would likewise be defective for heterochromatin

assembly if transiently depleted in the tas3WG background. In

contrast, genes with a less critical role for heterochromatin

assembly might be expected to assemble heterochromatin

efficiently if transiently depleted in tas3WG cells.

Here, we directly test the contribution of proteins involved in

the RNAi pathway or in methylation of H3K9 to the initiation of

centromeric heterochromatin. We find that transient depletion of

any Clr-C component perturbs the establishment of heterochro-

matin in tas3WG cells. In contrast, transient depletion of genes

involved in the RNAi pathway does not block heterochromatin

assembly in tas3WG cells. Thus there appears to be a continuous

requirement for the Clr-C complex, but not RNAi, during

heterochromatin assembly in cells bearing a disrupted RITS

complex. Consistent with this, RNAi-defective cells retain low

levels of the heterochromatin mark, H3K9me2, whereas this mark

is completely absent from Clr-C mutant cells. Because RNAi-

defective cells maintain residual H3K9me2, it is not heterochro-

matin initiation which is being monitored following reintroduction

of RNAi components, but more downstream aspects of hetero-

chromatin assembly. To determine if RNAi is required for the

initial step in heterochromatin assembly, we additionally removed

H3K9me2 from RNAi defective cells by making compound

mutants with clr4D, and interrogated whether on re-expression of

clr4+, Clr-C could target centromeric sequences. We found that

Clr4 can promote de novo methylation of centromeric repeats

when overexpressed in cells otherwise lacking Clr4 and either of

Author Summary

Centromeres are the chromosomal regions that promote
chromosome movement during cell division. They consist
of repetitive DNA sequences that are packaged into
heterochromatin. Disruption of centromeric heterochro-
matin leads to chromosome loss that can result in
miscarriages and genetic disorders. We have sought to
define the precise steps leading to heterochromatin
assembly using fission yeast as the model system. To
accomplish this we employed our novel Tas3WG mutant
strain that can propagate preassembled heterochromatin
but cannot support its de novo establishment. Current
models suggest that small RNAs initiate heterochromatin
assembly by targeting the RNAi machinery and subse-
quently the Clr-C chromatin-modifying complex to the
centromere. Here, we demonstrate that transient deple-
tion of components of the RNAi pathway that generate or
bind small RNAs does not perturb heterochromatin
assembly in our Tas3WG strain. Instead, transient depletion
of the Clr-C complex blocks heterochromatin assembly,
suggesting a critical role for continuous Clr-C activity
during heterochromatin assembly in Tas3WG cells. We have
directly tested whether Clr-C can target centromeres when
expressed in cells deficient for RNAi and Clr-C. We find that
RNAi–independent recruitment of Clr-C can occur and
likely contributes to the critical initiating mechanisms of
heterochromatin assembly.

Clr-C Required for Heterochromatin Establishment
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the RNAi components Ago1 or Dcr1. Thus, Clr-C can target

H3K9me2 to centromeric repeats independently of the RNAi

pathway. This data, plus our finding that ago1-deficient cells retain

significant levels of H3K9me2 on centromeric repeats shows that

Ago1 and Ago1 bound priRNAs are not necessary for the

initiation of assembly of centromeric heterochromatin. Instead,

our data strongly indicates that RNAi-independent mechanisms

function together with RNAi in the cooperative assembly of

centromeric heterochromatin.

Results

Transient depletion of rik1+ causes defective
heterochromatin establishment in tas3WG cells

To precisely define the point of action of regulators of

heterochromatin assembly, we have employed the tas3WG allele

which disrupts the RITS complex. Transient gene depletion

experiments in tas3WG cells previously showed that the H3K9

methyltransferase, Clr4, is required to establish centromeric

heterochromatin when Ago1 is separated from Chp1-Tas3 [10].

Clr4 is a component of a large complex of proteins called Clr-C.

Cells lacking Clr-C components lose centromeric heterochromatin

[24–29], but the role of individual Clr-C components in

heterochromatin assembly is poorly understood. We therefore

assessed the point of action of Clr-C components in heterochro-

matin establishment, using transient gene depletion experiments in

the tas3WG background.

Rik1 was the first protein identified in complex with Clr4 [30],

and it resembles the UV DNA damage binding protein, UV-

DDB1, including homology to the CPSF-A factor involved in

RNA processing [31]. Rik1 is thought to act upstream of Clr4, and

to help recruit Clr-C to chromatin, since Rik1 remains localized at

centromeres in mutants that mislocalize Clr4 [5,28]. We tested

whether transient depletion of rik1+ in tas3WG cells would prevent

assembly of heterochromatin. We introduced the tas3WG-TAP and

tas3-TAP alleles into a rik1D strain that carries a ura4+ transgene

within the outer repeats of centromere 1 (cen::ura4+). Wild type cells

efficiently assemble heterochromatin on cen::ura4+, silencing its

expression, and allowing growth on media containing the drug 5-

FOA, which is toxic to cells that express ura4+. Cells lacking rik1+

fail to silence the centromeric transgene. The re-establishment of

centromeric heterochromatin was monitored following reintro-

duction of rik1+ into its normal genomic locus. Addition of rik1+ to

rik1D tas3-TAP cells allowed efficient establishment of heterochro-

matin and silencing of the cen::ura4+ transgene (Figure 1B). In

contrast, on reintroduction of rik1+ into tas3WG-TAP cells,

heterochromatin did not reassemble to silence the cen::ura4+

reporter.

Transcription of endogenous dg and dh centromeric repeats was

measured by real time PCR in cDNA prepared from these strains.

In wild type cells, centromeric transcripts are processed by siRNA-

dependent Ago1-mediated processing and by RNAi-independent

turnover [32–34]. In addition, heterochromatin that assembles on

repeat sequences can reduce access of RNA polymerase, thus

preventing transcript accumulation [35]. Centromeric transcripts

from dh (Figure 1C) and dg (Figure 1D) accumulate in cells lacking

rik1+, similar to cells lacking clr4+. On reintegration of rik1+ into

tas3-TAP cells, centromeric transcripts become normally pro-

cessed, resulting in no net gain in transcript levels in rik1D to rik1+

tas3-TAP cells relative to tas3-TAP cells. Strikingly, both dg and dh

transcript levels remain high in tas3WG cells following reintegration

of rik1+, consistent with the observed silencing defect of the

cen::ura4+ reporter in these strains. This accumulation of transcripts

is at least in part due to defective processing of centromeric

transcripts into siRNAs by the RNAi machinery since siRNAs

were not detectable by Northern blotting in tas3WG-TAP rik1D to

rik1+ cells whereas rik1+ reconstituted tas3-TAP cells synthesized

centromeric siRNAs as efficiently as tas3-TAP cells (Figure 1E).

Transient depletion of Raf1 or Raf2 in tas3WG cells causes
defective heterochromatin assembly

Raf1 (Cmc1, Dos1, Clr8) and Raf2 (Cmc2, Dos2, Clr7) have

also been identified as components of Clr-C [27,29]. They are

required for localization of Swi6 [25], and are important for

silencing the mating type locus [26]. raf1+ encodes a WD repeat

protein which can bind Rik1 [25], and raf2+ encodes a putative Zn

finger protein which binds to Pcu4 [26].

raf1D and raf2D were crossed into tas3-TAP and tas3WG -TAP

backgrounds, and wild type genomic copies of raf1+ or raf2+ were

reintegrated into the corresponding deletion mutants and assessed

for heterochromatin assembly. As seen for transient depletion

experiments with rik1, tas3-TAP cells efficiently re-assembled

centromeric heterochromatin on reintroduction of raf1+ or raf2+,

whereas silencing of the cen::ura4+ reporter was not apparent in

tas3WG-TAP backgrounds (Figure 2A and 2B). Centromeric

transcripts accumulate to high levels in raf1 and raf2 deleted cells,

and although transcript levels drop following reintegration of raf1+

into raf1D tas3-TAP cells or of raf2+ into raf2D tas3-TAP cells, high

levels of dg and dh transcripts are maintained in both raf1+ and

raf2+ reconstituted tas3WG-TAP cells (Figure 2C and 2E, Figure

S1A and S1B). Consistent with this failure to suppress high levels

of centromeric transcription in tas3WG-TAP cells transiently

depleted for raf1+ or raf2+, these cells fail to engage the RNAi

pathway to promote destruction of centromeric transcripts into

siRNAs (Figure 2D and 2F).

Transient depletion of Pcu4 in tas3WG cells causes
defective heterochromatin assembly

Pcu4 is the fission yeast cullin4, and it has been identified in

complex with the UV-DDB1 E3 ubiquitin ligase [35,36], and with

the related Rik1 protein in the Clr-C complex [27–29]. To define

the role of Pcu4 in heterochromatin establishment, we monitored

heterochromatin assembly following reintroduction of the pcu4+

gene into pcu4D tas3-TAP and tas3WG-TAP strains. Clearly

centromeric transcripts accumulate in pcu4D cells, and processing

of transcripts is efficiently resumed following re-introduction of the

wild type gene into tas3-TAP cells (Figure 3A and 3B). However,

both dh and dg transcript levels are maintained at high levels

following pcu4+ reintroduction into pcu4D tas3WG -TAP cells. This

failure to silence centromeric transcripts was reflected in the failure

to produce abundant centromeric siRNAs in these tas3WG

reconstituted cells (Figure 3C).

In summary, all components of Clr-C are defective for silencing

of endogenous centromeric or centromeric reporter transcripts

following their transient depletion in tas3WG cells, suggesting that

their continuous presence is required for the initiation of

heterochromatin in RITS-defective cells.

Defective heterochromatin assembly on transient
depletion of Clr-C complex in tas3WG cells correlates with
absence of centromeric H3K9me2

Next we analyzed H3K9 methylation on centromeric sequences

following transient depletion of components of the Clr-C complex.

In wild type cells, H3K9me accumulates to high levels on

centromeric repeats through both RNAi-dependent and RNAi-

independent mechanisms [15,30]. In cells lacking pcu4, H3K9me2

levels on dh sequences are not above the background seen for clr4D

Clr-C Required for Heterochromatin Establishment
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Figure 1. Clr-C component rik1+ is required for establishment of repressive chromatin at the centromere. A. Cartoon representing the
dg and dh repeat structure within the outer repetitive sequences (otr) at centromere 1. In the cen::ura4+ strain, the ura4+ marker gene is located within
dg. A and B represent PCR fragments for real-time PCR analyses from dh and dg respectively, and probes used for siRNA detection are also

Clr-C Required for Heterochromatin Establishment
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cells which lack H3K9me2 (Figure 3D, upper panel). Following

pcu4+ reintroduction into pcu4D tas3-TAP cells, H3K9me2 levels rise

to that seen in tas3-TAP cells, whereas no significant accumulation

of H3K9me2 is observed in pcu4+ reconstituted tas3WG-TAP cells.

Thus Clr4 mediated H3K9 methylation is abrogated in tas3WG-TAP

cells transiently depleted for pcu4. This methylation defect is not

Figure 2. Clr-C components raf1+ and raf2+ facilitate establishment of repressive centromeric heterochromatin. A. Serial dilution assay
of raf1+ reintegration strains bearing the cen::ura4+ reporter, and plated on specified media. Strains analyzed: PY2036, 3287, 3659, 3707, 3708, 3710,
3711. B. Serial dilution assay to monitor heterochromatin establishment in raf2D cells into which raf2+ has been reintegrated in tas3-TAP and tas3WG-
TAP backgrounds. Strains analyzed: PY2036, 3675, 3676, 3781, 3783, 3791, 3792. C. Real time PCR analysis of dh centromeric transcripts relative to
transcripts from adh1+. Data shown represent the mean 6 SEM measurements from cDNA derived from two independent cultures, normalized to the
wild type cen::ura4+ strain (PY2036). Strains analyzed: PY2036, 3287, 3659, 3707, 3710, 3711. See also Figure S1A. D. Northern blotting for dg and dh
siRNAs and for the loading control SnoR69 on small RNA populations derived from indicated strains (as used in (C) and PY3708). E. Real time PCR
analysis of cDNA to monitor centromeric transcript accumulation following reintegration of raf2+ into raf2D cells bearing the tas3-TAP and tas3WG-TAP
alleles. Transcripts from dh were measured relative to the adh1+ control. Data were normalized to wild type cen::ura4+ strains, and represents mean 6
SEM. Strains analyzed: PY2036, 3494, 3497, 3293, 3781, 3783, 3791, 3792. See also Figure S1B. F. Northern blot analysis of siRNAs derived from dg and
dh regions of the centromere, with SnoR69 as a loading control. Strains were as listed in (E).
doi:10.1371/journal.pgen.1001174.g002

represented. B. Serial dilution assay of yeast bearing the cen::ura4+ marker plated onto complete synthetic media (PMG complete), media lacking
uracil (2URA), or complete media supplemented with 5-fluoro-orotic acid (+FOA). In the last 4 rows, the rik1+ gene has been reintegrated into the
rik1D locus (rik1D to rik1+). Strains analyzed: PY2036, 3776, 3778, 4879, 4880, 4881, 4882. C. Real time PCR analysis of centromeric transcripts from the
dh repeats (site A), relative to the adh1+ euchromatic control in cDNA from indicated strains. Duplicate experiments used independent RNA samples,
and data represents the mean 6 SEM. All values were normalized to the value obtained for a wild type cen::ura4+ strain (PY2036). Strains used: PY
2036, 1838, 3494, 3497, 3776, 4879, 4880, 4881, 4882. D. Real time PCR analysis performed as described for (C), but measuring the transcript
accumulation from the dg repeats (site B) relative to adh1+. E. Northern blot of small RNA populations isolated from indicated strains, hybridized with
probes for siRNAs derived from the dh repeat, or SnoR69 RNA as loading control. Strains used as in (C).
doi:10.1371/journal.pgen.1001174.g001
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likely due to defective reassembly of the Clr-C complex following

transient depletion of pcu4, since H3K9 methylation resumes

effectively in pcu4+ reconstituted tas3-TAP cells.

Chp1 binds H3K9me2/3 and Chp1 recruitment to centromeres

is a hallmark of heterochromatin. ChIP experiments performed with

anti-Chp1 antibodies demonstrated that pcu4D cells are also defective

for Chp1 association with centromeres, and pcu4+ reconstitution of

pcu4D tas3-TAP but not of pcu4D tas3WG-TAP cells promotes Chp1

association with centromeres (Figure 3D, lower panel).

We also assessed H3K9me2 levels at centromeres in other strain

backgrounds. In all Clr-C mutants (raf2, rik1, raf1), centromeric

H3K9me2 levels were no higher than seen in clr4D cells (Figure 4A

and 4C). Following reconstitution with raf2+, clr4+, rik1+, or raf1+,

tas3-TAP cells accumulated ‘‘wild type’’ levels of H3K9me2, but

tas3WG-TAP cells failed to accumulate H3K9me2 at centromeres.

Very similar results were obtained for Chp1 association with

centromeres (Figure 4B and 4D), consistent with tas3WG-TAP cells

being dependent on constitutive expression of all components of

the Clr-C complex to provide H3K9me2 at centromeric sites for

recruitment of Chp1. In sum, these experiments demonstrate that

in cells where the association of Ago1 with Chp1-Tas3 has been

abrogated, that reintroduction of Clr-C components is not

sufficient to direct H3K9me2 accumulation on centromeric

repeats. Clr-C defective cells should still express heterochromatin

independent siRNAs, and Ago1 in these cells would be expected to

maintain association with primal RNAs. Thus targeting of Ago1

by priRNAs to centromeric repeats is not sufficient to drive Clr-C

recruitment to centromeres when Ago1 is physically separated

from Tas3-Chp1.

Dicer knockout cells show efficient assembly of
centromeric heterochromatin on reintegration of the
dcr1+ gene

Next we examined whether RNAi components contribute to the

initial steps in heterochromatin assembly. RNAi defective cells,

such as dcr1D, are expected to retain priRNAs but lose most of

their siRNAs. In contrast to Clr-C defective cells, dcr1D cells

maintain low levels of H3K9me2 at centromeres (Figure S2D).

Following overexpression of dcr1+, both dcr1D tas3-TAP and dcr1D
tas3WG -TAP cells efficiently assembled heterochromatin [10]. This

suggested that H3K9me2, and not siRNA, acts at an early stage of

heterochromatin initiation. However, in these experiments it was

unclear whether overexpression of dcr1+ suppressed an establish-

ment defect in tas3WG dcr1+ reconstituted cells [10,14].

We directly tested whether integration of dcr1+ into the genomic

dcr1D locus of tas3-TAP and tas3WG-TAP cells could support

reassembly of centromeric heterochromatin. Cells lacking dcr1+ fail

to silence the cen::ura4+ centromeric transgene. Following reinte-

gration of dcr1+, silencing of the cen::ura4+ reporter resumed in both

dcr1D to dcr1+ tas3-TAP and dcr1D to dcr1+ tas3WG-TAP cells (Figure

S2A). Cells lacking dcr1+ accumulate high levels of centromeric

transcripts, but following dcr1+ reintegration, centromeric tran-

script levels were reduced in both the dcr1+ reconstituted tas3-TAP

and tas3WG-TAP cells, confirming that reintegration of dcr1+

promoted efficient assembly of centromeric heterochromatin

(Figure S2B, S2C). In addition, dcr1D cells cannot generate

siRNAs from centromeric transcripts, but on reintegration of dcr1+,

siRNA production resumed efficiently in both tas3-TAP and

tas3WG-TAP backgrounds (Figure S2D). Together, these results

confirmed and extended our data obtained with overexpressed

dcr1+ [10]. dcr1+ and siRNAs are not critical for Clr-C activity at

centromeres, but are important for amplification of the H3K9me2

signal during later stages of heterochromatin assembly.

Components of the RDRC complex are not required for
heterochromatin assembly in tas3WG cells

We next asked whether transient depletion of genes that act

upstream of Dcr1 in the RNAi pathway would cause defective

heterochromatin establishment. RDRC acts upstream of Dcr1,

generating dsRNA for siRNA production. RDRC consists of the

RNA-dependent RNA polymerase (Rdp1), the RNA helicase

Hrr1, and a non-canonical poly (A) polymerase, Cid12 [11]. Cells

lacking any component of RDRC show reduced RITS association

and reduced H3K9me2 at centromeres, and have reduced siRNA

production [11,19,20].

We introduced the tas3-TAP and tas3WG-TAP alleles into

deletion mutants of all components of RDRC, and then tested

whether silenced chromatin assembled on the cen::ura4+ reporter

following reintegration of genomic clones encoding these genes.

For cells lacking cid12+, hrr1+, or rdp1+, reintegration of these genes

into knockout tas3-TAP cells allowed efficient assembly of

heterochromatin. Interestingly, as seen for Dcr1, reintroduction

of the genes into the mutant tas3WG-TAP strains also supported

silencing of the cen::ura4+ reporter (Figure 5A and 5B, Figure 6A).

Transcript analyses performed on the RDRC reconstituted

strains revealed that cells lacking RDRC components accumulate

both centromeric dg and dh transcripts, but that on reconstitution

with the wild type gene, dg and dh transcript levels dropped to

levels close to those normally found in tas3-TAP or tas3WG-TAP

cells, which is considerably less than seen in RDRC mutant cells

(Figure 5C and 5E, Figure 6C, and Figures S3A, S3B, and S4A).

Thus processing of centromeric transcripts is efficiently resumed

following reintroduction of RDRC components into RDRC

deficient tas3WG cells, and this conclusion is further supported by

detection of siRNAs in RDRC reconstituted cells (Figure 5D, 5F

and Figure 6B). In summary, in contrast to cells transiently

depleted for Clr-C components, centromeric heterochromatin

assembly can occur efficiently following the transient depletion of

RDRC components or of dcr1+ in tas3WG cells.

Low levels of H3K9me2 at centromeres in RDRC deficient
cells support assembly of heterochromatin in
reconstituted tas3WG cells

Cells lacking dcr1+ accumulate H3K9me2 on centromeric

sequences, whereas Clr-C deficient cells completely lack

H3K9me2. We therefore asked whether cells lacking RDRC

components accumulate centromeric H3K9me2, and whether

H3K9me2 levels could signal the difference in outcome,

promoting heterochromatin assembly in tas3WG cells following

transient depletion of RDRC, but not Clr-C components.

Figure 3. Pcu4 is required for establishment of repressive centromeric heterochromatin. A. Real time PCR analysis of centromeric
transcripts from dh sequences relative to adh1+ in cDNA derived from the indicated strains. Data represent mean 6 SEM, normalized to wild type
strain (PY41). Strains used were PY1065, PY2268, PY41, PY1797, PY3515, PY5082, PY5083, PY5085, PY5086. B. Real time PCR analysis of centromeric
transcript accumulation from dg repeats. Samples were processed as described in (A). C. Northern blotting for dh siRNAs and SnoR69 as a loading
control in small RNAs from strains listed in (A). D. ChIPs of H3K9me2 (upper panel) and Chp1 (lower panel) association with centromeric dh sequences,
with adh1 serving as control. Strains analyzed were as for (A), and data represents mean 6 SEM from duplicate ChIP experiments, quantified by real
time PCR.
doi:10.1371/journal.pgen.1001174.g003
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Figure 4. Components of the Clr-C complex are required for establishment of H3K9me2 at centromeres. A. ChIP analysis of H3K9me2 at
dh repeats compared with adh1+ locus measured by real time PCR. Enrichment of H3K9me2 was normalized to a strain lacking clr4+. Data represents
the mean of 2 independent ChIP experiments 6 SEM. Strains analyzed PY2036, 1838, 3494, 3497, 3293, 3781, 3783, 3791, 3792. B. ChIP analysis of
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Figure 5. cid12+ and hrr1+ RDRC components are not required to initiate silencing of centromeric heterochromatin. A. Serial dilution
spotting assay to monitor the role of cid12+ in the silencing of the cen::ura4+ reporter gene. Cells of the indicated genotypes and carrying the
cen::ura4+ reporter were plated onto selective media. Following reintegration of cid12+ into the cid12D locus (cid12D to cid12+), both tas3-TAP and
tas3WG-TAP cells grew on FOA media. Strains analyzed were PY2036, 4338, 4340, 4423, 4424, 4425. B. Serial dilution spotting assay of strains carrying
the cen::ura4+ reporter, following hrr1+ reintegration at the hrr1D locus (hrr1D to hrr1+) and assessed for ura4 expression compared with control
strains on selective media. Strains analyzed: PY2036, 1838, 4334, 4336, 4420, 4481, 4586, 4587. C. Real time PCR analysis of cDNAs derived from
indicated strains, quantifying centromeric dh transcripts relative to adh1+ and normalized to ratio obtained in wild type cells. Data represent mean 6

SEM from 2 independent RNA preparations. Strains analyzed: PY2036,1838, 3494, 3497, 4312, 4423, 4424, 4425. See also Figure S3A. D. Small RNA
northern blot was hybridized with a probe for centromeric dh siRNAs, and with a probe for snoR69 as a loading control. Small RNAs were derived
from strains used in (C). E. Real time PCR analysis of dh relative to adh1+ transcripts in cDNA derived from indicated strains. Values represent means of
2 RNA preparations 6 SEM. Strains analyzed: PY2036, 1838, 3494, 3497, 4308, 4420, 4481, 4586, 4587. See also Figure S3B. F. Northern blot for small
RNA species hybridizing to the cen dh probe and to snoR69 as loading control. Strains are listed in (E).
doi:10.1371/journal.pgen.1001174.g005

Chp1 occupancy on centromeric dh repeats relative to adh1+, measured by real time PCR. ChIP values were normalized to strains lacking clr4+, and are
the mean 6 SEM of two independent ChIP experiments. Strains analyzed as in (A). C. Real time PCR quantitation of ChIP of H3K9me2 at centromeric
dh repeats in tas3-TAP and tas3WG-TAP strains following reintegration of clr4+, raf1+, and rik1+ into knockout backgrounds, measured relative to adh1+.
Data represents mean 6 SEM of 2 independent ChIP experiments and combine analyses for 2 reintegrants. Data were normalized to a strain lacking
clr4D (PY1838). Strains analyzed PY3494, 3497, 1838, 2678, 2679, 2680, 2681, 3776, 4879, 4880, 4881, 4882, 3287, 3707, 3708, 3710, 3711. D. Real time
PCR analysis of ChIP material derived from strains analyzed in (C), assessed for Chp1 association with centromeric dh repeats (site A). Data were
processed as described in (C).
doi:10.1371/journal.pgen.1001174.g004
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Figure 6. RDRC components are not required for establishment of silent H3K9me2 chromatin at centromeres. A. Serial dilution assay of
strains bearing the cen::ura4+ reporter and of the indicated genotype, plated on selective media. Strains analyzed: PY2036, 4300, 4304, 4401, 4402,
4403 and 4404. B. Northern blotting for small RNAs derived from dh centromeric repeats, with snoR69 RNA as loading control. Strains analyzed: PY
2036, PY1838, 3494, 3497, 4274, 4401, 4402, 4403, 4404. C. Real time PCR analysis of cDNA derived from strains of the indicated genotypes (as for
Figure 6B), measuring centromeric dh transcripts normalized to adh1+, and to a wild type strain (PY2036). Data represents the mean 6 SEM from
analysis of 2 independent cDNA preparations from duplicate biological samples. See also Figure S4A. D. Real time PCR analysis of ChIP material
derived using antibodies against H3K9me2, analyzed for centromeric dh sequences and normalized to euchromatic adh1+ sequences. Data represent
mean from two independent experiments 6 SEM, normalized to data obtained from clr4D cells. Strains analyzed: PY2036, 1838, 3494, 3497, 4308,
4420, 4481, 4586, 4587. See also Figure S4B. E. ChIP for H3K9me2 at centromeric dh sequences relative to adh1+, normalized to a clr4D strain.
Duplicate ChiP experiments were performed and data were processed as described above. Strains analyzed included dcr1+ reintegration strains
(dcr1D to dcr1+), rdp1+ reintegration strains (rdp1D to rdp1+) and cid12+ reintegrants (cid12D to cid12+). Two independent gene reintegrants for each
tas3WG-TAP strain background were tested in duplicate. Strains analyzed: PY 2036, 3494, 3497, 3235, 3501, 3502, 3499, 3500, 4274, 4401, 4402, 4403,
4404, 4312, 4423, 4424, 4425.
doi:10.1371/journal.pgen.1001174.g006
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We assessed centromeric H3K9me2 levels in RDRC deficient

cells and following reintegration of RDRC components. In these

experiments, we note that in all RDRC mutants, the level of

H3K9me2 at centromeres is considerably higher than seen in cells

lacking clr4+, although at least 2 fold reduced compared with wild

type cells. Reintegration of RDRC components into the

corresponding RDRC null cells supported centromeric accumu-

lation of H3K9me2 of both tas3-TAP and tas3WG-TAP cells to

levels found normally (Figure 6D and 6E). In addition, although

Chp1 association with centromeres is diminished in hrr1D cells,

reintroduction of hrr1+ into tas3WG-TAP cells promoted Chp1

association (Figure S4B). Together then this data shows that

heterochromatin assembly occurs efficiently following transient

depletion of genes required for siRNA synthesis, including RDRC

components that act upstream of Dcr1. In addition, the ability of

heterochromatin to reform efficiently, following transient deple-

tion of RNAi components in tas3WG cells, correlates with the

persistence of low levels of H3K9me2 on centromeric repeats in

the mutant backgrounds.

Transient depletion of Ago1 in Tas3WG cells causes no
defect in heterochromatin establishment

Very recently it has been proposed that Ago1 is the most

upstream factor in heterochromatin assembly. It is thought to act

as an acceptor for RNA degradation products, termed pri-RNAs,

which, based on frequency of occurrence, preferentially target

antisense transcripts resulting from bidirectional transcription of

DNA repeats. Cleavage of nascent centromeric transcripts by

priRNA-directed activity of Ago1 is proposed to recruit the

RDRC complex and eventually promote siRNA-dependent

recruitment of RITS, and subsequent robust assembly of

heterochromatin via recruitment of Clr-C [20]. This model

therefore places Ago1 as an initiator, upstream of RDRC and

Dcr1 and of the Clr-C complex and H3 K9 methylation. This

model is supported by the detection of small RNAs (priRNAs) in

dcr1D strains, and of siRNAs in cells lacking clr4+, or in which

heterochromatin assembly is blocked because of mutation of

H3K9, supporting that heterochromatin is not essential for small

RNA generation [19,20]. Finally, the model would suggest that

siRNAs and priRNAs act upstream of heterochromatin assembly,

and that Ago1 is the most upstream component of the RNAi

pathway. Indeed, Halic and Moazed argue that Ago1 activity is

required for the initial deposition of H3K9me, since in their

publication strains lacking Ago1 exhibit lower levels of centro-

meric H3K9me accumulation than strains deficient in other

components of the RNAi pathway [20].

To test the role of Ago1 in heterochromatin assembly, we first

performed transient depletion experiments for Ago1 in the tas3WG-

TAP background (Figure 7). We integrated a genomic clone of

ago1+ into ago1 null tas3-TAP and tas3WG-TAP cells, and monitored

heterochromatin assembly. In contrast to ago1 null cells, where

centromeric transcripts are highly elevated (above the levels seen

in clr4D cells), reintroduction of ago1+ into either tas3-TAP or

tas3WG-TAP cells reduced centromeric dh and dg transcripts to

levels seen normally in tas3-TAP and tas3WG-TAP cells (Figure 7A

and Figure S5A). Consistent with this suppression, we found that

unlike ago1 null cells, where siRNA production is severely reduced,

centromeric siRNAs are synthesized at normal levels following

reintroduction of ago1+ (Figure 7B). Next, we performed ChIP

experiments to monitor H3K9me2 levels in ago1D cells. ago1

deletion reduces H3K9me2 accumulation at centromeres below

that of wild type cells, but above that of clr4D cells. On

reintroduction of ago1+, centromeric H3K9me2 levels accumulate

to normal levels (Figure 7C), similar to the results seen on

reintegration of other RNAi components into tas3WG cells. These

data suggest that cells lacking ago1 behave similarly to other RNAi

defective strains, and functionally that there is sufficient H3K9me2

in ago1D tas3WG cells to drive heterochromatin assembly following

reintroduction of ago1+. We further analyzed centromeric

H3K9me2 levels in RNAi defective strains. At the 2 sites tested

within centromeric dg and dh repeats, H3K9me2 levels were

significantly elevated in ago1D cells above the background levels in

clr4D or ago1D clr4D cells, and H3K9me2 accumulation at

centromeres was similar in all RNAi deficient backgrounds tested.

This data would suggest that Ago1, like other RNAi components,

is not acting upstream of Clr-C for heterochromatin assembly.

RNAi pathway is not required for initial step in
heterochromatin initiation

Our demonstration that heterochromatin can assemble follow-

ing transient depletion of RNAi components in tas3WG cells is

suggestive that the RNAi pathway is acting downstream of Clr-C.

However, given that low levels of centromeric H3K9me2 are

maintained in RNAi-defective cells, it is difficult to assess whether

RNAi is required for the initial step in heterochromatin initiation.

To address this question, we removed residual H3K9me2 from

RNAi defective cells by introduction of the clr4D allele. We then

tested whether H3K9me2 could be deposited at centromeres

following expression of Clr4 in these cells that lack both Clr4 and

Ago1 or Clr4 and Dcr1 (Figure 8A). Following overexpression of

clr4+ in ago1Dclr4D cells, H3K9me2 could be detected on

centromeric repeats above the background observed in clr4 null

cells, and similar to levels found normally in ago1D cells. Similar

results were obtained following overexpression of clr4+ in

dcr1Dclr4D cells (Figure 8B). Thus, when overexpressed, Clr4 can

target centromeric repeats to initiate H3K9me2 deposition in the

absence of a functional RNAi pathway. We note, however, that

reintroduction of clr4+ into its normal locus in these cells is not

sufficient, in the absence of the RNAi pathway, for accumulation

of detectable centromeric H3K9me2 (data not shown). Together,

these experiments strongly indicate that Clr-C can initiate

H3K9me deposition at centromeres via RNAi-independent

mechanisms, but that cooperation between RNAi-dependent

and RNAi-independent factors normally results in full hetero-

chromatin assembly (summarized in Figure 9).

Discussion

We have utilized our novel mutant, tas3WG, to identify genetic

requirements for heterochromatin initiation as opposed to those

required for the maintenance of pre-existing heterochromatin. We

used an approach in which genes required for heterochromatin

formation are deleted and reintroduced and then heterochromatin

assembly is examined. In wild-type cells, heterochromatin can be

established regardless of the factor removed, indicating that

establishment mechanisms are robust to perturbations of the

system. However, in cells harboring a disrupted RITS complex,

we found that the establishment of silencing becomes sensitive to

the prior presence of particular silencing factors. Our data

demonstrate that the ability to assemble heterochromatin in such

gene removal-restoration experiments in tas3WG cells correlates

with the prior presence of H3K9me2 on centromeric repeats, but

does not require the prior presence of small RNA species. These

data strongly suggest that RNAi-independent mechanisms of

recruitment of Clr-C play a key role in the assembly of

centromeric heterochromatin.

We also tested whether RNAi is required in an obligate manner

to initiate de novo heterochromatin assembly in cells that lack any
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prior H3K9me. To accomplish this, we generated clr4D dcr1D cells

and found that some deposition of H3K9me2 at centromeric

sequences occurred upon overexpression of clr4+ (Figure 8C).

These experiments clearly demonstrate that Clr-C can function to

initiate de novo centromeric heterochromatin assembly indepen-

dently of the RNAi pathway.

Recently, Ago1 and its associated priRNAs have been proposed

to trigger heterochromatin formation. This notion is partly based

on an observation that an ago1D strain had little or no H3K9me2

at centromeres, suggesting an upstream role for Ago1 [20]. If this

hypothesis were correct, we anticipated that in our tas3WG system,

that transient depletion of Ago1 might block heterochromatin

assembly similar to what we observed for Clr4. In contrast, we

found that tas3WG cells formed robust centromeric heterochroma-

tin on reintroduction of ago1+ into ago1D cells (Figure 7A–7C).

Consequently, we re-examined the reported critical Dicer-

independent role for Ago1 in driving H3K9Me. In contrast to a

recent study [20], we found that H3K9me2 levels in ago1D cells

were no lower than in other RNAi-defective backgrounds

(Figure 7D and 7E). To further probe for a potential role of

priRNAs in heterochromatin initiation, we generated cells that

lack both Ago1 (which binds priRNAs) and Clr4, and tested

whether reintroduction of Clr4 could promote de novo centro-

meric H3K9me2 in the absence of Ago1-priRNA targeting

Figure 8. Initial Clr-C recruitment to centromeres can occur independently of ago1+ and dcr1+. A. Schematic for removal of residual
H3K9me2 in dcr1D or ago1D cells by introduction of clr4D, prior to re-expression of genomic clr4+ from episomal vector to test for Clr-C’s ability to
promote de novo heterochromatin assembly in RNAi-deficient tas3WG cells. B. Removal of residual H3K9me2 in dcr1D and ago1D cells was performed
by generation of double mutants with clr4D, and then ability of Clr-C to generate de novo centromeric H3K9me2 methylation was tested in absence
of RNAi pathway following transformation with genomic clr4+ plasmid. H3K9me2 ChIP was performed on indicated strains, and assessed by real time
PCR analysis. Strains analyzed: PY12, 5516, 5557, 5517, 1637, 5522, 5523, 5520, 5521. All were grown in PMG-his media. Data represent mean of 3 or 4
ChIPs 6SEM for all samples except dcr1D and WT for which 1 ChIP is shown.
doi:10.1371/journal.pgen.1001174.g008

Figure 7. Ago1 reintegration into tas3WG cells promotes heterochromatin assembly, and ago1 null cells retain significant
centromeric H3K9me2. A. Real time PCR analysis of cDNA derived from the indicated strains, measuring centromeric dh transcripts normalized to
adh1+, and to a wild type strain (PY 42). Data represents the mean 6 SEM from analysis of 2 independent cDNA preparations from duplicate
biological samples. Strains used: PY 42, 1798, 1064, 2267, 901, 5193, 5194, 5202, 5203. See also Figure S5A. B. Small RNA Northern blot to identify
centromeric dh siRNAs, with SnoR69 as a loading control. Samples used as in (A). C. ChIP for H3K9me2 on centromeric dh repeats, assessed by real
time PCR and normalized to adh1 association. Data represents mean of duplicate independent ChIP experiments 6 SEM. Strains as listed in (A). D.
ChIP for H3K9me2 on centromeric dh repeats, assessed by real time, and normalized to both act1+ and adh1+ association. Data represent mean of 4
independent ChIP experiments 6 SEM. Strains analyzed are PY42, 1798, 1478, 1550, 901, 5236. Two tailed P value for ago1D vs clr4D and for ago1D vs
ago1Dclr4D = ,0.0001 in t test for data normalized to adh1+, and p = 0.0053 (ago1D vs clr4D) and p = 0.0058 (ago1D vs ago1Dclr4D) for data
normalized to act1+. E. ChIP for H3K9me2 on centromeric dg repeats, as described for (D). Two tailed P value for ago1D vs clr4D = 0.0005 and for
ago1D vs ago1Dclr4D = ,0.0008 in t test for adh1 normalized data, and p = 0.001 (ago1D vs clr4D) and p = 0.0016 (ago1Dvs ago1Dclr4D) for act1
normalized data.
doi:10.1371/journal.pgen.1001174.g007
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activities. This experiment revealed that indeed Clr4, when

overexpressed, can initiate H3K9me2 deposition at centromeres

independent of Ago1 (Figure 8C).

Taken together, our data demonstrate (1) that Clr-C compo-

nents can act independently of members of the RNAi pathway to

initiate heterochromatin assembly and (2) the ability to promote

heterochromatin assembly in tas3WG cells correlates with the prior

levels of centromeric H3K9me2 in mutant backgrounds, and not

the initial small RNA abundance and (3), that Ago1-bound

priRNAs are unlikely to be the key initiator of heterochromatin

assembly. The functional data that we present therefore counters

the model for heterochromatin initiation proposed recently [20],

and supports that RNAi-independent factors, together with the

RNAi pathway, are necessary for full heterochromatin assembly.

The conclusions that derived from our observations contrast

with the widely held belief that RNAi initiates heterochromatin

assembly at fission yeast centromeres. Although it has been shown

by several labs that small RNAs derived from exogenous hairpin

RNAs can induce silencing of genomic loci [37,38], these effects

tend to be very weak and very locus specific. In these experiments,

silencing efficiency correlates with proximity to sites of hetero-

chromatin, or is enhanced by overexpression of heterochromatin

proteins.

The production of the majority of centromeric small RNAs

depends on the presence of heterochromatin. However, low levels

of small RNAs are found in Clr-C deletion backgrounds [12,20] or

in histone H3K9R mutant cells [19]. Interestingly, Clr-C mutants

that completely lack H3K9me are deficient for heterochromatin

establishment in our reintegration assay, in spite of the presence of

centromeric siRNAs (which are below the level of detection of our

Northern assay). In contrast, RNAi-defective strains that are

devoid of, or express even lower levels of centromeric small RNAs

than Clr-C mutants [12,19,20], can assemble heterochromatin

effectively following reintegration of the wild type gene into the

tas3WG background.

Although not easy to detect, priRNAs, which have been

postulated to prime heterochromatin establishment, are expected

to be present in all of the genetic backgrounds that we tested for

heterochromatin initiation. This class of small RNAs therefore

does not appear to contribute to the differential ability of mutants

to initiate heterochromatin assembly in the tas3WG background.

Finally, our data showing that transient depletion of ago1+ does not

impair heterochromatin establishment in tas3WG cells, and that

ago1D cells retain H3K9me2, would argue that ago1+ and priRNAs

are not the initiating trigger for heterochromatin assembly.

These results beg the question of how low levels of siRNA

synthesis occur in the absence of heterochromatin, since early

models suggested that localization of the RITS and RDRC

complexes to centromeres was a prerequisite for centromeric

siRNA generation, and that RITS and RDRC complex

localization was dependent on Clr4 [8,11]. One study suggested

that single-stranded transcripts from centromeric sequences can

adopt secondary structures to yield dsRNA that can be targeted by

Dcr1 to form siRNAs [19]. Such models for the heterochromatin-

independent synthesis of centromeric siRNAs may now help to

explain our previously puzzling result that Chp1 chromodomain

mutants that are defective for heterochromatin establishment

following transient depletion of clr4+ express abundant siRNAs [6].

How low levels of H3K9me2 are initially placed at centromeres

remains an open question, but our data supports that it is not

absolutely dependent on small RNAs and the RNAi pathway. We

suggest that H3K9me2 deposition is linked to the transcription of

the centromere. Mutants in three separate components of the

RNA pol II complex show defects in heterochromatin assembly,

including a mutant that truncates the C terminal repetitive tail of

the largest subunit of the polymerase, Rpb1 [16–18]. This raises

Figure 9. Table summarizing results from this study. Tas3WG cells lacking Clr-C components lack H3K9me, but retain heterochromatin
independent siRNAs and priRNAs. These cells cannot support recruitment of Clr-C to centromeres following reintegration of the missing Clr-C
component. In contrast, Tas3WG cells lacking RNAi components retain residual H3K9me, but lack siRNAs. On reintegration of the missing RNAi
component, these cells convert to allow full heterochromatin assembly on centromeric repeats. These results suggest that Clr-C can function
independently of the RNAi pathway in the assembly of centromeric heterochromatin. To further test this hypothesis, H3K9me was withdrawn from
RNAi deficient cells to determine whether Clr-C can target centromeres de novo independently of the RNAi pathway. Overexpression of Clr4 in
clr4Dago1D cells supports recruitment of Clr-C activity to centromeric repeats to allow initiation of heterochromatin. These data suggest that
normally RNAi-independent and RNAi-dependent mechanisms cooperate for full heterochromatin assembly.
doi:10.1371/journal.pgen.1001174.g009
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the intriguing possibility that, similar to other histone modifying

enzymes such as the Set1 and Set2 methyltransferases, that Clr-C

may associate with, and be brought to chromatin, via RNA

polymerase II [39]. Another mutation in RNA pol II that causes

defective heterochromatin assembly resides in the Rpb7 subunit

[16], which together with its partner, Rpb4, is thought to be an

accessory and non-obligate component of yeast RNA pol II. One

interesting possibility would be if Clr-C recruitment to regions of

chromatin that are destined to become heterochromatic was

controlled by modulation of RNA pol II by the Rpb4/7

subcomplex. In contrast, in plants, two pol II-related RNA

polymerase activities, Pol IV and Pol V, have evolved to mediate

heterochromatin assembly on repetitive sequences (reviewed in

[40]).

Materials and Methods

Plasmid construction
Integration plasmids for genomic clones were constructed by

PCR using Phusion polymerase (NEB) and standard cloning or

Gateway (Invitrogen) techniques. Oligonucleotide sequences are

listed in Table S2. Full details of plasmid construction are listed in

Text S1.

Strain generation
Strains used in this study are listed in Table S1 and details of

their construction and verification are in Text S1.

Serial dilution assays on selective media
Cells were cultured overnight at 25uC in rich YES medium to a

density of approximately 56106 cells/ml. Cells were washed

extensively in PMG media, counted, and five-fold serial dilutions

made, such that plating of 4 ul of cells yielded 1.26104 cells within

the most concentrated spot. Plating was performed on PMG

complete media, PMG media lacking uracil, and PMG complete

media supplemented with 2g FOA per liter as described previously

[21], and incubated for 5 days at 25uC.

Transcript and siRNA analyses
Transcript and siRNA analyses were performed as previously

described [10,21]. Oligos for real time PCR analysis: (dh) JPO-769

and JPO-770, (dg) JPO-986, JPO-987, adh1, JPO-793 and JPO-794

[10]. RNA was prepared from duplicate cultures for every

experiment, and for analyses following gene reintegration, multiple

independent re-integrants were assessed.

Real-time PCR was performed on an Eppendorf Mastercycler

ep Realplex machine using Quantifast Sybr green (Qiagen). Data

was analyzed using the DCt method, ensuring that all samples

gave Ct values within the experimentally determined linear range.

Chromatin Immunoprecipitation analyses
Chromatin immunoprecipitation was performed as previously

described [10,21], using antibodies that recognize H3K9me2

(Abcam) and Chp1 (Abcam). Further details are in Text S1.

Supporting Information

Figure S1 Analysis of transcript accumulation from dg sites

within the centromere by real time PCR analysis. A. Transcripts

from cen dg sequences were measured by real time PCR relative

to adh1+ transcript accumulation in cDNA derived from strains

listed in Figure 2C (raf1D to raf1+). Duplicate RNA preparations

were used to generate duplicate cDNAs and data represent mean

6 SEM. B. Centromeric transcripts from the dg region of the

centromere were measured by real time PCR of cDNA derived

from strains listed in Figure 2E (raf2D to raf2+). Analysis was

performed as described above.

Found at: doi:10.1371/journal.pgen.1001174.s001 (0.01 MB PDF)

Figure S2 Analysis of strains bearing genomic reintegration of

dcr1+. A. Serial dilution assay to monitor growth of cen::ura4+

reporter strains on non-selective media (complete), media lacking

uracil (2URA), or media supplemented with FOA (+FOA).

Following reintegration of dcr1+ into the genomic dcr1D locus, both

tas3-TAP and tas3WG-TAP isolates were able to grow on FOA.

Strains used were PY2036, 3310, 3307, 3501, 3502, 3499, 3500.

B. Real time PCR analysis of centromeric transcript accumulation

from the dh repeat sequences relative to adh1+ transcript

accumulation in cDNA derived from the indicated strains. Two

independent reintegrants of dcr1+ (dcr1D to dcr1+) were analyzed for

both the tas3-TAP and tas3WG-TAP backgrounds. Data represent

mean 6 SEM for cDNA samples from 2 independent RNA

preparations for each strain. Data was normalized to wild type

cen::ura4+ strain (PY2036), which was set at 1. Strains used were

PY2036, 3310, 3307, 3501, 3502, 3499, 3500. C. Centromeric dg

transcripts were measured by similar methods and using the same

cDNA samples as used for (B). D. Northern blotting for small RNA

species in RNA preparations from the strains listed in (B). Blot was

probed for siRNAs derived from dh repeats and for the snoR69

RNA as a loading control.

Found at: doi:10.1371/journal.pgen.1001174.s002 (0.24 MB PDF)

Figure S3 Analysis of centromeric dg and dh transcript

accumulation by real time PCR. A. Real time PCR analysis of

dg centromeric transcripts relative to adh1+ in cDNA derived from

strains listed in Figure 5C (cid12D to cid12+). Duplicate RNA

preparations were used to generate duplicate cDNAs and data

represent mean 6 SEM. B. Real time PCR analysis of transcripts

derived from dg centromeric repeats relative to adh1+ in strains

listed in Figure 5E (hrr1D to hrr1+). Analysis was performed as

described above.

Found at: doi:10.1371/journal.pgen.1001174.s003 (0.02 MB PDF)

Figure S4 Analysis of centromeric transcript accumulation in

rdp1 null cells and Chp1 association with centromeric dh sequences

in hrr1 mutant cells. A. Real time PCR analysis of transcripts

derived from dh centromeric repeats relative to adh1+ in strains

listed in Figure 6C (rdp1D to rdp1+). Analysis was performed as

described in Figure 6C. B. ChIP was performed with Chp1

antibodies on chromatin prepared from strains listed in Figure 6D.

Real time PCR was used to quantify Chp1 association with dh

relative to the euchromatic adh1 control. Data was normalized to

cells lacking clr4 (set at 1), in which Chp1 does not associate with

centromeres. Error bars represent the SEM of duplicate ChIPs

using different biological samples.

Found at: doi:10.1371/journal.pgen.1001174.s004 (0.02 MB PDF)

Figure S5 Transient depletion of ago1+ does not affect

establishment of silencing of centromeric transcripts in tas3WG

cells. A. Real Time PCR analysis of cDNA prepared from

indicated strains, measuring centromeric dg transcript accumula-

tion normalized to adh1+ expression. Data represents mean

average of analysis of 2 independent cDNA preparations from

duplicate biological samples, measuring two independent ago1+

reintegrants for each background, with error bars representing

SEM. Strains used were as in Figure 7A.

Found at: doi:10.1371/journal.pgen.1001174.s005 (0.01 MB PDF)

Table S1 Strains used in this study.

Found at: doi:10.1371/journal.pgen.1001174.s006 (0.11 MB

DOC)
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Table S2 Oligonucleotide sequences.

Found at: doi:10.1371/journal.pgen.1001174.s007 (0.06 MB

DOC)

Text S1 Supplemental experimental procedures.

Found at: doi:10.1371/journal.pgen.1001174.s008 (0.05 MB

DOC)
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